Ashlar-Vellum Cobalt CO File Parsing Memory Corruption Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of CO files. The issue results from the lack of proper validation of user-supplied data, which can result in a memory corruption condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26053.
Ashlar-Vellum Cobalt CO File Parsing Out-Of-Bounds Read Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of CO files. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26235.
Ashlar-Vellum Cobalt XE File Parsing Out-Of-Bounds Read Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of XE files. The issue results from the lack of proper validation of user-supplied data, which can result in a read before the start of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26045.
Ashlar-Vellum Cobalt LI File Parsing Type Confusion Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of LI files. The issue results from the lack of proper validation of user-supplied data, which can result in a type confusion condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26051.
Ashlar-Vellum Cobalt CO File Parsing Type Confusion Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of CO files. The issue results from the lack of proper validation of user-supplied data, which can result in a type confusion condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25981.
Ashlar-Vellum Cobalt AR File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of AR files. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25982.
Ashlar-Vellum Cobalt CO File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of CO files. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26046.
Ashlar-Vellum Cobalt AR File Parsing Out-Of-Bounds Read Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of AR files. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25976.
Ashlar-Vellum Cobalt AR File Parsing Type Confusion Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of AR files. The issue results from the lack of proper validation of user-supplied data, which can result in a type confusion condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26049.
Ashlar-Vellum Graphite VC6 File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Graphite. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of VC6 files. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25862.
Ashlar-Vellum Cobalt VC6 File Parsing Out-Of-Bounds Read Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of VC6 files. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25945.
Ashlar-Vellum Cobalt AR File Parsing Out-Of-Bounds Read Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of AR files. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25972.
Ashlar-Vellum Graphite VC6 File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Graphite. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of VC6 files. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25756.
Ashlar-Vellum Cobalt AR File Parsing Out-Of-Bounds Read Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of AR files. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25943.
Ashlar-Vellum Graphite VC6 File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Graphite. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of VC6 files. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25755.
Ashlar-Vellum Cobalt VC6 File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of VC6 files. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25944.
Ashlar-Vellum Cobalt VC6 File Parsing Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of VC6 files. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25704.
Ashlar-Vellum Cobalt AR File Parsing Uninitialized Variable Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of AR files. The issue results from the lack of proper initialization of memory prior to accessing it. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25700.
Ashlar-Vellum Graphite VC6 File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Graphite. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of VC6 files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25477.
Ashlar-Vellum Graphite VC6 File Parsing Uninitialized Variable Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Graphite. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of VC6 files. The issue results from the lack of proper initialization of memory prior to accessing it. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25475.
Ashlar-Vellum Graphite VC6 File Parsing Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Graphite. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of VC6 files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25463.
Ashlar-Vellum Graphite VC6 File Parsing Uninitialized Variable Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Graphite. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of VC6 files. The issue results from the lack of proper initialization of memory prior to accessing it. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25459.
Ashlar-Vellum Graphite VC6 File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Graphite. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of VC6 files. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25465.
Ashlar-Vellum Cobalt LI File Parsing Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of LI files. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25476.
Ashlar-Vellum Cobalt LI File Parsing Out-Of-Bounds Read Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of LI files. The issue results from the lack of proper validation of user-supplied data, which can result in a read before the start of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25354.
Wondershare Repairit SAS Token Incorrect Permission Assignment Authentication Bypass Vulnerability. This vulnerability allows remote attackers to bypass authentication on Wondershare Repairit. Authentication is not required to exploit this vulnerability. The specific flaw exists within the permissions granted to an SAS token. An attacker can leverage this vulnerability to launch a supply-chain attack and execute arbitrary code on customers' endpoints. Was ZDI-CAN-26892.
Wondershare Repairit Incorrect Permission Assignment Authentication Bypass Vulnerability. This vulnerability allows remote attackers to bypass authentication on affected installations of Wondershare Repairit. Authentication is not required to exploit this vulnerability. The specific flaw exists within the permissions granted to a storage account token. An attacker can leverage this vulnerability to bypass authentication on the system. Was ZDI-CAN-26902.
A weakness has been identified in SourceCodester Online Polling System 1.0. Affected by this vulnerability is an unknown functionality of the file /admin/positions.php. This manipulation of the argument ID causes sql injection. The attack may be initiated remotely. The exploit has been made available to the public and could be exploited.
A security flaw has been discovered in itsourcecode E-Commerce Website 1.0. Affected is an unknown function of the file /admin/users.php. The manipulation results in unrestricted upload. The attack can be launched remotely. The exploit has been released to the public and may be exploited.
A vulnerability was identified in itsourcecode E-Commerce Website 1.0. This impacts an unknown function of the file /admin/products.php. The manipulation leads to unrestricted upload. The attack can be initiated remotely. The exploit is publicly available and might be used.
jinjava is a Java-based template engine based on django template syntax, adapted to render jinja templates. Priori to 2.8.1, by using mapper.getTypeFactory().constructFromCanonical(), it is possible to instruct the underlying ObjectMapper to deserialize attacker-controlled input into arbitrary classes. This enables the creation of semi-arbitrary class instances without directly invoking restricted methods or class literals. As a result, an attacker can escape the sandbox and instantiate classes such as java.net.URL, opening up the ability to access local files and URLs(e.g., file:///etc/passwd). With further chaining, this primitive can potentially lead to remote code execution (RCE). This vulnerability is fixed in 2.8.1.
Dragonfly is an open source P2P-based file distribution and image acceleration system. Prior to 2.1.0, the code in the scheduler for downloading a tiny file is hard coded to use the HTTP protocol, rather than HTTPS. This means that an attacker could perform a Man-in-the-Middle attack, changing the network request so that a different piece of data gets downloaded. This vulnerability is fixed in 2.1.0.
Dragonfly is an open source P2P-based file distribution and image acceleration system. Prior to 2.1.0, the DragonFly2 uses a variety of hash functions, including the MD5 hash, for downloaded files. This allows attackers to replace files with malicious ones that have a colliding hash. This vulnerability is fixed in 2.1.0.
Dragonfly is an open source P2P-based file distribution and image acceleration system. Prior to 2.1.0, a peer can obtain a valid TLS certificate for arbitrary IP addresses, effectively rendering the mTLS authentication useless. The issue is that the Manager’s Certificate gRPC service does not validate if the requested IP addresses “belong to” the peer requesting the certificate—that is, if the peer connects from the same IP address as the one provided in the certificate request. This vulnerability is fixed in 2.1.0.
Dragonfly is an open source P2P-based file distribution and image acceleration system. Prior to 2.1.0, the gRPC API and HTTP APIs allow peers to send requests that force the recipient peer to create files in arbitrary file system locations, and to read arbitrary files. This allows peers to steal other peers’ secret data and to gain remote code execution (RCE) capabilities on the peer’s machine.This vulnerability is fixed in 2.1.0.
Dragonfly is an open source P2P-based file distribution and image acceleration system. Prior to 2.1.0, the first return value of a function is dereferenced even when the function returns an error. This can result in a nil dereference, and cause code to panic. This vulnerability is fixed in 2.1.0.
Dragonfly is an open source P2P-based file distribution and image acceleration system. Prior to 2.1.0, the access control mechanism for the Proxy feature uses simple string comparisons and is therefore vulnerable to timing attacks. An attacker may try to guess the password one character at a time by sending all possible characters to a vulnerable mechanism and measuring the comparison instruction’s execution times. This vulnerability is fixed in 2.1.0.
Dragonfly is an open source P2P-based file distribution and image acceleration system. Prior to 2.1.0, DragonFly2 uses the os.MkdirAll function to create certain directory paths with specific access permissions. This function does not perform any permission checks when a given directory path already exists. This allows a local attacker to create a directory to be used later by DragonFly2 with broad permissions before DragonFly2 does so, potentially allowing the attacker to tamper with the files. This vulnerability is fixed in 2.1.0.
A vulnerability was determined in itsourcecode E-Logbook with Health Monitoring System for COVID-19 1.0 on COVID. This affects an unknown function of the file /print_reports_prev.php. Executing manipulation of the argument profile_id can lead to cross site scripting. It is possible to launch the attack remotely. The exploit has been publicly disclosed and may be utilized.
A vulnerability in the web-based management interface of network access control services could allow an unauthenticated remote attacker to conduct a Reflected Cross-Site Scripting (XSS) attack. Successful exploitation could allow an attacker to execute arbitrary JavaScript code in a victim's browser in the context of the affected interface.
Dragonfly is an open source P2P-based file distribution and image acceleration system. Prior to 2.1.0, the processPieceFromSource method does not update the structure’s usedTraffic field, because an uninitialized variable n is used as a guard to the AddTraffic method call, instead of the result.Size variable. A task is processed by a peer. The usedTraffic metadata is not updated during the processing. Rate limiting is incorrectly applied, leading to a denial-of-service condition for the peer. This vulnerability is fixed in 2.1.0.
Dragonfly is an open source P2P-based file distribution and image acceleration system. Prior to 2.1.0, The Manager disables TLS certificate verification in HTTP clients. The clients are not configurable, so users have no way to re-enable the verification. A Manager processes dozens of preheat jobs. An adversary performs a network-level Man-in-the-Middle attack, providing invalid data to the Manager. The Manager preheats with the wrong data, which later causes a denial of service and file integrity problems. This vulnerability is fixed in 2.1.0.
Dragonfly is an open source P2P-based file distribution and image acceleration system. Versions prior to 2.1.0 contain a server-side request forgery (SSRF) vulnerability that enables users to force DragonFly2’s components to make requests to internal services that are otherwise not accessible to them. The issue arises because the Manager API accepts a user-supplied URL when creating a Preheat job with weak validation, peers can trigger other peers to fetch an arbitrary URL through pieceManager.DownloadSource, and internal HTTP clients follow redirects, allowing a request to a malicious server to be redirected to internal services. This can be used to probe or access internal HTTP endpoints. The vulnerability is fixed in version 2.1.0.
Dragonfly is an open source P2P-based file distribution and image acceleration system. Prior to 2.1.0, The /api/v1/jobs and /preheats endpoints in Manager web UI are accessible without authentication. Any user with network access to the Manager can create, delete, and modify jobs, and create preheat jobs. An unauthenticated adversary with network access to a Manager web UI uses /api/v1/jobs endpoint to create hundreds of useless jobs. The Manager is in a denial-of-service state, and stops accepting requests from valid administrators. This vulnerability is fixed in 2.1.0.
A vulnerability has been found in itsourcecode Student Information System 1.0. The affected element is an unknown function of the file /leveledit1.php. Such manipulation of the argument level_id leads to sql injection. The attack may be performed from remote. The exploit has been disclosed to the public and may be used.
The Scratch Channel is a news website. If the user makes a fork, they can change the admins and make an article. Since the API uses a POST request, it will make an article. This issue is fixed in v1.2.
Nuxt is an open-source web development framework for Vue.js. Prior to 3.19.0 and 4.1.0, A client-side path traversal vulnerability in Nuxt's Island payload revival mechanism allowed attackers to manipulate client-side requests to different endpoints within the same application domain when specific prerendering conditions are met. The vulnerability occurs in the client-side payload revival process (revive-payload.client.ts) where Nuxt Islands are automatically fetched when encountering serialized __nuxt_island objects. During prerendering, if an API endpoint returns user-controlled data containing a crafted __nuxt_island object, he data gets serialized with devalue.stringify and stored in the prerendered page. When a client navigates to the prerendered page, devalue.parse deserializes the payload. The Island reviver attempts to fetch /__nuxt_island/${key}.json where key could contain path traversal sequences. Update to Nuxt 3.19.0+ or 4.1.0+.
A vulnerability was detected in Portabilis i-Educar up to 2.10. The affected element is an unknown function of the file /enrollment-history/. Performing manipulation results in improper access controls. The attack is possible to be carried out remotely. The exploit is now public and may be used.
A weakness has been identified in Portabilis i-Educar up to 2.10. This issue affects some unknown processing of the file /module/Configuracao/ConfiguracaoMovimentoGeral. This manipulation of the argument tipoacao causes cross site scripting. Remote exploitation of the attack is possible. The exploit has been made available to the public and could be exploited.
esm.sh is a nobuild content delivery network(CDN) for modern web development. In 136 and earlier, a path-traversal flaw in the handling of the X-Zone-Id HTTP header allows an attacker to cause the application to write files outside the intended storage location. The header value is used to build a filesystem path but is not properly canonicalized or restricted to the application’s storage base directory. As a result, supplying ../ sequences in X-Zone-Id causes files to be written to arbitrary directories. Version 136.1 contains a patch.
esm.sh is a nobuild content delivery network(CDN) for modern web development. In 136 and earlier, a Local File Inclusion (LFI) issue was identified in the esm.sh service URL handling. An attacker could craft a request that causes the server to read and return files from the host filesystem (or other unintended file sources).