Pidgin version <2.11.0 contains a vulnerability in X.509 Certificates imports specifically due to improper check of return values from gnutls_x509_crt_init() and gnutls_x509_crt_import() that can result in code execution. This attack appear to be exploitable via custom X.509 certificate from another client. This vulnerability appears to have been fixed in 2.11.0.
Multiple integer overflows in libXpm before 3.5.12, when a program requests parsing XPM extensions on a 64-bit platform, allow remote attackers to cause a denial of service (out-of-bounds write) or execute arbitrary code via (1) the number of extensions or (2) their concatenated length in a crafted XPM file, which triggers a heap-based buffer overflow.
Expat allows context-dependent attackers to cause a denial of service (crash) or possibly execute arbitrary code via a malformed input document, which triggers a buffer overflow.
Stack-based buffer overflow in the catopen function in the GNU C Library (aka glibc or libc6) before 2.23 allows context-dependent attackers to cause a denial of service (application crash) or possibly execute arbitrary code via a long catalog name.
Multiple buffer overflows in the (1) png_set_PLTE and (2) png_get_PLTE functions in libpng before 1.0.64, 1.1.x and 1.2.x before 1.2.54, 1.3.x and 1.4.x before 1.4.17, 1.5.x before 1.5.24, and 1.6.x before 1.6.19 allow remote attackers to cause a denial of service (application crash) or possibly have unspecified other impact via a small bit-depth value in an IHDR (aka image header) chunk in a PNG image.
Use-after-free vulnerability in OpenSMTPD before 5.7.2 allows remote attackers to cause a denial of service (crash) or execute arbitrary code via vectors involving req_ca_vrfy_smtp and req_ca_vrfy_mta.
Integer overflow in X.org libXfixes before 5.0.3 on 32-bit platforms might allow remote X servers to gain privileges via a length value of INT_MAX, which triggers the client to stop reading data and get out of sync.
Off-by-one error in the OBJ_obj2txt function in LibreSSL before 2.3.1 allows remote attackers to cause a denial of service (program crash) or possible execute arbitrary code via a crafted X.509 certificate, which triggers a stack-based buffer overflow. Note: this vulnerability exists because of an incorrect fix for CVE-2014-3508.
Heap-based buffer overflow in the PCNET controller in QEMU allows remote attackers to execute arbitrary code by sending a packet with TXSTATUS_STARTPACKET set and then a crafted packet with TXSTATUS_DEVICEOWNS set.
Unspecified vulnerability in IBM Java 8 before SR1, 7 R1 before SR2 FP11, 7 before SR9, 6 R1 before SR8 FP4, 6 before SR16 FP4, and 5.0 before SR16 FP10 allows remote attackers to gain privileges via unknown vectors related to the Java Virtual Machine.
osc before 0.151.0 allows remote attackers to execute arbitrary commands via shell metacharacters in a _service file.
Buffer overflow in the ReadRLEImage function in coders/rle.c in ImageMagick 6.8.9.9 allows remote attackers to have unspecified impact.
Double free vulnerability in the ssl_parse_clienthello_use_srtp_ext function in d1_srtp.c in LibreSSL before 2.1.2 allows remote attackers to cause a denial of service or possibly have unspecified other impact by triggering a certain length-verification error during processing of a DTLS handshake.
distribute-cache.c in ImageMagick re-uses objects after they have been destroyed, which allows remote attackers to have unspecified impact via unspecified vectors.
XML external entity (XXE) in the RPC interface in Spacewalk and Red Hat Network (RHN) Satellite 5.7 and earlier allows remote attackers to read arbitrary files and possibly have other unspecified impact via unknown vectors.
LookupCol.c in X.Org X through X11R7.7 and libX11 before 1.7.1 might allow remote attackers to execute arbitrary code. The libX11 XLookupColor request (intended for server-side color lookup) contains a flaw allowing a client to send color-name requests with a name longer than the maximum size allowed by the protocol (and also longer than the maximum packet size for normal-sized packets). The user-controlled data exceeding the maximum size is then interpreted by the server as additional X protocol requests and executed, e.g., to disable X server authorization completely. For example, if the victim encounters malicious terminal control sequences for color codes, then the attacker may be able to take full control of the running graphical session.
A "potential buffer overflow in ruleset parsing" for Sendmail 8.12.9, when using the nonstandard rulesets (1) recipient (2), final, or (3) mailer-specific envelope recipients, has unknown consequences.
A flaw exists in OpenBSD's implementation of the stack guard page that allows attackers to bypass it resulting in arbitrary code execution using setuid binaries such as /usr/bin/at. This affects OpenBSD 6.1 and possibly earlier versions.