The WP ViewSTL plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'viewstl' shortcode in all versions up to, and including, 1.0 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
The Binary MLM Plan plugin for WordPress is vulnerable to limited Privilege Escalation in all versions up to, and including, 3.0. This is due to bmp_user role granting all users with the manage_bmp capability by default upon registration through the plugin's form. This makes it possible for unauthenticated attackers to register and manage the plugin's settings.
The Dhivehi Text plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'dhivehi' shortcode in all versions up to, and including, 0.1 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
The Outdoor plugin for WordPress is vulnerable to SQL Injection via the 'edit' action in all versions up to, and including, 1.3.2 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for unauthenticated attackers to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database.
The Woocommerce Category and Products Accordion Panel plugin for WordPress is vulnerable to Local File Inclusion in all versions up to, and including, 1.0 via the 'categoryaccordionpanel' shortcode. This makes it possible for authenticated attackers, with Contributor-level access and above, to include and execute arbitrary .php files on the server, allowing the execution of any PHP code in those files. This can be used to bypass access controls, obtain sensitive data, or achieve code execution in cases where .php file types can be uploaded and included.
The URLYar URL Shortner plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'urlyar_shortlink' shortcode in all versions up to, and including, 1.1.0 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
The WPBifröst – Instant Passwordless Temporary Login Links plugin for WordPress is vulnerable to Privilege Escalation due to a missing capability check on the ctl_create_link AJAX action in all versions up to, and including, 1.0.7. This makes it possible for authenticated attackers, with Subscriber-level access and above, to create new administrative user accounts and subsequently log in as those.
The External Login plugin for WordPress is vulnerable to SQL Injection via the 'log' parameter in all versions up to, and including, 1.11.2 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for unauthenticated attackers to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database when a PostgreSQL or MSSQL database is configured as the external authentication database.
The Demo Import Kit plugin for WordPress is vulnerable to arbitrary file uploads due to missing file type validation in all versions up to, and including, 1.1.0 via the import functionality. This makes it possible for authenticated attackers, with Administrator-level access and above, to upload arbitrary files on the affected site's server which may make remote code execution possible.
The Flex QR Code Generator plugin for WordPress is vulnerable to arbitrary file uploads due to missing file type validation in thesave_qr_code_to_db() function in all versions up to, and including, 1.2.5. This makes it possible for unauthenticated attackers to upload arbitrary files on the affected site's server which may make remote code execution possible.
The WhyDonate – FREE Donate button – Crowdfunding – Fundraising plugin for WordPress is vulnerable to unauthorized loss of data due to a missing capability check on the remove_row function in all versions up to, and including, 4.0.14. This makes it possible for unauthenticated attackers to delete rows from the wp_wdplugin_style table.
The WP jQuery Pager plugin for WordPress is vulnerable to SQL Injection via the 'ids' shortcode attribute parameter handled by the WPJqueryPaged::get_gallery_page_imgs() function in all versions up to, and including, 1.4.0 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Contributor-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database.
The FunKItools plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 1.0.2. This is due to missing or incorrect nonce validation on the saveFields() function. This makes it possible for unauthenticated attackers to update plugin settings via a forged request granted they can trick a site administrator into performing an action such as clicking on a link.
The Wp tabber widget plugin for WordPress is vulnerable to SQL Injection via the 'wp-tabber-widget' shortcode in all versions up to, and including, 4.0 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Contributor-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database.
The onOffice for WP-Websites plugin for WordPress is vulnerable to SQL Injection via the 'order' parameter in all versions up to, and including, 5.7 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Editor-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database.
The Rich Snippet Site Report plugin for WordPress is vulnerable to SQL Injection via the 'last' parameter in all versions up to, and including, 2.0.0105 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for unauthenticated attackers to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. This can also be exploited via CSRF.
The WP Dashboard Chat plugin for WordPress is vulnerable to SQL Injection via the ‘id’ parameter in all versions up to, and including, 1.0.3 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Contributor-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database.
The YourMembership Single Sign On – YM SSO Login plugin for WordPress is vulnerable to unauthorized access of data due to a missing capability check on the 'moym_display_test_attributes' function in all versions up to, and including, 1.1.7. This makes it possible for unauthenticated attackers to read the profile data of the latest SSO login.
The Keyy Two Factor Authentication (like Clef) plugin for WordPress is vulnerable to privilege escalation via account takeover in all versions up to, and including, 1.2.3. This is due to the plugin not properly validating a user's identity associated with a token generated. This makes it possible for authenticated attackers, with subscriber-level access and above, to generate valid auth tokens and leverage that to auto-login as other accounts, including administrators, as long as the administrator has the 2FA set up.
The WP BookWidgets plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'bw_link' shortcode in all versions up to, and including, 0.9 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
The DocoDoco Store Locator plugin for WordPress is vulnerable to arbitrary file uploads due to missing file type validation in the zip upload functionality in all versions up to, and including, 1.0.1. This makes it possible for authenticated attackers, with Editor-level access and above, to upload arbitrary files on the affected site's server which may make remote code execution possible.
In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: fix use-after-free in rtw89_core_tx_kick_off_and_wait() There is a bug observed when rtw89_core_tx_kick_off_and_wait() tries to access already freed skb_data: BUG: KFENCE: use-after-free write in rtw89_core_tx_kick_off_and_wait drivers/net/wireless/realtek/rtw89/core.c:1110 CPU: 6 UID: 0 PID: 41377 Comm: kworker/u64:24 Not tainted 6.17.0-rc1+ #1 PREEMPT(lazy) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS edk2-20250523-14.fc42 05/23/2025 Workqueue: events_unbound cfg80211_wiphy_work [cfg80211] Use-after-free write at 0x0000000020309d9d (in kfence-#251): rtw89_core_tx_kick_off_and_wait drivers/net/wireless/realtek/rtw89/core.c:1110 rtw89_core_scan_complete drivers/net/wireless/realtek/rtw89/core.c:5338 rtw89_hw_scan_complete_cb drivers/net/wireless/realtek/rtw89/fw.c:7979 rtw89_chanctx_proceed_cb drivers/net/wireless/realtek/rtw89/chan.c:3165 rtw89_chanctx_proceed drivers/net/wireless/realtek/rtw89/chan.h:141 rtw89_hw_scan_complete drivers/net/wireless/realtek/rtw89/fw.c:8012 rtw89_mac_c2h_scanofld_rsp drivers/net/wireless/realtek/rtw89/mac.c:5059 rtw89_fw_c2h_work drivers/net/wireless/realtek/rtw89/fw.c:6758 process_one_work kernel/workqueue.c:3241 worker_thread kernel/workqueue.c:3400 kthread kernel/kthread.c:463 ret_from_fork arch/x86/kernel/process.c:154 ret_from_fork_asm arch/x86/entry/entry_64.S:258 kfence-#251: 0x0000000056e2393d-0x000000009943cb62, size=232, cache=skbuff_head_cache allocated by task 41377 on cpu 6 at 77869.159548s (0.009551s ago): __alloc_skb net/core/skbuff.c:659 __netdev_alloc_skb net/core/skbuff.c:734 ieee80211_nullfunc_get net/mac80211/tx.c:5844 rtw89_core_send_nullfunc drivers/net/wireless/realtek/rtw89/core.c:3431 rtw89_core_scan_complete drivers/net/wireless/realtek/rtw89/core.c:5338 rtw89_hw_scan_complete_cb drivers/net/wireless/realtek/rtw89/fw.c:7979 rtw89_chanctx_proceed_cb drivers/net/wireless/realtek/rtw89/chan.c:3165 rtw89_chanctx_proceed drivers/net/wireless/realtek/rtw89/chan.c:3194 rtw89_hw_scan_complete drivers/net/wireless/realtek/rtw89/fw.c:8012 rtw89_mac_c2h_scanofld_rsp drivers/net/wireless/realtek/rtw89/mac.c:5059 rtw89_fw_c2h_work drivers/net/wireless/realtek/rtw89/fw.c:6758 process_one_work kernel/workqueue.c:3241 worker_thread kernel/workqueue.c:3400 kthread kernel/kthread.c:463 ret_from_fork arch/x86/kernel/process.c:154 ret_from_fork_asm arch/x86/entry/entry_64.S:258 freed by task 1045 on cpu 9 at 77869.168393s (0.001557s ago): ieee80211_tx_status_skb net/mac80211/status.c:1117 rtw89_pci_release_txwd_skb drivers/net/wireless/realtek/rtw89/pci.c:564 rtw89_pci_release_tx_skbs.isra.0 drivers/net/wireless/realtek/rtw89/pci.c:651 rtw89_pci_release_tx drivers/net/wireless/realtek/rtw89/pci.c:676 rtw89_pci_napi_poll drivers/net/wireless/realtek/rtw89/pci.c:4238 __napi_poll net/core/dev.c:7495 net_rx_action net/core/dev.c:7557 net/core/dev.c:7684 handle_softirqs kernel/softirq.c:580 do_softirq.part.0 kernel/softirq.c:480 __local_bh_enable_ip kernel/softirq.c:407 rtw89_pci_interrupt_threadfn drivers/net/wireless/realtek/rtw89/pci.c:927 irq_thread_fn kernel/irq/manage.c:1133 irq_thread kernel/irq/manage.c:1257 kthread kernel/kthread.c:463 ret_from_fork arch/x86/kernel/process.c:154 ret_from_fork_asm arch/x86/entry/entry_64.S:258 It is a consequence of a race between the waiting and the signaling side of the completion: Waiting thread Completing thread rtw89_core_tx_kick_off_and_wait() rcu_assign_pointer(skb_data->wait, wait) /* start waiting */ wait_for_completion_timeout() rtw89_pci_tx_status() rtw89_core_tx_wait_complete() rcu_read_lock() /* signals completion and ---truncated---
In the Linux kernel, the following vulnerability has been resolved: blk-mq: fix blk_mq_tags double free while nr_requests grown In the case user trigger tags grow by queue sysfs attribute nr_requests, hctx->sched_tags will be freed directly and replaced with a new allocated tags, see blk_mq_tag_update_depth(). The problem is that hctx->sched_tags is from elevator->et->tags, while et->tags is still the freed tags, hence later elevator exit will try to free the tags again, causing kernel panic. Fix this problem by replacing et->tags with new allocated tags as well. Noted there are still some long term problems that will require some refactor to be fixed thoroughly[1]. [1] https://lore.kernel.org/all/20250815080216.410665-1-yukuai1@huaweicloud.com/
In the Linux kernel, the following vulnerability has been resolved: scsi: target: target_core_configfs: Add length check to avoid buffer overflow A buffer overflow arises from the usage of snprintf to write into the buffer "buf" in target_lu_gp_members_show function located in /drivers/target/target_core_configfs.c. This buffer is allocated with size LU_GROUP_NAME_BUF (256 bytes). snprintf(...) formats multiple strings into buf with the HBA name (hba->hba_group.cg_item), a slash character, a devicename (dev-> dev_group.cg_item) and a newline character, the total formatted string length may exceed the buffer size of 256 bytes. Since snprintf() returns the total number of bytes that would have been written (the length of %s/%sn ), this value may exceed the buffer length (256 bytes) passed to memcpy(), this will ultimately cause function memcpy reporting a buffer overflow error. An additional check of the return value of snprintf() can avoid this buffer overflow.
In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: fix race condition to UAF in snd_usbmidi_free The previous commit 0718a78f6a9f ("ALSA: usb-audio: Kill timer properly at removal") patched a UAF issue caused by the error timer. However, because the error timer kill added in this patch occurs after the endpoint delete, a race condition to UAF still occurs, albeit rarely. Additionally, since kill-cleanup for urb is also missing, freed memory can be accessed in interrupt context related to urb, which can cause UAF. Therefore, to prevent this, error timer and urb must be killed before freeing the heap memory.
In the Linux kernel, the following vulnerability has been resolved: media: b2c2: Fix use-after-free causing by irq_check_work in flexcop_pci_remove The original code uses cancel_delayed_work() in flexcop_pci_remove(), which does not guarantee that the delayed work item irq_check_work has fully completed if it was already running. This leads to use-after-free scenarios where flexcop_pci_remove() may free the flexcop_device while irq_check_work is still active and attempts to dereference the device. A typical race condition is illustrated below: CPU 0 (remove) | CPU 1 (delayed work callback) flexcop_pci_remove() | flexcop_pci_irq_check_work() cancel_delayed_work() | flexcop_device_kfree(fc_pci->fc_dev) | | fc = fc_pci->fc_dev; // UAF This is confirmed by a KASAN report: ================================================================== BUG: KASAN: slab-use-after-free in __run_timer_base.part.0+0x7d7/0x8c0 Write of size 8 at addr ffff8880093aa8c8 by task bash/135 ... Call Trace: <IRQ> dump_stack_lvl+0x55/0x70 print_report+0xcf/0x610 ? __run_timer_base.part.0+0x7d7/0x8c0 kasan_report+0xb8/0xf0 ? __run_timer_base.part.0+0x7d7/0x8c0 __run_timer_base.part.0+0x7d7/0x8c0 ? __pfx___run_timer_base.part.0+0x10/0x10 ? __pfx_read_tsc+0x10/0x10 ? ktime_get+0x60/0x140 ? lapic_next_event+0x11/0x20 ? clockevents_program_event+0x1d4/0x2a0 run_timer_softirq+0xd1/0x190 handle_softirqs+0x16a/0x550 irq_exit_rcu+0xaf/0xe0 sysvec_apic_timer_interrupt+0x70/0x80 </IRQ> ... Allocated by task 1: kasan_save_stack+0x24/0x50 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x7f/0x90 __kmalloc_noprof+0x1be/0x460 flexcop_device_kmalloc+0x54/0xe0 flexcop_pci_probe+0x1f/0x9d0 local_pci_probe+0xdc/0x190 pci_device_probe+0x2fe/0x470 really_probe+0x1ca/0x5c0 __driver_probe_device+0x248/0x310 driver_probe_device+0x44/0x120 __driver_attach+0xd2/0x310 bus_for_each_dev+0xed/0x170 bus_add_driver+0x208/0x500 driver_register+0x132/0x460 do_one_initcall+0x89/0x300 kernel_init_freeable+0x40d/0x720 kernel_init+0x1a/0x150 ret_from_fork+0x10c/0x1a0 ret_from_fork_asm+0x1a/0x30 Freed by task 135: kasan_save_stack+0x24/0x50 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3a/0x60 __kasan_slab_free+0x3f/0x50 kfree+0x137/0x370 flexcop_device_kfree+0x32/0x50 pci_device_remove+0xa6/0x1d0 device_release_driver_internal+0xf8/0x210 pci_stop_bus_device+0x105/0x150 pci_stop_and_remove_bus_device_locked+0x15/0x30 remove_store+0xcc/0xe0 kernfs_fop_write_iter+0x2c3/0x440 vfs_write+0x871/0xd70 ksys_write+0xee/0x1c0 do_syscall_64+0xac/0x280 entry_SYSCALL_64_after_hwframe+0x77/0x7f ... Replace cancel_delayed_work() with cancel_delayed_work_sync() to ensure that the delayed work item is properly canceled and any executing delayed work has finished before the device memory is deallocated. This bug was initially identified through static analysis. To reproduce and test it, I simulated the B2C2 FlexCop PCI device in QEMU and introduced artificial delays within the flexcop_pci_irq_check_work() function to increase the likelihood of triggering the bug.
In the Linux kernel, the following vulnerability has been resolved: media: i2c: tc358743: Fix use-after-free bugs caused by orphan timer in probe The state->timer is a cyclic timer that schedules work_i2c_poll and delayed_work_enable_hotplug, while rearming itself. Using timer_delete() fails to guarantee the timer isn't still running when destroyed, similarly cancel_delayed_work() cannot ensure delayed_work_enable_hotplug has terminated if already executing. During probe failure after timer initialization, these may continue running as orphans and reference the already-freed tc358743_state object through tc358743_irq_poll_timer. The following is the trace captured by KASAN. BUG: KASAN: slab-use-after-free in __run_timer_base.part.0+0x7d7/0x8c0 Write of size 8 at addr ffff88800ded83c8 by task swapper/1/0 ... Call Trace: <IRQ> dump_stack_lvl+0x55/0x70 print_report+0xcf/0x610 ? __pfx_sched_balance_find_src_group+0x10/0x10 ? __run_timer_base.part.0+0x7d7/0x8c0 kasan_report+0xb8/0xf0 ? __run_timer_base.part.0+0x7d7/0x8c0 __run_timer_base.part.0+0x7d7/0x8c0 ? rcu_sched_clock_irq+0xb06/0x27d0 ? __pfx___run_timer_base.part.0+0x10/0x10 ? try_to_wake_up+0xb15/0x1960 ? tmigr_update_events+0x280/0x740 ? _raw_spin_lock_irq+0x80/0xe0 ? __pfx__raw_spin_lock_irq+0x10/0x10 tmigr_handle_remote_up+0x603/0x7e0 ? __pfx_tmigr_handle_remote_up+0x10/0x10 ? sched_balance_trigger+0x98/0x9f0 ? sched_tick+0x221/0x5a0 ? _raw_spin_lock_irq+0x80/0xe0 ? __pfx__raw_spin_lock_irq+0x10/0x10 ? tick_nohz_handler+0x339/0x440 ? __pfx_tmigr_handle_remote_up+0x10/0x10 __walk_groups.isra.0+0x42/0x150 tmigr_handle_remote+0x1f4/0x2e0 ? __pfx_tmigr_handle_remote+0x10/0x10 ? ktime_get+0x60/0x140 ? lapic_next_event+0x11/0x20 ? clockevents_program_event+0x1d4/0x2a0 ? hrtimer_interrupt+0x322/0x780 handle_softirqs+0x16a/0x550 irq_exit_rcu+0xaf/0xe0 sysvec_apic_timer_interrupt+0x70/0x80 </IRQ> ... Allocated by task 141: kasan_save_stack+0x24/0x50 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x7f/0x90 __kmalloc_node_track_caller_noprof+0x198/0x430 devm_kmalloc+0x7b/0x1e0 tc358743_probe+0xb7/0x610 i2c_device_probe+0x51d/0x880 really_probe+0x1ca/0x5c0 __driver_probe_device+0x248/0x310 driver_probe_device+0x44/0x120 __device_attach_driver+0x174/0x220 bus_for_each_drv+0x100/0x190 __device_attach+0x206/0x370 bus_probe_device+0x123/0x170 device_add+0xd25/0x1470 i2c_new_client_device+0x7a0/0xcd0 do_one_initcall+0x89/0x300 do_init_module+0x29d/0x7f0 load_module+0x4f48/0x69e0 init_module_from_file+0xe4/0x150 idempotent_init_module+0x320/0x670 __x64_sys_finit_module+0xbd/0x120 do_syscall_64+0xac/0x280 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 141: kasan_save_stack+0x24/0x50 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3a/0x60 __kasan_slab_free+0x3f/0x50 kfree+0x137/0x370 release_nodes+0xa4/0x100 devres_release_group+0x1b2/0x380 i2c_device_probe+0x694/0x880 really_probe+0x1ca/0x5c0 __driver_probe_device+0x248/0x310 driver_probe_device+0x44/0x120 __device_attach_driver+0x174/0x220 bus_for_each_drv+0x100/0x190 __device_attach+0x206/0x370 bus_probe_device+0x123/0x170 device_add+0xd25/0x1470 i2c_new_client_device+0x7a0/0xcd0 do_one_initcall+0x89/0x300 do_init_module+0x29d/0x7f0 load_module+0x4f48/0x69e0 init_module_from_file+0xe4/0x150 idempotent_init_module+0x320/0x670 __x64_sys_finit_module+0xbd/0x120 do_syscall_64+0xac/0x280 entry_SYSCALL_64_after_hwframe+0x77/0x7f ... Replace timer_delete() with timer_delete_sync() and cancel_delayed_work() with cancel_delayed_work_sync() to ensure proper termination of timer and work items before resource cleanup. This bug was initially identified through static analysis. For reproduction and testing, I created a functional emulation of the tc358743 device via a kernel module and introduced faults through the debugfs interface.
In the Linux kernel, the following vulnerability has been resolved: media: tuner: xc5000: Fix use-after-free in xc5000_release The original code uses cancel_delayed_work() in xc5000_release(), which does not guarantee that the delayed work item timer_sleep has fully completed if it was already running. This leads to use-after-free scenarios where xc5000_release() may free the xc5000_priv while timer_sleep is still active and attempts to dereference the xc5000_priv. A typical race condition is illustrated below: CPU 0 (release thread) | CPU 1 (delayed work callback) xc5000_release() | xc5000_do_timer_sleep() cancel_delayed_work() | hybrid_tuner_release_state(priv) | kfree(priv) | | priv = container_of() // UAF Replace cancel_delayed_work() with cancel_delayed_work_sync() to ensure that the timer_sleep is properly canceled before the xc5000_priv memory is deallocated. A deadlock concern was considered: xc5000_release() is called in a process context and is not holding any locks that the timer_sleep work item might also need. Therefore, the use of the _sync() variant is safe here. This bug was initially identified through static analysis. [hverkuil: fix typo in Subject: tunner -> tuner]
In the Linux kernel, the following vulnerability has been resolved: media: rc: fix races with imon_disconnect() Syzbot reports a KASAN issue as below: BUG: KASAN: use-after-free in __create_pipe include/linux/usb.h:1945 [inline] BUG: KASAN: use-after-free in send_packet+0xa2d/0xbc0 drivers/media/rc/imon.c:627 Read of size 4 at addr ffff8880256fb000 by task syz-executor314/4465 CPU: 2 PID: 4465 Comm: syz-executor314 Not tainted 6.0.0-rc1-syzkaller #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-2 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:317 [inline] print_report.cold+0x2ba/0x6e9 mm/kasan/report.c:433 kasan_report+0xb1/0x1e0 mm/kasan/report.c:495 __create_pipe include/linux/usb.h:1945 [inline] send_packet+0xa2d/0xbc0 drivers/media/rc/imon.c:627 vfd_write+0x2d9/0x550 drivers/media/rc/imon.c:991 vfs_write+0x2d7/0xdd0 fs/read_write.c:576 ksys_write+0x127/0x250 fs/read_write.c:631 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd The iMON driver improperly releases the usb_device reference in imon_disconnect without coordinating with active users of the device. Specifically, the fields usbdev_intf0 and usbdev_intf1 are not protected by the users counter (ictx->users). During probe, imon_init_intf0 or imon_init_intf1 increments the usb_device reference count depending on the interface. However, during disconnect, usb_put_dev is called unconditionally, regardless of actual usage. As a result, if vfd_write or other operations are still in progress after disconnect, this can lead to a use-after-free of the usb_device pointer. Thread 1 vfd_write Thread 2 imon_disconnect ... if usb_put_dev(ictx->usbdev_intf0) else usb_put_dev(ictx->usbdev_intf1) ... while send_packet if pipe = usb_sndintpipe( ictx->usbdev_intf0) UAF else pipe = usb_sndctrlpipe( ictx->usbdev_intf0, 0) UAF Guard access to usbdev_intf0 and usbdev_intf1 after disconnect by checking ictx->disconnected in all writer paths. Add early return with -ENODEV in send_packet(), vfd_write(), lcd_write() and display_open() if the device is no longer present. Set and read ictx->disconnected under ictx->lock to ensure memory synchronization. Acquire the lock in imon_disconnect() before setting the flag to synchronize with any ongoing operations. Ensure writers exit early and safely after disconnect before the USB core proceeds with cleanup. Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
In the Linux kernel, the following vulnerability has been resolved: mm: swap: check for stable address space before operating on the VMA It is possible to hit a zero entry while traversing the vmas in unuse_mm() called from swapoff path and accessing it causes the OOPS: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000446--> Loading the memory from offset 0x40 on the XA_ZERO_ENTRY as address. Mem abort info: ESR = 0x0000000096000005 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x05: level 1 translation fault The issue is manifested from the below race between the fork() on a process and swapoff: fork(dup_mmap()) swapoff(unuse_mm) --------------- ----------------- 1) Identical mtree is built using __mt_dup(). 2) copy_pte_range()--> copy_nonpresent_pte(): The dst mm is added into the mmlist to be visible to the swapoff operation. 3) Fatal signal is sent to the parent process(which is the current during the fork) thus skip the duplication of the vmas and mark the vma range with XA_ZERO_ENTRY as a marker for this process that helps during exit_mmap(). 4) swapoff is tried on the 'mm' added to the 'mmlist' as part of the 2. 5) unuse_mm(), that iterates through the vma's of this 'mm' will hit the non-NULL zero entry and operating on this zero entry as a vma is resulting into the oops. The proper fix would be around not exposing this partially-valid tree to others when droping the mmap lock, which is being solved with [1]. A simpler solution would be checking for MMF_UNSTABLE, as it is set if mm_struct is not fully initialized in dup_mmap(). Thanks to Liam/Lorenzo/David for all the suggestions in fixing this issue.
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix NULL dereference in ath11k_qmi_m3_load() If ab->fw.m3_data points to data, then fw pointer remains null. Further, if m3_mem is not allocated, then fw is dereferenced to be passed to ath11k_err function. Replace fw->size by m3_len. Found by Linux Verification Center (linuxtesting.org) with SVACE.
In the Linux kernel, the following vulnerability has been resolved: bpf: Check the helper function is valid in get_helper_proto kernel test robot reported verifier bug [1] where the helper func pointer could be NULL due to disabled config option. As Alexei suggested we could check on that in get_helper_proto directly. Marking tail_call helper func with BPF_PTR_POISON, because it is unused by design. [1] https://lore.kernel.org/oe-lkp/202507160818.68358831-lkp@intel.com
In the Linux kernel, the following vulnerability has been resolved: can: etas_es58x: populate ndo_change_mtu() to prevent buffer overflow Sending an PF_PACKET allows to bypass the CAN framework logic and to directly reach the xmit() function of a CAN driver. The only check which is performed by the PF_PACKET framework is to make sure that skb->len fits the interface's MTU. Unfortunately, because the etas_es58x driver does not populate its net_device_ops->ndo_change_mtu(), it is possible for an attacker to configure an invalid MTU by doing, for example: $ ip link set can0 mtu 9999 After doing so, the attacker could open a PF_PACKET socket using the ETH_P_CANXL protocol: socket(PF_PACKET, SOCK_RAW, htons(ETH_P_CANXL)); to inject a malicious CAN XL frames. For example: struct canxl_frame frame = { .flags = 0xff, .len = 2048, }; The CAN drivers' xmit() function are calling can_dev_dropped_skb() to check that the skb is valid, unfortunately under above conditions, the malicious packet is able to go through can_dev_dropped_skb() checks: 1. the skb->protocol is set to ETH_P_CANXL which is valid (the function does not check the actual device capabilities). 2. the length is a valid CAN XL length. And so, es58x_start_xmit() receives a CAN XL frame which it is not able to correctly handle and will thus misinterpret it as a CAN(FD) frame. This can result in a buffer overflow. For example, using the es581.4 variant, the frame will be dispatched to es581_4_tx_can_msg(), go through the last check at the beginning of this function: if (can_is_canfd_skb(skb)) return -EMSGSIZE; and reach this line: memcpy(tx_can_msg->data, cf->data, cf->len); Here, cf->len corresponds to the flags field of the CAN XL frame. In our previous example, we set canxl_frame->flags to 0xff. Because the maximum expected length is 8, a buffer overflow of 247 bytes occurs! Populate net_device_ops->ndo_change_mtu() to ensure that the interface's MTU can not be set to anything bigger than CAN_MTU or CANFD_MTU (depending on the device capabilities). By fixing the root cause, this prevents the buffer overflow.
In the Linux kernel, the following vulnerability has been resolved: can: hi311x: populate ndo_change_mtu() to prevent buffer overflow Sending an PF_PACKET allows to bypass the CAN framework logic and to directly reach the xmit() function of a CAN driver. The only check which is performed by the PF_PACKET framework is to make sure that skb->len fits the interface's MTU. Unfortunately, because the sun4i_can driver does not populate its net_device_ops->ndo_change_mtu(), it is possible for an attacker to configure an invalid MTU by doing, for example: $ ip link set can0 mtu 9999 After doing so, the attacker could open a PF_PACKET socket using the ETH_P_CANXL protocol: socket(PF_PACKET, SOCK_RAW, htons(ETH_P_CANXL)) to inject a malicious CAN XL frames. For example: struct canxl_frame frame = { .flags = 0xff, .len = 2048, }; The CAN drivers' xmit() function are calling can_dev_dropped_skb() to check that the skb is valid, unfortunately under above conditions, the malicious packet is able to go through can_dev_dropped_skb() checks: 1. the skb->protocol is set to ETH_P_CANXL which is valid (the function does not check the actual device capabilities). 2. the length is a valid CAN XL length. And so, hi3110_hard_start_xmit() receives a CAN XL frame which it is not able to correctly handle and will thus misinterpret it as a CAN frame. The driver will consume frame->len as-is with no further checks. This can result in a buffer overflow later on in hi3110_hw_tx() on this line: memcpy(buf + HI3110_FIFO_EXT_DATA_OFF, frame->data, frame->len); Here, frame->len corresponds to the flags field of the CAN XL frame. In our previous example, we set canxl_frame->flags to 0xff. Because the maximum expected length is 8, a buffer overflow of 247 bytes occurs! Populate net_device_ops->ndo_change_mtu() to ensure that the interface's MTU can not be set to anything bigger than CAN_MTU. By fixing the root cause, this prevents the buffer overflow.
In the Linux kernel, the following vulnerability has been resolved: can: sun4i_can: populate ndo_change_mtu() to prevent buffer overflow Sending an PF_PACKET allows to bypass the CAN framework logic and to directly reach the xmit() function of a CAN driver. The only check which is performed by the PF_PACKET framework is to make sure that skb->len fits the interface's MTU. Unfortunately, because the sun4i_can driver does not populate its net_device_ops->ndo_change_mtu(), it is possible for an attacker to configure an invalid MTU by doing, for example: $ ip link set can0 mtu 9999 After doing so, the attacker could open a PF_PACKET socket using the ETH_P_CANXL protocol: socket(PF_PACKET, SOCK_RAW, htons(ETH_P_CANXL)) to inject a malicious CAN XL frames. For example: struct canxl_frame frame = { .flags = 0xff, .len = 2048, }; The CAN drivers' xmit() function are calling can_dev_dropped_skb() to check that the skb is valid, unfortunately under above conditions, the malicious packet is able to go through can_dev_dropped_skb() checks: 1. the skb->protocol is set to ETH_P_CANXL which is valid (the function does not check the actual device capabilities). 2. the length is a valid CAN XL length. And so, sun4ican_start_xmit() receives a CAN XL frame which it is not able to correctly handle and will thus misinterpret it as a CAN frame. This can result in a buffer overflow. The driver will consume cf->len as-is with no further checks on this line: dlc = cf->len; Here, cf->len corresponds to the flags field of the CAN XL frame. In our previous example, we set canxl_frame->flags to 0xff. Because the maximum expected length is 8, a buffer overflow of 247 bytes occurs a couple line below when doing: for (i = 0; i < dlc; i++) writel(cf->data[i], priv->base + (dreg + i * 4)); Populate net_device_ops->ndo_change_mtu() to ensure that the interface's MTU can not be set to anything bigger than CAN_MTU. By fixing the root cause, this prevents the buffer overflow.
In the Linux kernel, the following vulnerability has been resolved: can: mcba_usb: populate ndo_change_mtu() to prevent buffer overflow Sending an PF_PACKET allows to bypass the CAN framework logic and to directly reach the xmit() function of a CAN driver. The only check which is performed by the PF_PACKET framework is to make sure that skb->len fits the interface's MTU. Unfortunately, because the mcba_usb driver does not populate its net_device_ops->ndo_change_mtu(), it is possible for an attacker to configure an invalid MTU by doing, for example: $ ip link set can0 mtu 9999 After doing so, the attacker could open a PF_PACKET socket using the ETH_P_CANXL protocol: socket(PF_PACKET, SOCK_RAW, htons(ETH_P_CANXL)) to inject a malicious CAN XL frames. For example: struct canxl_frame frame = { .flags = 0xff, .len = 2048, }; The CAN drivers' xmit() function are calling can_dev_dropped_skb() to check that the skb is valid, unfortunately under above conditions, the malicious packet is able to go through can_dev_dropped_skb() checks: 1. the skb->protocol is set to ETH_P_CANXL which is valid (the function does not check the actual device capabilities). 2. the length is a valid CAN XL length. And so, mcba_usb_start_xmit() receives a CAN XL frame which it is not able to correctly handle and will thus misinterpret it as a CAN frame. This can result in a buffer overflow. The driver will consume cf->len as-is with no further checks on these lines: usb_msg.dlc = cf->len; memcpy(usb_msg.data, cf->data, usb_msg.dlc); Here, cf->len corresponds to the flags field of the CAN XL frame. In our previous example, we set canxl_frame->flags to 0xff. Because the maximum expected length is 8, a buffer overflow of 247 bytes occurs! Populate net_device_ops->ndo_change_mtu() to ensure that the interface's MTU can not be set to anything bigger than CAN_MTU. By fixing the root cause, this prevents the buffer overflow.
In the Linux kernel, the following vulnerability has been resolved: net: tun: Update napi->skb after XDP process The syzbot report a UAF issue: BUG: KASAN: slab-use-after-free in skb_reset_mac_header include/linux/skbuff.h:3150 [inline] BUG: KASAN: slab-use-after-free in napi_frags_skb net/core/gro.c:723 [inline] BUG: KASAN: slab-use-after-free in napi_gro_frags+0x6e/0x1030 net/core/gro.c:758 Read of size 8 at addr ffff88802ef22c18 by task syz.0.17/6079 CPU: 0 UID: 0 PID: 6079 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full) Call Trace: <TASK> dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xca/0x240 mm/kasan/report.c:482 kasan_report+0x118/0x150 mm/kasan/report.c:595 skb_reset_mac_header include/linux/skbuff.h:3150 [inline] napi_frags_skb net/core/gro.c:723 [inline] napi_gro_frags+0x6e/0x1030 net/core/gro.c:758 tun_get_user+0x28cb/0x3e20 drivers/net/tun.c:1920 tun_chr_write_iter+0x113/0x200 drivers/net/tun.c:1996 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x5c9/0xb30 fs/read_write.c:686 ksys_write+0x145/0x250 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f </TASK> Allocated by task 6079: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:68 unpoison_slab_object mm/kasan/common.c:330 [inline] __kasan_mempool_unpoison_object+0xa0/0x170 mm/kasan/common.c:558 kasan_mempool_unpoison_object include/linux/kasan.h:388 [inline] napi_skb_cache_get+0x37b/0x6d0 net/core/skbuff.c:295 __alloc_skb+0x11e/0x2d0 net/core/skbuff.c:657 napi_alloc_skb+0x84/0x7d0 net/core/skbuff.c:811 napi_get_frags+0x69/0x140 net/core/gro.c:673 tun_napi_alloc_frags drivers/net/tun.c:1404 [inline] tun_get_user+0x77c/0x3e20 drivers/net/tun.c:1784 tun_chr_write_iter+0x113/0x200 drivers/net/tun.c:1996 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x5c9/0xb30 fs/read_write.c:686 ksys_write+0x145/0x250 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 6079: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576 poison_slab_object mm/kasan/common.c:243 [inline] __kasan_slab_free+0x5b/0x80 mm/kasan/common.c:275 kasan_slab_free include/linux/kasan.h:233 [inline] slab_free_hook mm/slub.c:2422 [inline] slab_free mm/slub.c:4695 [inline] kmem_cache_free+0x18f/0x400 mm/slub.c:4797 skb_pp_cow_data+0xdd8/0x13e0 net/core/skbuff.c:969 netif_skb_check_for_xdp net/core/dev.c:5390 [inline] netif_receive_generic_xdp net/core/dev.c:5431 [inline] do_xdp_generic+0x699/0x11a0 net/core/dev.c:5499 tun_get_user+0x2523/0x3e20 drivers/net/tun.c:1872 tun_chr_write_iter+0x113/0x200 drivers/net/tun.c:1996 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x5c9/0xb30 fs/read_write.c:686 ksys_write+0x145/0x250 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f After commit e6d5dbdd20aa ("xdp: add multi-buff support for xdp running in generic mode"), the original skb may be freed in skb_pp_cow_data() when XDP program was attached, which was allocated in tun_napi_alloc_frags(). However, the napi->skb still point to the original skb, update it after XDP process.
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_event: Fix UAF in hci_conn_tx_dequeue This fixes the following UAF caused by not properly locking hdev when processing HCI_EV_NUM_COMP_PKTS: BUG: KASAN: slab-use-after-free in hci_conn_tx_dequeue+0x1be/0x220 net/bluetooth/hci_conn.c:3036 Read of size 4 at addr ffff8880740f0940 by task kworker/u11:0/54 CPU: 1 UID: 0 PID: 54 Comm: kworker/u11:0 Not tainted 6.16.0-rc7 #3 PREEMPT(full) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014 Workqueue: hci1 hci_rx_work Call Trace: <TASK> dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xca/0x230 mm/kasan/report.c:480 kasan_report+0x118/0x150 mm/kasan/report.c:593 hci_conn_tx_dequeue+0x1be/0x220 net/bluetooth/hci_conn.c:3036 hci_num_comp_pkts_evt+0x1c8/0xa50 net/bluetooth/hci_event.c:4404 hci_event_func net/bluetooth/hci_event.c:7477 [inline] hci_event_packet+0x7e0/0x1200 net/bluetooth/hci_event.c:7531 hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070 process_one_work kernel/workqueue.c:3238 [inline] process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402 kthread+0x70e/0x8a0 kernel/kthread.c:464 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245 </TASK> Allocated by task 54: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4359 kmalloc_noprof include/linux/slab.h:905 [inline] kzalloc_noprof include/linux/slab.h:1039 [inline] __hci_conn_add+0x233/0x1b30 net/bluetooth/hci_conn.c:939 le_conn_complete_evt+0x3d6/0x1220 net/bluetooth/hci_event.c:5628 hci_le_enh_conn_complete_evt+0x189/0x470 net/bluetooth/hci_event.c:5794 hci_event_func net/bluetooth/hci_event.c:7474 [inline] hci_event_packet+0x78c/0x1200 net/bluetooth/hci_event.c:7531 hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070 process_one_work kernel/workqueue.c:3238 [inline] process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402 kthread+0x70e/0x8a0 kernel/kthread.c:464 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245 Freed by task 9572: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576 poison_slab_object mm/kasan/common.c:247 [inline] __kasan_slab_free+0x62/0x70 mm/kasan/common.c:264 kasan_slab_free include/linux/kasan.h:233 [inline] slab_free_hook mm/slub.c:2381 [inline] slab_free mm/slub.c:4643 [inline] kfree+0x18e/0x440 mm/slub.c:4842 device_release+0x9c/0x1c0 kobject_cleanup lib/kobject.c:689 [inline] kobject_release lib/kobject.c:720 [inline] kref_put include/linux/kref.h:65 [inline] kobject_put+0x22b/0x480 lib/kobject.c:737 hci_conn_cleanup net/bluetooth/hci_conn.c:175 [inline] hci_conn_del+0x8ff/0xcb0 net/bluetooth/hci_conn.c:1173 hci_abort_conn_sync+0x5d1/0xdf0 net/bluetooth/hci_sync.c:5689 hci_cmd_sync_work+0x210/0x3a0 net/bluetooth/hci_sync.c:332 process_one_work kernel/workqueue.c:3238 [inline] process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402 kthread+0x70e/0x8a0 kernel/kthread.c:464 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_event: Fix UAF in hci_acl_create_conn_sync This fixes the following UFA in hci_acl_create_conn_sync where a connection still pending is command submission (conn->state == BT_OPEN) maybe freed, also since this also can happen with the likes of hci_le_create_conn_sync fix it as well: BUG: KASAN: slab-use-after-free in hci_acl_create_conn_sync+0x5ef/0x790 net/bluetooth/hci_sync.c:6861 Write of size 2 at addr ffff88805ffcc038 by task kworker/u11:2/9541 CPU: 1 UID: 0 PID: 9541 Comm: kworker/u11:2 Not tainted 6.16.0-rc7 #3 PREEMPT(full) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014 Workqueue: hci3 hci_cmd_sync_work Call Trace: <TASK> dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xca/0x230 mm/kasan/report.c:480 kasan_report+0x118/0x150 mm/kasan/report.c:593 hci_acl_create_conn_sync+0x5ef/0x790 net/bluetooth/hci_sync.c:6861 hci_cmd_sync_work+0x210/0x3a0 net/bluetooth/hci_sync.c:332 process_one_work kernel/workqueue.c:3238 [inline] process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402 kthread+0x70e/0x8a0 kernel/kthread.c:464 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245 </TASK> Allocated by task 123736: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4359 kmalloc_noprof include/linux/slab.h:905 [inline] kzalloc_noprof include/linux/slab.h:1039 [inline] __hci_conn_add+0x233/0x1b30 net/bluetooth/hci_conn.c:939 hci_conn_add_unset net/bluetooth/hci_conn.c:1051 [inline] hci_connect_acl+0x16c/0x4e0 net/bluetooth/hci_conn.c:1634 pair_device+0x418/0xa70 net/bluetooth/mgmt.c:3556 hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719 hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839 sock_sendmsg_nosec net/socket.c:712 [inline] __sock_sendmsg+0x219/0x270 net/socket.c:727 sock_write_iter+0x258/0x330 net/socket.c:1131 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x54b/0xa90 fs/read_write.c:686 ksys_write+0x145/0x250 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 103680: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576 poison_slab_object mm/kasan/common.c:247 [inline] __kasan_slab_free+0x62/0x70 mm/kasan/common.c:264 kasan_slab_free include/linux/kasan.h:233 [inline] slab_free_hook mm/slub.c:2381 [inline] slab_free mm/slub.c:4643 [inline] kfree+0x18e/0x440 mm/slub.c:4842 device_release+0x9c/0x1c0 kobject_cleanup lib/kobject.c:689 [inline] kobject_release lib/kobject.c:720 [inline] kref_put include/linux/kref.h:65 [inline] kobject_put+0x22b/0x480 lib/kobject.c:737 hci_conn_cleanup net/bluetooth/hci_conn.c:175 [inline] hci_conn_del+0x8ff/0xcb0 net/bluetooth/hci_conn.c:1173 hci_conn_complete_evt+0x3c7/0x1040 net/bluetooth/hci_event.c:3199 hci_event_func net/bluetooth/hci_event.c:7477 [inline] hci_event_packet+0x7e0/0x1200 net/bluetooth/hci_event.c:7531 hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070 process_one_work kernel/workqueue.c:3238 [inline] process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402 kthread+0x70e/0x8a0 kernel/kthread.c:464 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/sour ---truncated---
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: MGMT: Fix possible UAFs This attemps to fix possible UAFs caused by struct mgmt_pending being freed while still being processed like in the following trace, in order to fix mgmt_pending_valid is introduce and use to check if the mgmt_pending hasn't been removed from the pending list, on the complete callbacks it is used to check and in addtion remove the cmd from the list while holding mgmt_pending_lock to avoid TOCTOU problems since if the cmd is left on the list it can still be accessed and freed. BUG: KASAN: slab-use-after-free in mgmt_add_adv_patterns_monitor_sync+0x35/0x50 net/bluetooth/mgmt.c:5223 Read of size 8 at addr ffff8880709d4dc0 by task kworker/u11:0/55 CPU: 0 UID: 0 PID: 55 Comm: kworker/u11:0 Not tainted 6.16.4 #2 PREEMPT(full) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014 Workqueue: hci0 hci_cmd_sync_work Call Trace: <TASK> dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xca/0x240 mm/kasan/report.c:482 kasan_report+0x118/0x150 mm/kasan/report.c:595 mgmt_add_adv_patterns_monitor_sync+0x35/0x50 net/bluetooth/mgmt.c:5223 hci_cmd_sync_work+0x210/0x3a0 net/bluetooth/hci_sync.c:332 process_one_work kernel/workqueue.c:3238 [inline] process_scheduled_works+0xade/0x17b0 kernel/workqueue.c:3321 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402 kthread+0x711/0x8a0 kernel/kthread.c:464 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16.4/arch/x86/entry/entry_64.S:245 </TASK> Allocated by task 12210: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4364 kmalloc_noprof include/linux/slab.h:905 [inline] kzalloc_noprof include/linux/slab.h:1039 [inline] mgmt_pending_new+0x65/0x1e0 net/bluetooth/mgmt_util.c:269 mgmt_pending_add+0x35/0x140 net/bluetooth/mgmt_util.c:296 __add_adv_patterns_monitor+0x130/0x200 net/bluetooth/mgmt.c:5247 add_adv_patterns_monitor+0x214/0x360 net/bluetooth/mgmt.c:5364 hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719 hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839 sock_sendmsg_nosec net/socket.c:714 [inline] __sock_sendmsg+0x219/0x270 net/socket.c:729 sock_write_iter+0x258/0x330 net/socket.c:1133 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x5c9/0xb30 fs/read_write.c:686 ksys_write+0x145/0x250 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 12221: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576 poison_slab_object mm/kasan/common.c:247 [inline] __kasan_slab_free+0x62/0x70 mm/kasan/common.c:264 kasan_slab_free include/linux/kasan.h:233 [inline] slab_free_hook mm/slub.c:2381 [inline] slab_free mm/slub.c:4648 [inline] kfree+0x18e/0x440 mm/slub.c:4847 mgmt_pending_free net/bluetooth/mgmt_util.c:311 [inline] mgmt_pending_foreach+0x30d/0x380 net/bluetooth/mgmt_util.c:257 __mgmt_power_off+0x169/0x350 net/bluetooth/mgmt.c:9444 hci_dev_close_sync+0x754/0x1330 net/bluetooth/hci_sync.c:5290 hci_dev_do_close net/bluetooth/hci_core.c:501 [inline] hci_dev_close+0x108/0x200 net/bluetooth/hci_core.c:526 sock_do_ioctl+0xd9/0x300 net/socket.c:1192 sock_ioctl+0x576/0x790 net/socket.c:1313 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:907 [inline] __se_sys_ioctl+0xf9/0x170 fs/ioctl.c:893 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xf ---truncated---
In the Linux kernel, the following vulnerability has been resolved: nexthop: Forbid FDB status change while nexthop is in a group The kernel forbids the creation of non-FDB nexthop groups with FDB nexthops: # ip nexthop add id 1 via 192.0.2.1 fdb # ip nexthop add id 2 group 1 Error: Non FDB nexthop group cannot have fdb nexthops. And vice versa: # ip nexthop add id 3 via 192.0.2.2 dev dummy1 # ip nexthop add id 4 group 3 fdb Error: FDB nexthop group can only have fdb nexthops. However, as long as no routes are pointing to a non-FDB nexthop group, the kernel allows changing the type of a nexthop from FDB to non-FDB and vice versa: # ip nexthop add id 5 via 192.0.2.2 dev dummy1 # ip nexthop add id 6 group 5 # ip nexthop replace id 5 via 192.0.2.2 fdb # echo $? 0 This configuration is invalid and can result in a NPD [1] since FDB nexthops are not associated with a nexthop device: # ip route add 198.51.100.1/32 nhid 6 # ping 198.51.100.1 Fix by preventing nexthop FDB status change while the nexthop is in a group: # ip nexthop add id 7 via 192.0.2.2 dev dummy1 # ip nexthop add id 8 group 7 # ip nexthop replace id 7 via 192.0.2.2 fdb Error: Cannot change nexthop FDB status while in a group. [1] BUG: kernel NULL pointer dereference, address: 00000000000003c0 [...] Oops: Oops: 0000 [#1] SMP CPU: 6 UID: 0 PID: 367 Comm: ping Not tainted 6.17.0-rc6-virtme-gb65678cacc03 #1 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-4.fc41 04/01/2014 RIP: 0010:fib_lookup_good_nhc+0x1e/0x80 [...] Call Trace: <TASK> fib_table_lookup+0x541/0x650 ip_route_output_key_hash_rcu+0x2ea/0x970 ip_route_output_key_hash+0x55/0x80 __ip4_datagram_connect+0x250/0x330 udp_connect+0x2b/0x60 __sys_connect+0x9c/0xd0 __x64_sys_connect+0x18/0x20 do_syscall_64+0xa4/0x2a0 entry_SYSCALL_64_after_hwframe+0x4b/0x53
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: fs, fix UAF in flow counter release Fix a kernel trace [1] caused by releasing an HWS action of a local flow counter in mlx5_cmd_hws_delete_fte(), where the HWS action refcount and mutex were not initialized and the counter struct could already be freed when deleting the rule. Fix it by adding the missing initializations and adding refcount for the local flow counter struct. [1] Kernel log: Call Trace: <TASK> dump_stack_lvl+0x34/0x48 mlx5_fs_put_hws_action.part.0.cold+0x21/0x94 [mlx5_core] mlx5_fc_put_hws_action+0x96/0xad [mlx5_core] mlx5_fs_destroy_fs_actions+0x8b/0x152 [mlx5_core] mlx5_cmd_hws_delete_fte+0x5a/0xa0 [mlx5_core] del_hw_fte+0x1ce/0x260 [mlx5_core] mlx5_del_flow_rules+0x12d/0x240 [mlx5_core] ? ttwu_queue_wakelist+0xf4/0x110 mlx5_ib_destroy_flow+0x103/0x1b0 [mlx5_ib] uverbs_free_flow+0x20/0x50 [ib_uverbs] destroy_hw_idr_uobject+0x1b/0x50 [ib_uverbs] uverbs_destroy_uobject+0x34/0x1a0 [ib_uverbs] uobj_destroy+0x3c/0x80 [ib_uverbs] ib_uverbs_run_method+0x23e/0x360 [ib_uverbs] ? uverbs_finalize_object+0x60/0x60 [ib_uverbs] ib_uverbs_cmd_verbs+0x14f/0x2c0 [ib_uverbs] ? do_tty_write+0x1a9/0x270 ? file_tty_write.constprop.0+0x98/0xc0 ? new_sync_write+0xfc/0x190 ib_uverbs_ioctl+0xd7/0x160 [ib_uverbs] __x64_sys_ioctl+0x87/0xc0 do_syscall_64+0x59/0x90
In the Linux kernel, the following vulnerability has been resolved: octeontx2-pf: Fix potential use after free in otx2_tc_add_flow() This code calls kfree_rcu(new_node, rcu) and then dereferences "new_node" and then dereferences it on the next line. Two lines later, we take a mutex so I don't think this is an RCU safe region. Re-order it to do the dereferences before queuing up the free.
In the Linux kernel, the following vulnerability has been resolved: futex: Prevent use-after-free during requeue-PI syzbot managed to trigger the following race: T1 T2 futex_wait_requeue_pi() futex_do_wait() schedule() futex_requeue() futex_proxy_trylock_atomic() futex_requeue_pi_prepare() requeue_pi_wake_futex() futex_requeue_pi_complete() /* preempt */ * timeout/ signal wakes T1 * futex_requeue_pi_wakeup_sync() // Q_REQUEUE_PI_LOCKED futex_hash_put() // back to userland, on stack futex_q is garbage /* back */ wake_up_state(q->task, TASK_NORMAL); In this scenario futex_wait_requeue_pi() is able to leave without using futex_q::lock_ptr for synchronization. This can be prevented by reading futex_q::task before updating the futex_q::requeue_state. A reference on the task_struct is not needed because requeue_pi_wake_futex() is invoked with a spinlock_t held which implies a RCU read section. Even if T1 terminates immediately after, the task_struct will remain valid during T2's wake_up_state(). A READ_ONCE on futex_q::task before futex_requeue_pi_complete() is enough because it ensures that the variable is read before the state is updated. Read futex_q::task before updating the requeue state, use it for the following wakeup.
In the Linux kernel, the following vulnerability has been resolved: futex: Use correct exit on failure from futex_hash_allocate_default() copy_process() uses the wrong error exit path from futex_hash_allocate_default(). After exiting from futex_hash_allocate_default(), neither tasklist_lock nor siglock has been acquired. The exit label bad_fork_core_free unlocks both of these locks which is wrong. The next exit label, bad_fork_cancel_cgroup, is the correct exit. sched_cgroup_fork() did not allocate any resources that need to freed. Use bad_fork_cancel_cgroup on error exit from futex_hash_allocate_default().
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix wrong index reference in smb2_compound_op() In smb2_compound_op(), the loop that processes each command's response uses wrong indices when accessing response bufferes. This incorrect indexing leads to improper handling of command results. Also, if incorrectly computed index is greather than or equal to MAX_COMPOUND, it can cause out-of-bounds accesses.
In the Linux kernel, the following vulnerability has been resolved: tracing/osnoise: Fix slab-out-of-bounds in _parse_integer_limit() When config osnoise cpus by write() syscall, the following KASAN splat may be observed: BUG: KASAN: slab-out-of-bounds in _parse_integer_limit+0x103/0x130 Read of size 1 at addr ffff88810121e3a1 by task test/447 CPU: 1 UID: 0 PID: 447 Comm: test Not tainted 6.17.0-rc6-dirty #288 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x55/0x70 print_report+0xcb/0x610 kasan_report+0xb8/0xf0 _parse_integer_limit+0x103/0x130 bitmap_parselist+0x16d/0x6f0 osnoise_cpus_write+0x116/0x2d0 vfs_write+0x21e/0xcc0 ksys_write+0xee/0x1c0 do_syscall_64+0xa8/0x2a0 entry_SYSCALL_64_after_hwframe+0x77/0x7f </TASK> This issue can be reproduced by below code: const char *cpulist = "1"; int fd=open("/sys/kernel/debug/tracing/osnoise/cpus", O_WRONLY); write(fd, cpulist, strlen(cpulist)); Function bitmap_parselist() was called to parse cpulist, it require that the parameter 'buf' must be terminated with a '\0' or '\n'. Fix this issue by adding a '\0' to 'buf' in osnoise_cpus_write().
In the Linux kernel, the following vulnerability has been resolved: i40e: add validation for ring_len param The `ring_len` parameter provided by the virtual function (VF) is assigned directly to the hardware memory context (HMC) without any validation. To address this, introduce an upper boundary check for both Tx and Rx queue lengths. The maximum number of descriptors supported by the hardware is 8k-32. Additionally, enforce alignment constraints: Tx rings must be a multiple of 8, and Rx rings must be a multiple of 32.
In the Linux kernel, the following vulnerability has been resolved: i40e: fix idx validation in i40e_validate_queue_map Ensure idx is within range of active/initialized TCs when iterating over vf->ch[idx] in i40e_validate_queue_map().
In the Linux kernel, the following vulnerability has been resolved: i40e: fix idx validation in config queues msg Ensure idx is within range of active/initialized TCs when iterating over vf->ch[idx] in i40e_vc_config_queues_msg().
In the Linux kernel, the following vulnerability has been resolved: i40e: fix input validation logic for action_meta Fix condition to check 'greater or equal' to prevent OOB dereference.