NVIDIA ConnectX Host Firmware for the BlueField Data Processing Unit (DPU) contains a vulnerability where an attacker may cause an improper handling of insufficient privileges issue. A successful exploit of this vulnerability may lead to denial of service, data tampering, and limited information disclosure.
NVIDIA ConnectX Firmware contains a vulnerability where an attacker may cause an improper handling of insufficient privileges issue. A successful exploit of this vulnerability may lead to denial of service, data tampering, and limited information disclosure.
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager that allows a user of the guest OS to access global resources. A successful exploit of this vulnerability might lead to information disclosure, data tampering, and escalation of privileges.
NVIDIA vGPU software contains a vulnerability in the GPU kernel driver of the vGPU Manager for all supported hypervisors, where a user of the guest OS can cause an improper input validation by compromising the guest OS kernel. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, data tampering, denial of service, and information disclosure.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the user mode layer, where an unprivileged regular user can cause an out-of-bounds read. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the user mode layer, where an unprivileged regular user can cause an out-of-bounds read. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the user mode layer, where an unprivileged regular user can cause an out-of-bounds read. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the user mode layer, where an unprivileged regular user can cause an out-of-bounds read. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the user mode layer, where an unprivileged regular user can cause an out-of-bounds read. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
NVIDIA GPU Display Driver for Windows and Linux contains a vulnerability which could allow a privileged attacker to escalate permissions. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
NVIDIA NeMo contains a vulnerability in SaveRestoreConnector where a user may cause a path traversal issue via an unsafe .tar file extraction. A successful exploit of this vulnerability may lead to code execution and data tampering.
NVIDIA CUDA Toolkit for Windows and Linux contains a vulnerability in the nvdisam command line tool, where a user can cause a NULL pointer dereference by running nvdisasm on a malformed ELF file. A successful exploit of this vulnerability might lead to a limited denial of service.
NVIDIA CUDA Toolkit for Windows and Linux contains a vulnerability in the nvdisam command line tool, where a user can cause nvdisasm to read freed memory by running it on a malformed ELF file. A successful exploit of this vulnerability might lead to a limited denial of service.
NVIDIA CUDA toolkit for Windows and Linux contains a vulnerability in the nvdisasm command line tool where an attacker may cause an improper validation in input issue by tricking the user into running nvdisasm on a malicious ELF file. A successful exploit of this vulnerability may lead to denial of service.
NVIDIA Triton Inference Server contains a vulnerability where a user may cause an out-of-bounds read issue by releasing a shared memory region while it is in use. A successful exploit of this vulnerability may lead to denial of service.
NVIDIA Container Toolkit 1.16.1 or earlier contains a vulnerability in the default mode of operation allowing a specially crafted container image to create empty files on the host file system. This does not impact use cases where CDI is used. A successful exploit of this vulnerability may lead to data tampering.
NVIDIA Container Toolkit 1.16.1 or earlier contains a Time-of-check Time-of-Use (TOCTOU) vulnerability when used with default configuration where a specifically crafted container image may gain access to the host file system. This does not impact use cases where CDI is used. A successful exploit of this vulnerability may lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
NVIDIA CUDA Toolkit contains a vulnerability in command 'cuobjdump' where a user may cause a crash or produce incorrect output by passing a malformed ELF file. A successful exploit of this vulnerability may lead to a limited denial of service or data tampering.
NVIDIA CUDA Toolkit contains a vulnerability in command `cuobjdump` where a user may cause an out-of-bound write by passing in a malformed ELF file. A successful exploit of this vulnerability may lead to code execution or denial of service.
NVIDIA CUDA Toolkit contains a vulnerability in command `cuobjdump` where a user may cause a crash by passing in a malformed ELF file. A successful exploit of this vulnerability may cause an out of bounds read in the unprivileged process memory which could lead to a limited denial of service.
NVIDIA CV-CUDA for Ubuntu 20.04, Ubuntu 22.04, and Jetpack contains a vulnerability in Python APIs where a user may cause an uncontrolled resource consumption issue by a long running CV-CUDA Python process. A successful exploit of this vulnerability may lead to denial of service and data loss.
NVIDIA Mellanox OS, ONYX, Skyway, and MetroX-3 XCC contain a vulnerability in the web support, where an attacker can cause a CGI path traversal by a specially crafted URI. A successful exploit of this vulnerability might lead to escalation of privileges and information disclosure.
NVIDIA Mellanox OS, ONYX, Skyway, MetroX-2 and MetroX-3 XC contain a vulnerability in the LDAP AAA component, where a user can cause improper access. A successful exploit of this vulnerability might lead to information disclosure, data tampering, and escalation of privileges.
NVIDIA Mellanox OS, ONYX, Skyway, MetroX-2 and MetroX-3 XC contain a vulnerability in ipfilter, where improper ipfilter definitions could enable an attacker to cause a failure by attacking the switch. A successful exploit of this vulnerability might lead to denial of service.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the user mode layer, where an unprivileged regular user can cause an out-of-bounds read. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
NVIDIA Jetson Linux contains a vulnerability in NvGPU where error handling paths in GPU MMU mapping code fail to clean up a failed mapping attempt. A successful exploit of this vulnerability may lead to denial of service, code execution, and escalation of privileges.
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in nvdisasm, where an attacker can cause an out-of-bounds read issue by deceiving a user into reading a malformed ELF file. A successful exploit of this vulnerability might lead to denial of service.
NVIDIA vGPU software for Linux contains a vulnerability where the software can dereference a NULL pointer. A successful exploit of this vulnerability might lead to denial of service and undefined behavior in the vGPU plugin.
NVIDIA vGPU software for Linux contains a vulnerability in the Virtual GPU Manager, where an untrusted guest VM can cause improper control of the interaction frequency in the host. A successful exploit of this vulnerability might lead to denial of service.
NVIDIA vGPU software for Windows and Linux contains a vulnerability where unprivileged users could execute privileged operations on the host. A successful exploit of this vulnerability might lead to data tampering, escalation of privileges, and denial of service.
NVIDIA vGPU software for Linux contains a vulnerability in the Virtual GPU Manager, where the guest OS could execute privileged operations. A successful exploit of this vulnerability might lead to information disclosure, data tampering, escalation of privileges, and denial of service.
NVIDIA vGPU software for Linux contains a vulnerability in the Virtual GPU Manager, where the guest OS could cause buffer overrun in the host. A successful exploit of this vulnerability might lead to information disclosure, data tampering, escalation of privileges, and denial of service.
NVIDIA GPU Driver for Windows and Linux contains a vulnerability where an improper check or improper handling of exception conditions might lead to denial of service.
NVIDIA GPU software for Linux contains a vulnerability where it can expose sensitive information to an actor that is not explicitly authorized to have access to that information. A successful exploit of this vulnerability might lead to information disclosure.
NVIDIA GPU Display Driver for Windows and Linux contains a vulnerability where a user can cause an untrusted pointer dereference by executing a driver API. A successful exploit of this vulnerability might lead to denial of service, information disclosure, and data tampering.
NVIDIA GPU Display Driver for Windows contains a vulnerability where the information from a previous client or another process could be disclosed. A successful exploit of this vulnerability might lead to code execution, information disclosure, or data tampering.
NVIDIA GPU driver for Windows and Linux contains a vulnerability where a user can cause an out-of-bounds write. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
NVIDIA Triton Inference Server for Linux and Windows contains a vulnerability where a user can inject forged logs and executable commands by injecting arbitrary data as a new log entry. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
NVIDIA Triton Inference Server for Linux contains a vulnerability where a user may cause an incorrect Initialization of resource by network issue. A successful exploit of this vulnerability may lead to information disclosure.
NVIDIA ChatRTX for Windows contains a vulnerability in the ChatRTX UI and backend, where a user can cause a clear-text transmission of sensitive information issue by data sniffing. A successful exploit of this vulnerability might lead to information disclosure.
NVIDIA ChatRTX for Windows contains a vulnerability in ChatRTX UI, where a user can cause an improper privilege management issue by exploiting interprocess communication between different processes. A successful exploit of this vulnerability might lead to information disclosure, escalation of privileges, and data tampering.
NVIDIA ChatRTX for Windows contains a vulnerability in Chat RTX UI, where a user can cause an improper privilege management issue by sending user inputs to change execution flow. A successful exploit of this vulnerability might lead to information disclosure, escalation of privileges, and data tampering.
NVIDIA Triton Inference Server for Linux contains a vulnerability in shared memory APIs, where a user can cause an improper memory access issue by a network API. A successful exploit of this vulnerability might lead to denial of service and data tampering.
NVIDIA Triton Inference Server for Linux contains a vulnerability in the tracing API, where a user can corrupt system files. A successful exploit of this vulnerability might lead to denial of service and data tampering.
NVIDIA Triton Inference Server for Linux contains a vulnerability where a user can set the logging location to an arbitrary file. If this file exists, logs are appended to the file. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
NVIDIA ChatRTX for Windows contains a vulnerability in the UI, where an attacker can cause a cross-site scripting error by network by running malicious scripts in users' browsers. A successful exploit of this vulnerability might lead to code execution, denial of service, and information disclosure.
NVIDIA ChatRTX for Windows contains a vulnerability in the UI, where an attacker can cause improper privilege management by sending open file requests to the application. A successful exploit of this vulnerability might lead to local escalation of privileges, information disclosure, and data tampering
NVIDIA NeMo framework for Ubuntu contains a vulnerability in tools/asr_webapp where an attacker may cause an allocation of resources without limits or throttling. A successful exploit of this vulnerability may lead to a server-side denial of service.
NVIDIA nvTIFF Library for Windows and Linux contains a vulnerability where improper input validation might enable an attacker to use a specially crafted input file. A successful exploit of this vulnerability might lead to a partial denial of service.
NVIDIA CUDA toolkit for all platforms contains a vulnerability in cuobjdump and nvdisasm where an attacker may cause a crash by tricking a user into reading a malformed ELF file. A successful exploit of this vulnerability may lead to a partial denial of service.