Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3332, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3334, and CVE-2013-3335.
Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
Buffer overflow in the VFAT filesystem implementation in the Linux kernel before 3.3 allows local users to gain privileges or cause a denial of service (system crash) via a VFAT write operation on a filesystem with the utf8 mount option, which is not properly handled during UTF-8 to UTF-16 conversion.
Mozilla Firefox before 22.0, Firefox ESR 17.x before 17.0.7, Thunderbird before 17.0.7, and Thunderbird ESR 17.x before 17.0.7 do not properly handle onreadystatechange events in conjunction with page reloading, which allows remote attackers to cause a denial of service (application crash) or possibly execute arbitrary code via a crafted web site that triggers an attempt to execute data at an unmapped memory location.
MariaDB 5.5.x before 5.5.30, 5.3.x before 5.3.13, 5.2.x before 5.2.15, and 5.1.x before 5.1.68, and Oracle MySQL 5.1.69 and earlier, 5.5.31 and earlier, and 5.6.11 and earlier allows remote attackers to cause a denial of service (crash) via a crafted geometry feature that specifies a large number of points, which is not properly handled when processing the binary representation of this feature, related to a numeric calculation error.
Buffer overflow in password manager in Google Chrome prior to 79.0.3945.79 allowed a remote attacker to execute arbitrary code via a crafted HTML page.
The Intel drivers in Mesa 8.0.x and 9.0.x allow context-dependent attackers to cause a denial of service (reachable assertion and crash) and possibly execute arbitrary code via vectors involving 3d graphics that trigger an out-of-bounds array access, related to the fs_visitor::remove_dead_constants function. NOTE: this issue might be related to CVE-2013-0796.
The cipso_v4_validate function in net/ipv4/cipso_ipv4.c in the Linux kernel before 3.4.8 allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact via an IPOPT_CIPSO IP_OPTIONS setsockopt system call.
A stack buffer overflow in the QUIC networking stack in Google Chrome prior to 62.0.3202.89 allowed a remote attacker to gain code execution via a malicious server.
The RasterImage::DrawFrameTo function in Mozilla Firefox before 19.0, Thunderbird before 17.0.3, and SeaMonkey before 2.16 allows remote attackers to obtain sensitive information from process memory or cause a denial of service (out-of-bounds read and application crash) via a crafted GIF image.
Samba before 4.7.3 might allow remote attackers to obtain sensitive information by leveraging failure of the server to clear allocated heap memory.
Heap-based buffer overflow in the nsWaveReader::DecodeAudioData function in Mozilla Firefox before 16.0, Firefox ESR 10.x before 10.0.8, Thunderbird before 16.0, Thunderbird ESR 10.x before 10.0.8, and SeaMonkey before 2.13 allows remote attackers to execute arbitrary code via unspecified vectors.
The CERT_DecodeCertPackage function in Mozilla Network Security Services (NSS), as used in Mozilla Firefox before 20.0, Firefox ESR 17.x before 17.0.5, Thunderbird before 17.0.5, Thunderbird ESR 17.x before 17.0.5, SeaMonkey before 2.17, and other products, allows remote attackers to cause a denial of service (out-of-bounds read and memory corruption) via a crafted certificate.
Heap-based buffer overflow in the jp2_decode function in JasPer 1.900.1 and earlier allows remote attackers to cause a denial of service (crash) or possibly execute arbitrary code via a crafted JPEG 2000 file.
The SUSE coreutils-i18n.patch for GNU coreutils allows context-dependent attackers to cause a denial of service (segmentation fault and crash) via a long string to the join command, when using the -i switch, which triggers a stack-based buffer overflow in the alloca function.
A heap-based buffer overflow exists in GNU Bash before 4.3 when wide characters, not supported by the current locale set in the LC_CTYPE environment variable, are printed through the echo built-in function. A local attacker, who can provide data to print through the "echo -e" built-in function, may use this flaw to crash a script or execute code with the privileges of the bash process. This occurs because ansicstr() in lib/sh/strtrans.c mishandles u32cconv().
Integer signedness error in the CIFSFindNext function in fs/cifs/cifssmb.c in the Linux kernel before 3.1 allows remote CIFS servers to cause a denial of service (memory corruption) or possibly have unspecified other impact via a large length value in a response to a read request for a directory.
The SUSE coreutils-i18n.patch for GNU coreutils allows context-dependent attackers to cause a denial of service (segmentation fault and crash) via a long string to the uniq command, which triggers a stack-based buffer overflow in the alloca function.
arch/x86/include/asm/pgtable.h in the Linux kernel before 3.6.2, when transparent huge pages are used, does not properly support PROT_NONE memory regions, which allows local users to cause a denial of service (system crash) via a crafted application.
The IcedTea-Web plugin before 1.2.1 does not properly handle NPVariant NPStrings without NUL terminators, which allows remote attackers to cause a denial of service (crash), obtain sensitive information from memory, or execute arbitrary code via a crafted Java applet.
Buffer overflow in the ParseCommand function in hpgl-input.c in the hpgltops program for CUPS 1.1.22 allows remote attackers to execute arbitrary code via a crafted HPGL file.
Heap-based buffer overflow in the Convolve3x3 function in Mozilla Firefox before 16.0, Firefox ESR 10.x before 10.0.8, Thunderbird before 16.0, Thunderbird ESR 10.x before 10.0.8, and SeaMonkey before 2.13 allows remote attackers to execute arbitrary code via unspecified vectors.
Mozilla developers backported selected changes in the Skia library. These changes correct memory corruption issues including invalid buffer reads and writes during graphic operations. This vulnerability affects Thunderbird ESR < 52.8, Thunderbird < 52.8, and Firefox ESR < 52.8.
A buffer overflow was found during UTF8 to Unicode string conversion within JavaScript with extremely large amounts of data. This vulnerability requires the use of a malicious or vulnerable legacy extension in order to occur. This vulnerability affects Thunderbird ESR < 52.8, Thunderbird < 52.8, and Firefox ESR < 52.8.
The Generic Receive Offload (GRO) implementation in the Linux kernel 2.6.18 on Red Hat Enterprise Linux 5 and 2.6.32 on Red Hat Enterprise Linux 6, as used in Red Hat Enterprise Virtualization (RHEV) Hypervisor and other products, allows remote attackers to cause a denial of service via crafted VLAN packets that are processed by the napi_reuse_skb function, leading to (1) a memory leak or (2) memory corruption, a different vulnerability than CVE-2011-1478.
The getFirstInTableInstance function in the IcedTea-Web plugin before 1.2.1 returns an uninitialized pointer when the instance_to_id_map hash is empty, which allows remote attackers to cause a denial of service (crash) and possibly execute arbitrary code via a crafted web page, which causes an uninitialized memory location to be read.
The png_push_read_zTXt function in pngpread.c in libpng 1.0.x before 1.0.58, 1.2.x before 1.2.48, 1.4.x before 1.4.10, and 1.5.x before 1.5.10 allows remote attackers to cause a denial of service (out-of-bounds read) via a large avail_in field value in a PNG image.
Buffer overflow in the nsCharTraits::length function in Mozilla Firefox before 16.0, Firefox ESR 10.x before 10.0.8, Thunderbird before 16.0, Thunderbird ESR 10.x before 10.0.8, and SeaMonkey before 2.13 allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via unspecified vectors.
A segmentation fault (SEGV) flaw was found in the Fribidi package and affects the fribidi_remove_bidi_marks() function of the lib/fribidi.c file. This flaw allows an attacker to pass a specially crafted file to Fribidi, leading to a crash and causing a denial of service.
Heap-based buffer overflow in the nsHTMLEditor::IsPrevCharInNodeWhitespace function in Mozilla Firefox before 16.0, Firefox ESR 10.x before 10.0.8, Thunderbird before 16.0, Thunderbird ESR 10.x before 10.0.8, and SeaMonkey before 2.13 allows remote attackers to execute arbitrary code via unspecified vectors.
Several memory vulnerabilities were identified within the OpenSC packages, particularly in the card enrollment process using pkcs15-init when a user or administrator enrolls cards. To take advantage of these flaws, an attacker must have physical access to the computer system and employ a custom-crafted USB device or smart card to manipulate responses to APDUs. This manipulation can potentially allow compromise key generation, certificate loading, and other card management operations during enrollment.
The asn1_d2i_read_bio function in crypto/asn1/a_d2i_fp.c in OpenSSL before 0.9.8v, 1.0.0 before 1.0.0i, and 1.0.1 before 1.0.1a does not properly interpret integer data, which allows remote attackers to conduct buffer overflow attacks, and cause a denial of service (memory corruption) or possibly have unspecified other impact, via crafted DER data, as demonstrated by an X.509 certificate or an RSA public key.
Stack-based buffer overflow in native/mod_manager/node.c in mod_cluster 1.2.9.
The VGA module in QEMU improperly performs bounds checking on banked access to video memory, which allows local guest OS administrators to execute arbitrary code on the host by changing access modes after setting the bank register, aka the "Dark Portal" issue.
In LibTIFF, there is a memory malloc failure in tif_pixarlog.c. A crafted TIFF document can lead to an abort, resulting in a remote denial of service attack.
A flaw was found in libtiff. Due to a memory allocation failure in tif_read.c, a crafted TIFF file can lead to an abort, resulting in denial of service.
Multiple stack-based buffer overflows in the get_header function in header.c for LHA 1.14, as used in products such as Barracuda Spam Firewall, allow remote attackers or local users to execute arbitrary code via long directory or file names in an LHA archive, which triggers the overflow when testing or extracting the archive.
Buffer overflow in NFS mountd gives root access to remote attackers, mostly in Linux systems.
Mozilla Firefox before 16.0, Firefox ESR 10.x before 10.0.8, Thunderbird before 16.0, Thunderbird ESR 10.x before 10.0.8, and SeaMonkey before 2.13 do not properly manage a certain insPos variable, which allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption and assertion failure) via unspecified vectors.
Adobe Flash Player before 10.3.183.20 and 11.x before 11.3.300.257 on Windows and Mac OS X; before 10.3.183.20 and 11.x before 11.2.202.236 on Linux; before 11.1.111.10 on Android 2.x and 3.x; and before 11.1.115.9 on Android 4.x, and Adobe AIR before 3.3.0.3610, allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2012-2034.
Incorrect alias information in IonMonkey JIT compiler for Array.prototype.slice method may lead to missing bounds check and a buffer overflow. This vulnerability affects Firefox < 66.0.1, Firefox ESR < 60.6.1, and Thunderbird < 60.6.1.
An issue was discovered in AdvanceCOMP through 2.1. An invalid memory address occurs in the function adv_png_unfilter_8 in lib/png.c. It can be triggered by sending a crafted file to a binary. It allows an attacker to cause a Denial of Service (Segmentation fault) or possibly have unspecified other impact when a victim opens a specially crafted file.
A vulnerability was found in WebKit. The flaw is triggered when processing maliciously crafted web content that may lead to arbitrary code execution. Improved memory handling addresses the multiple memory corruption issues.
Buffer overflow in the vnc_refresh_server_surface function in the VNC display driver in QEMU before 2.4.0.1 allows guest users to cause a denial of service (heap memory corruption and process crash) or possibly execute arbitrary code on the host via unspecified vectors, related to refreshing the server display surface.
Inappropriate memory management when caching in PDFium in Google Chrome prior to 72.0.3626.81 allowed a remote attacker to execute arbitrary code inside a sandbox via a crafted PDF file.
A buffer overflow flaw was found in X.Org and Xwayland. If XkbChangeTypesOfKey() is called with a 0 group, it will resize the key symbols table to 0 but leave the key actions unchanged. If the same function is later called with a non-zero value of groups, this will cause a buffer overflow because the key actions are of the wrong size.