The drm_ioctl function in drivers/gpu/drm/drm_drv.c in the Direct Rendering Manager (DRM) subsystem in the Linux kernel before 2.6.27.53, 2.6.32.x before 2.6.32.21, 2.6.34.x before 2.6.34.6, and 2.6.35.x before 2.6.35.4 allows local users to obtain potentially sensitive information from kernel memory by requesting a large memory-allocation amount.
TransWARE Active! mail 6, when an external public interface is used, allows local users to obtain sensitive information belonging to arbitrary users by leveraging shell access, as demonstrated by a TELNET or SSH session to the server.
The Browser in IBM Sterling Connect:Direct 1.4 before 1.4.0.11 and 1.5 through 1.5.0.1 does not close pages upon the timeout of a session, which allows physically proximate attackers to obtain sensitive administrative-console information by reading the screen of an unattended workstation.
The Notes Client Single Logon feature in IBM Notes 8.0, 8.0.1, 8.0.2, 8.5, 8.5.1, 8.5.2, 8.5.3, and 9.0 on Windows allows local users to discover passwords via vectors involving an unspecified operating system communication mechanism for password transmission between Windows and Notes. IBM X-Force ID: 82531.
The hidp_setup_hid function in net/bluetooth/hidp/core.c in the Linux kernel before 3.7.6 does not properly copy a certain name field, which allows local users to obtain sensitive information from kernel memory by setting a long name and making an HIDPCONNADD ioctl call.
The Bluetooth RFCOMM implementation in the Linux kernel before 3.6 does not properly initialize certain structures, which allows local users to obtain sensitive information from kernel memory via a crafted application.
The copy_to_user_auth function in net/xfrm/xfrm_user.c in the Linux kernel before 3.6 uses an incorrect C library function for copying a string, which allows local users to obtain sensitive information from kernel heap memory by leveraging the CAP_NET_ADMIN capability.
The l2tp_ip6_getname function in net/l2tp/l2tp_ip6.c in the Linux kernel before 3.6 does not initialize a certain structure member, which allows local users to obtain sensitive information from kernel stack memory via a crafted application.
The llc_ui_getname function in net/llc/af_llc.c in the Linux kernel before 3.6 has an incorrect return value in certain circumstances, which allows local users to obtain sensitive information from kernel stack memory via a crafted application that leverages an uninitialized pointer argument.
The do_ip_vs_get_ctl function in net/netfilter/ipvs/ip_vs_ctl.c in the Linux kernel before 3.6 does not initialize a certain structure for IP_VS_SO_GET_TIMEOUT commands, which allows local users to obtain sensitive information from kernel stack memory via a crafted application.
The ccid3_hc_tx_getsockopt function in net/dccp/ccids/ccid3.c in the Linux kernel before 3.6 does not initialize a certain structure, which allows local users to obtain sensitive information from kernel stack memory via a crafted application.
The __tun_chr_ioctl function in drivers/net/tun.c in the Linux kernel before 3.6 does not initialize a certain structure, which allows local users to obtain sensitive information from kernel stack memory via a crafted application.
The Administrative Scripting Tools component in IBM WebSphere Application Server (WAS) 6.1.0.x before 6.1.0.35 and 7.x before 7.0.0.15, when tracing is enabled, places wsadmin command parameters into the (1) wsadmin.traceout and (2) trace.log files, which allows local users to obtain potentially sensitive information by reading these files.
The sco_sock_getsockopt_old function in net/bluetooth/sco.c in the Linux kernel before 2.6.39 does not initialize a certain structure, which allows local users to obtain potentially sensitive information from kernel stack memory via the SCO_CONNINFO option.
The dev_ifconf function in net/socket.c in the Linux kernel before 3.6 does not initialize a certain structure, which allows local users to obtain sensitive information from kernel stack memory via a crafted application.
Microsoft Windows 7 SP1, Windows Server 2008 SP2 and R2 SP1, and Windows Server 2012 allow an authenticated attacker to run a specially crafted application when the Windows kernel improperly initializes objects in memory, aka "Win32k Information Disclosure Vulnerability". This CVE ID is unique from CVE-2017-8470, CVE-2017-8471, CVE-2017-8473, CVE-2017-8475, CVE-2017-8477, and CVE-2017-8484.
Information Services Framework (ISF) in IBM InfoSphere Information Server 8.1, 8.5 before FP3, and 8.7 and InfoSphere Business Glossary 8.1.1 and 8.1.2 does not have an off autocomplete attribute for the password field on the login page, which makes it easier for remote attackers to obtain access by leveraging an unattended workstation.
The kernel in Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, Windows 10 Gold, 1511, 1607, 1703, and Windows Server 2016 allows an authenticated attacker to obtain information via a specially crafted application. aka "Windows Kernel Information Disclosure Vulnerability," a different vulnerability than CVE-2017-8492, CVE-2017-8491, CVE-2017-8489, CVE-2017-8488, CVE-2017-8485, CVE-2017-8483, CVE-2017-8482, CVE-2017-8480, CVE-2017-8479, CVE-2017-8478, CVE-2017-8476, CVE-2017-8474, CVE-2017-8469, CVE-2017-8462, CVE-2017-0300, CVE-2017-0299, and CVE-2017-0297.
Amberdms Billing System (ABS) before 1.4.1, when a multi-instance installation is configured, might allow local users to obtain sensitive information by reading the cache in between runs of the include/cron/services_usage.php cron job.
The uart_get_count function in drivers/serial/serial_core.c in the Linux kernel before 2.6.37-rc1 does not properly initialize a certain structure member, which allows local users to obtain potentially sensitive information from kernel stack memory via a TIOCGICOUNT ioctl call.
The ivtvfb_ioctl function in drivers/media/video/ivtv/ivtvfb.c in the Linux kernel before 2.6.36-rc8 does not properly initialize a certain structure member, which allows local users to obtain potentially sensitive information from kernel stack memory via an FBIOGET_VBLANK ioctl call.
Linux kernel 2.6.33 and 2.6.34.y does not initialize the kvm_vcpu_events->interrupt.pad structure member, which allows local users to obtain potentially sensitive information from kernel stack memory via unspecified vectors.
The USB subsystem in the Linux kernel before 2.6.36-rc5 does not properly initialize certain structure members, which allows local users to obtain potentially sensitive information from kernel stack memory via vectors related to TIOCGICOUNT ioctl calls, and the (1) mos7720_ioctl function in drivers/usb/serial/mos7720.c and (2) mos7840_ioctl function in drivers/usb/serial/mos7840.c.
An information disclosure vulnerability exists when the Windows kernel improperly handles objects in memory, aka "Windows Kernel Information Disclosure Vulnerability." This affects Windows 7, Windows Server 2012 R2, Windows RT 8.1, Windows Server 2008, Windows Server 2012, Windows 8.1, Windows Server 2016, Windows Server 2008 R2, Windows 10, Windows 10 Servers. This CVE ID is unique from CVE-2018-8341.
An information disclosure vulnerability exists when the Windows kernel improperly handles objects in memory, aka "Windows Kernel Information Disclosure Vulnerability." This affects Windows 7, Windows Server 2012 R2, Windows RT 8.1, Windows Server 2008, Windows Server 2012, Windows 8.1, Windows Server 2016, Windows Server 2008 R2, Windows 10, Windows 10 Servers. This CVE ID is unique from CVE-2018-8121.
An information disclosure vulnerability exists when the Windows GDI component improperly discloses the contents of its memory, aka "Windows GDI Information Disclosure Vulnerability." This affects Windows Server 2008, Windows 7, Windows Server 2008 R2. This CVE ID is unique from CVE-2018-8394, CVE-2018-8398.
The Free Software Foundation (FSF) Berkeley DB NSS module (aka libnss-db) 2.2.3pre1 reads the DB_CONFIG file in the current working directory, which allows local users to obtain sensitive information via a symlink attack involving a setgid or setuid application that uses this module.
An information disclosure vulnerability exists when the Windows kernel improperly handles objects in memory, aka "Windows Kernel Information Disclosure Vulnerability." This affects Windows 7, Windows Server 2012 R2, Windows RT 8.1, Windows Server 2012, Windows 8.1, Windows Server 2016, Windows Server 2008 R2, Windows 10, Windows 10 Servers. This CVE ID is unique from CVE-2018-8348.
An information disclosure vulnerability exists when the Windows kernel improperly handles objects in memory, aka "Windows Kernel Information Disclosure Vulnerability." This affects Windows 10, Windows 10 Servers. This CVE ID is unique from CVE-2018-8127.
An information disclosure vulnerability exists when the Windows Graphics component improperly handles objects in memory, aka "Microsoft Graphics Component Information Disclosure Vulnerability." This affects Windows 7, Windows Server 2012 R2, Windows RT 8.1, Windows Server 2008, Windows Server 2012, Windows 8.1, Windows Server 2016, Windows Server 2008 R2, Windows 10, Windows 10 Servers.
There is an information leak vulnerability in some Huawei smartphones. An attacker may do some specific configuration in the smartphone and trick a user into inputting some sensitive information. Due to improper design, successful exploit may cause some information leak.
Simultaneous Multi-threading (SMT) in processors can enable local users to exploit software vulnerable to timing attacks via a side-channel timing attack on 'port contention'.
The kernel in Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, Windows 10 Gold, 1511, 1607, 1703, and Windows Server 2016 allows an authenticated attacker to obtain information via a specially crafted application. aka "Windows Kernel Information Disclosure Vulnerability," a different vulnerability than CVE-2017-8491, CVE-2017-8490, CVE-2017-8489, CVE-2017-8488, CVE-2017-8485, CVE-2017-8483, CVE-2017-8482, CVE-2017-8481, CVE-2017-8480, CVE-2017-8478, CVE-2017-8479, CVE-2017-8476, CVE-2017-8474, CVE-2017-8469, CVE-2017-8462, CVE-2017-0300, and CVE-2017-0297.
Graphics in Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, Windows 10 Gold, 1511, 1607, 1703, and Windows Server 2016 allows improper disclosure of memory contents, aka "Windows Graphics Information Disclosure Vulnerability". This CVE ID is unique from CVE-2017-0286, CVE-2017-0287, CVE-2017-0288, CVE-2017-8531, CVE-2017-8532, and CVE-2017-8533.
The Windows kernel in Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, and Windows Server 2012 Gold allows authenticated attackers to obtain sensitive information via a specially crafted document, aka "Windows Kernel Information Disclosure Vulnerability," a different vulnerability than CVE-2017-0175, CVE-2017-0258, and CVE-2017-0259.
The kernel-mode drivers in Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1 and Windows Server 2012 Gold allow a local authenticated attacker to execute a specially crafted application to obtain kernel information, aka "Win32k Information Disclosure Vulnerability."
Uniscribe in Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, Windows 10 Gold, 1511, 1607, 1703, Windows Server 2016, Microsoft Office 2007 SP3, and Microsoft Office 2010 SP2 allows improper disclosure of memory contents, aka "Windows Uniscribe Information Disclosure Vulnerability". This CVE ID is unique from CVE-2017-0282, CVE-2017-0285, and CVE-2017-8534.
A Win32k information disclosure vulnerability exists in Microsoft Windows when the win32k component improperly provides kernel information. An attacker who successfully exploited the vulnerability could obtain information to further compromise the user's system, aka "Win32k Information Disclosure Vulnerability."
The kernel in Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, Windows 10 Gold, 1511, 1607, 1703, and Windows Server 2016 allows an authenticated attacker to obtain information via a specially crafted application. aka "Windows Kernel Information Disclosure Vulnerability," a different vulnerability than CVE-2017-8491, CVE-2017-8490, CVE-2017-8489, CVE-2017-8488, CVE-2017-8485, CVE-2017-8483, CVE-2017-8482, CVE-2017-8481, CVE-2017-8480, CVE-2017-8478, CVE-2017-8479, CVE-2017-8476, CVE-2017-8474, CVE-2017-8469, CVE-2017-8462, CVE-2017-0299, and CVE-2017-0297.
Graphics in Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, Windows 10 Gold, 1511, 1607, 1703, and Windows Server 2016 allows improper disclosure of memory contents, aka "Windows Graphics Information Disclosure Vulnerability". This CVE ID is unique from CVE-2017-0287, CVE-2017-0288, CVE-2017-0289, CVE-2017-8531, CVE-2017-8532, and CVE-2017-8533.
The kernel in Microsoft Windows Server 2008 R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, Windows 10 Gold, 1511, 1607, 1703, and Windows Server 2016 allows an authenticated attacker to obtain information via a specially crafted application. aka "Windows Kernel Information Disclosure Vulnerability," a different vulnerability than CVE-2017-8491, CVE-2017-8490, CVE-2017-8489, CVE-2017-8488, CVE-2017-8485, CVE-2017-8483, CVE-2017-8482, CVE-2017-8481, CVE-2017-8480, CVE-2017-8478, CVE-2017-8479, CVE-2017-8476, CVE-2017-8474, CVE-2017-8469, CVE-2017-8462, CVE-2017-0299, CVE-2017-0300.
The Graphics Device Interface (GDI) in Microsoft Windows Vista SP2; Windows Server 2008 SP2 and R2 SP1; Windows 7 SP1; Windows 8.1; Windows Server 2012 Gold and R2; Windows RT 8.1; and Windows 10 Gold, 1511, and 1607 allows remote attackers to obtain sensitive information from process memory via a crafted web site, aka "GDI+ Information Disclosure Vulnerability." This vulnerability is different from those described in CVE-2017-0060 and CVE-2017-0073.
The eCryptfs support utilities (ecryptfs-utils) 73-0ubuntu6.1 on Ubuntu 9.04 stores the mount passphrase in installation logs, which might allow local users to obtain access to the filesystem by reading the log files from disk. NOTE: the log files are only readable by root.
Graphics in Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, Windows 10 Gold, 1511, 1607, 1703, and Windows Server 2016 allows improper disclosure of memory contents, aka "Graphics Uniscribe Information Disclosure Vulnerability". This CVE ID is unique from CVE-2017-0286, CVE-2017-0288, CVE-2017-0289, CVE-2017-8531, CVE-2017-8532, and CVE-2017-8533.
Uniscribe in Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, Windows 10 Gold, 1511, 1607, 1703, Windows Server 2016, Microsoft Office 2007 SP3, Microsoft Office 2010 SP2, and Microsoft Office Word Viewer allows improper disclosure of memory contents, aka "Windows Uniscribe Information Disclosure Vulnerability". This CVE ID is unique from CVE-2017-0282, CVE-2017-0284, and CVE-2017-8534.
Graphics in Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, Windows 10 Gold, 1511, 1607, 1703, and Windows Server 2016 allows improper disclosure of memory contents, aka "Windows Graphics Information Disclosure Vulnerability". This CVE ID is unique from CVE-2017-0286, CVE-2017-0287, CVE-2017-0289, CVE-2017-8531, CVE-2017-8532, and CVE-2017-8533.
Vulnerability in the Oracle FLEXCUBE Universal Banking component of Oracle Financial Services Applications (subcomponent: Core). Supported versions that are affected are 11.3.0, 11.4.0, 12.0.1, 12.0.2, 12.0.3, 12.1.0 and 12.2.0. Easily exploitable vulnerability allows physical access to compromise Oracle FLEXCUBE Universal Banking. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized read access to a subset of Oracle FLEXCUBE Universal Banking accessible data. CVSS v3.0 Base Score 2.1 (Confidentiality impacts).
Siemens SIMATIC STEP 7 (TIA Portal) before 14 uses an improper format for managing TIA project files during version updates, which makes it easier for local users to obtain sensitive configuration information via unspecified vectors.
PerfServlet in the PMI/Performance Tools component in IBM WebSphere Application Server (WAS) 6.0.x before 6.0.2.31, 6.1.x before 6.1.0.21, and 7.0.x before 7.0.0.1, when Performance Monitoring Infrastructure (PMI) is enabled, allows local users to obtain sensitive information by reading the (1) systemout.log and (2) ffdc files. NOTE: this is probably a duplicate of CVE-2008-5413.
Bowser.sys in the kernel-mode drivers in Microsoft Windows Vista SP2, Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, Windows 10 Gold, 1511, and 1607, and Windows Server 2016 allows local users to obtain sensitive information via a crafted application, aka "Windows Bowser.sys Information Disclosure Vulnerability."