The decodenetnum function in ntpd in NTP 4.2.x before 4.2.8p4, and 4.3.x before 4.3.77 allows remote attackers to cause a denial of service (assertion failure) via a 6 or mode 7 packet containing a long data value.
An issue was discovered on Samsung Galaxy S3 i9305 4.4.4 devices. The WEP, WPA, WPA2, and WPA3 implementations accept second (or subsequent) broadcast fragments even when sent in plaintext and process them as full unfragmented frames. An adversary can abuse this to inject arbitrary network packets independent of the network configuration.
The rate limiting feature in NTP 4.x before 4.2.8p4 and 4.3.x before 4.3.77 allows remote attackers to have unspecified impact via a large number of crafted requests.
A vulnerability has been identified in SCALANCE W1788-1 M12 (All versions < V3.0.0), SCALANCE W1788-2 EEC M12 (All versions < V3.0.0), SCALANCE W1788-2 M12 (All versions < V3.0.0), SCALANCE W1788-2IA M12 (All versions < V3.0.0). Affected devices do not properly handle malformed Multicast LLC frames. This could allow an attacker to trigger a denial of service condition.
Siemens SICAM MIC devices with firmware before 2404 allow remote attackers to bypass authentication and obtain administrative access via unspecified HTTP requests.
A vulnerability has been identified in RUGGEDCOM RM1224 LTE(4G) EU (6GK6108-4AM00-2BA2) (All versions < V7.1.2), RUGGEDCOM RM1224 LTE(4G) NAM (6GK6108-4AM00-2DA2) (All versions < V7.1.2), SCALANCE M804PB (6GK5804-0AP00-2AA2) (All versions < V7.1.2), SCALANCE M812-1 ADSL-Router (6GK5812-1AA00-2AA2) (All versions < V7.1.2), SCALANCE M812-1 ADSL-Router (6GK5812-1BA00-2AA2) (All versions < V7.1.2), SCALANCE M816-1 ADSL-Router (6GK5816-1AA00-2AA2) (All versions < V7.1.2), SCALANCE M816-1 ADSL-Router (6GK5816-1BA00-2AA2) (All versions < V7.1.2), SCALANCE M826-2 SHDSL-Router (6GK5826-2AB00-2AB2) (All versions < V7.1.2), SCALANCE M874-2 (6GK5874-2AA00-2AA2) (All versions < V7.1.2), SCALANCE M874-3 (6GK5874-3AA00-2AA2) (All versions < V7.1.2), SCALANCE M876-3 (6GK5876-3AA02-2BA2) (All versions < V7.1.2), SCALANCE M876-3 (ROK) (6GK5876-3AA02-2EA2) (All versions < V7.1.2), SCALANCE M876-4 (6GK5876-4AA10-2BA2) (All versions < V7.1.2), SCALANCE M876-4 (EU) (6GK5876-4AA00-2BA2) (All versions < V7.1.2), SCALANCE M876-4 (NAM) (6GK5876-4AA00-2DA2) (All versions < V7.1.2), SCALANCE MUM853-1 (EU) (6GK5853-2EA00-2DA1) (All versions < V7.1.2), SCALANCE MUM856-1 (EU) (6GK5856-2EA00-3DA1) (All versions < V7.1.2), SCALANCE MUM856-1 (RoW) (6GK5856-2EA00-3AA1) (All versions < V7.1.2), SCALANCE S615 EEC LAN-Router (6GK5615-0AA01-2AA2) (All versions < V7.1.2), SCALANCE S615 LAN-Router (6GK5615-0AA00-2AA2) (All versions < V7.1.2), SCALANCE WAM763-1 (6GK5763-1AL00-7DA0) (All versions >= V1.1.0 < V3.0.0), SCALANCE WAM766-1 (6GK5766-1GE00-7DA0) (All versions >= V1.1.0 < V3.0.0), SCALANCE WAM766-1 (US) (6GK5766-1GE00-7DB0) (All versions >= V1.1.0 < V3.0.0), SCALANCE WAM766-1 EEC (6GK5766-1GE00-7TA0) (All versions >= V1.1.0 < V3.0.0), SCALANCE WAM766-1 EEC (US) (6GK5766-1GE00-7TB0) (All versions >= V1.1.0 < V3.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3AA0) (All versions >= V1.1.0 < V3.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3DA0) (All versions >= V1.1.0 < V3.0.0), SCALANCE WUM766-1 (6GK5766-1GE00-3DA0) (All versions >= V1.1.0 < V3.0.0), SCALANCE WUM766-1 (USA) (6GK5766-1GE00-3DB0) (All versions >= V1.1.0 < V3.0.0). Affected devices with TCP Event service enabled do not properly handle malformed packets. This could allow an unauthenticated remote attacker to cause a denial of service condition and reboot the device thus possibly affecting other network resources.
A vulnerability has been identified in SCALANCE W1788-1 M12 (All versions < V3.0.0), SCALANCE W1788-2 EEC M12 (All versions < V3.0.0), SCALANCE W1788-2 M12 (All versions < V3.0.0), SCALANCE W1788-2IA M12 (All versions < V3.0.0). Affected devices do not properly handle malformed TCP packets received over the RemoteCapture feature. This could allow an attacker to lead to a denial of service condition which only affects the port used by the RemoteCapture feature.
The Linux kernel, versions 3.9+, is vulnerable to a denial of service attack with low rates of specially modified packets targeting IP fragment re-assembly. An attacker may cause a denial of service condition by sending specially crafted IP fragments. Various vulnerabilities in IP fragmentation have been discovered and fixed over the years. The current vulnerability (CVE-2018-5391) became exploitable in the Linux kernel with the increase of the IP fragment reassembly queue size.
The FTP server on Siemens SCALANCE X-300 switches with firmware before 4.0 and SCALANCE X 408 switches with firmware before 4.0 allows remote authenticated users to cause a denial of service (reboot) via crafted FTP packets.
An issue was discovered on Samsung Galaxy S3 i9305 4.4.4 devices. The WPA, WPA2, and WPA3 implementations reassemble fragments with non-consecutive packet numbers. An adversary can abuse this to exfiltrate selected fragments. This vulnerability is exploitable when another device sends fragmented frames and the WEP, CCMP, or GCMP data-confidentiality protocol is used. Note that WEP is vulnerable to this attack by design.
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The BMP_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing PCT files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13403)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Gif_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing GIF files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13340)
A vulnerability has been identified in RFID 181EIP (All versions), RUGGEDCOM Win (V4.4, V4.5, V5.0, and V5.1), SCALANCE X-200 switch family (incl. SIPLUS NET variants) (All versions < V5.2.3), SCALANCE X-200IRT switch family (incl. SIPLUS NET variants) (All versions < V5.4.1), SCALANCE X-200RNA switch family (All versions < V3.2.6), SCALANCE X-300 switch family (incl. SIPLUS NET variants) (All versions < V4.1.3), SCALANCE X408 (All versions < V4.1.3), SCALANCE X414 (All versions), SIMATIC RF182C (All versions). Unprivileged remote attackers located in the same local network segment (OSI Layer 2) could gain remote code execution on the affected products by sending a specially crafted DHCP response to a client's DHCP request.
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Tiff_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing TIFF files. This could result in an out of bounds read past the end of an allocated buffer. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-12959)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Gif_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing GIF files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13024)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The BMP_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing SGI files. This could result in an out of bounds read past the end of an allocated buffer. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13356)
A vulnerability has been identified in SiPass integrated AC5102 (ACC-G2) (All versions < V6.4.9), SiPass integrated ACC-AP (All versions < V6.4.9). Affected devices improperly sanitize user input for specific commands on the telnet command line interface. This could allow an authenticated local administrator to escalate privileges by injecting arbitrary commands that are executed with root privileges.
An issue was discovered in the ALFA Windows 10 driver 1030.36.604 for AWUS036ACH. The WEP, WPA, WPA2, and WPA3 implementations accept fragmented plaintext frames in a protected Wi-Fi network. An adversary can abuse this to inject arbitrary data frames independent of the network configuration.
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The JPEG2K_Loader.dll library in affected applications lacks proper validation of user-supplied data when parsing J2K files. This could result in an out of bounds read past the end of an allocated buffer. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-13416)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Tiff_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing TIFF files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13350)
A vulnerability has been identified in SiPass integrated AC5102 (ACC-G2) (All versions < V6.4.9), SiPass integrated ACC-AP (All versions < V6.4.9). Affected devices improperly sanitize input for the pubkey endpoint of the REST API. This could allow an authenticated remote administrator to escalate privileges by injecting arbitrary commands that are executed with root privileges.
A vulnerability has been identified in SIMATIC S7-1500 CPU (All versions >= V2.0 and < V2.5), SIMATIC S7-1500 CPU (All versions <= V1.8.5). Specially crafted network packets sent to port 80/tcp or 443/tcp could allow an unauthenticated remote attacker to cause a Denial-of-Service condition of the device. The security vulnerability could be exploited by an attacker with network access to the affected systems on port 80/tcp or 443/tcp. Successful exploitation requires no system privileges and no user interaction. An attacker could use the vulnerability to compromise availability of the device. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SCALANCE X302-7 EEC (230V), SCALANCE X302-7 EEC (230V, coated), SCALANCE X302-7 EEC (24V), SCALANCE X302-7 EEC (24V, coated), SCALANCE X302-7 EEC (2x 230V), SCALANCE X302-7 EEC (2x 230V, coated), SCALANCE X302-7 EEC (2x 24V), SCALANCE X302-7 EEC (2x 24V, coated), SCALANCE X304-2FE, SCALANCE X306-1LD FE, SCALANCE X307-2 EEC (230V), SCALANCE X307-2 EEC (230V, coated), SCALANCE X307-2 EEC (24V), SCALANCE X307-2 EEC (24V, coated), SCALANCE X307-2 EEC (2x 230V), SCALANCE X307-2 EEC (2x 230V, coated), SCALANCE X307-2 EEC (2x 24V), SCALANCE X307-2 EEC (2x 24V, coated), SCALANCE X307-3, SCALANCE X307-3, SCALANCE X307-3LD, SCALANCE X307-3LD, SCALANCE X308-2, SCALANCE X308-2, SCALANCE X308-2LD, SCALANCE X308-2LD, SCALANCE X308-2LH, SCALANCE X308-2LH, SCALANCE X308-2LH+, SCALANCE X308-2LH+, SCALANCE X308-2M, SCALANCE X308-2M, SCALANCE X308-2M PoE, SCALANCE X308-2M PoE, SCALANCE X308-2M TS, SCALANCE X308-2M TS, SCALANCE X310, SCALANCE X310, SCALANCE X310FE, SCALANCE X310FE, SCALANCE X320-1 FE, SCALANCE X320-1-2LD FE, SCALANCE X408-2, SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M TS (24V), SCALANCE XR324-12M TS (24V), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M PoE (230V, ports on front), SCALANCE XR324-4M PoE (230V, ports on rear), SCALANCE XR324-4M PoE (24V, ports on front), SCALANCE XR324-4M PoE (24V, ports on rear), SCALANCE XR324-4M PoE TS (24V, ports on front), SIPLUS NET SCALANCE X308-2. Affected devices do not properly validate the HTTP headers of incoming requests. This could allow an unauthenticated remote attacker to crash affected devices.
A vulnerability has been identified in SICAM A8000 CP-8000 (All versions < V14), SICAM A8000 CP-802X (All versions < V14), SICAM A8000 CP-8050 (All versions < V2.00). Specially crafted network packets sent to port 80/TCP or 443/TCP could allow an unauthenticated remote attacker to cause a Denial-of-Service condition of the web server. The security vulnerability could be exploited by an attacker with network access to the affected systems on port 80/TCP or 443/TCP. Successful exploitation requires no system privileges and no user interaction. An attacker could use the vulnerability to compromise availability of the web server. A system reboot is required to recover the web service of the device. At the time of advisory update, exploit code for this security vulnerability is public.
CRLF injection vulnerability in the HMI web application in Siemens WinCC (TIA Portal) 11 allows remote attackers to inject arbitrary HTTP headers and conduct HTTP response splitting attacks via a crafted URL.
A vulnerability was discovered in Siemens SIMATIC Logon (All versions before V1.6) that could allow specially crafted packets sent to the SIMATIC Logon Remote Access service on port 16389/tcp to cause a Denial-of-Service condition. The service restarts automatically.
Improper input validation in the firmware for some Intel(R) Processors may allow an authenticated user to potentially enable denial of service via local access.
A vulnerability has been identified in Opcenter Execution Foundation (All versions < V2407), Opcenter Quality (All versions < V2312), SIMATIC PCS neo (All versions < V4.1), SINEC NMS (All versions < V2.0 SP1), Totally Integrated Automation Portal (TIA Portal) V14 (All versions), Totally Integrated Automation Portal (TIA Portal) V15.1 (All versions), Totally Integrated Automation Portal (TIA Portal) V16 (All versions), Totally Integrated Automation Portal (TIA Portal) V17 (All versions < V17 Update 8), Totally Integrated Automation Portal (TIA Portal) V18 (All versions < V18 Update 3). The affected application contains an improper input validation vulnerability that could allow an attacker to bring the service into a Denial-of-Service state by sending a specifically crafted message to 4004/tcp. The corresponding service is auto-restarted after the crash is detected by a watchdog.
A vulnerability has been identified in SIMATIC S7-1500 CPU (All versions >= V2.0 and < V2.5), SIMATIC S7-1500 CPU (All versions <= V1.8.5). Specially crafted network packets sent to port 80/tcp or 443/tcp could allow an unauthenticated remote attacker to cause a Denial-of-Service condition of the device. The security vulnerability could be exploited by an attacker with network access to the affected systems on port 80/tcp or 443/tcp. Successful exploitation requires no system privileges and no user interaction. An attacker could use the vulnerability to compromise availability of the device. At the time of advisory publication no public exploitation of this security vulnerability was known.
HmiLoad in the runtime loader in Siemens WinCC flexible 2004, 2005, 2007, and 2008; WinCC V11 (aka TIA portal); the TP, OP, MP, Comfort Panels, and Mobile Panels SIMATIC HMI panels; WinCC V11 Runtime Advanced; and WinCC flexible Runtime, when Transfer Mode is enabled, allows remote attackers to cause a denial of service (application crash) by sending crafted data over TCP.
miniweb.exe in the HMI web server in Siemens WinCC flexible 2004, 2005, 2007, and 2008 before SP3; WinCC V11 (aka TIA portal) before SP2 Update 1; the TP, OP, MP, Comfort Panels, and Mobile Panels SIMATIC HMI panels; WinCC V11 Runtime Advanced; and WinCC flexible Runtime does not properly handle URIs beginning with a 0xfa character, which allows remote attackers to read data from arbitrary memory locations or cause a denial of service (application crash) via a crafted POST request.
Siemens Automation License Manager (ALM) 4.0 through 5.1+SP1+Upd1 allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via crafted content in a (1) get_target_ocx_param or (2) send_target_ocx_param command.
Improper input validation in BIOS firmware for some Intel(R) Processors may allow an authenticated user to potentially enable escalation of privilege via local access.
A vulnerability has been identified in SIMATIC RTLS Locating Manager (All versions < V2.12). The affected application does not properly handle the import of large configuration files. A local attacker could import a specially crafted file which could lead to a denial-of-service condition of the application service.
efibootguard is a simple UEFI boot loader with support for safely switching between current and updated partition sets. Insufficient or missing validation and sanitization of input from untrustworthy bootloader environment files can cause crashes and probably also code injections into `bg_setenv`) or programs using `libebgenv`. This is triggered when the affected components try to modify a manipulated environment, in particular its user variables. Furthermore, `bg_printenv` may crash over invalid read accesses or report invalid results. Not affected by this issue is EFI Boot Guard's bootloader EFI binary. EFI Boot Guard release v0.15 contains required patches to sanitize and validate the bootloader environment prior to processing it in userspace. Its library and tools should be updated, so should programs statically linked against it. An update of the bootloader EFI executable is not required. The only way to prevent the issue with an unpatched EFI Boot Guard version is to avoid accesses to user variables, specifically modifications to them.
Siemens SIMATIC HMI Comfort Panels before WinCC (TIA Portal) 13 SP1 Upd2 and SIMATIC WinCC Runtime Advanced before WinCC (TIA Portal) 13 SP1 Upd2 allow man-in-the-middle attackers to cause a denial of service via crafted packets on TCP port 102.
Siemens SIMATIC S7-300 CPU devices allow remote attackers to cause a denial of service (defect-mode transition) via crafted packets on (1) TCP port 102 or (2) Profibus.
Siemens SPC controllers SPC4000, SPC5000, and SPC6000 before 3.6.0 allow remote attackers to cause a denial of service (device restart) via crafted packets.
The web server on Siemens SCALANCE X-200IRT switches with firmware before 5.2.0 allows remote attackers to hijack sessions via unspecified vectors.
A vulnerability has been identified in RUGGEDCOM RM1224 LTE(4G) EU (6GK6108-4AM00-2BA2) (All versions < V8.2), RUGGEDCOM RM1224 LTE(4G) NAM (6GK6108-4AM00-2DA2) (All versions < V8.2), SCALANCE M804PB (6GK5804-0AP00-2AA2) (All versions < V8.2), SCALANCE M812-1 ADSL-Router (6GK5812-1AA00-2AA2) (All versions < V8.2), SCALANCE M812-1 ADSL-Router (6GK5812-1BA00-2AA2) (All versions < V8.2), SCALANCE M816-1 ADSL-Router (6GK5816-1AA00-2AA2) (All versions < V8.2), SCALANCE M816-1 ADSL-Router (6GK5816-1BA00-2AA2) (All versions < V8.2), SCALANCE M826-2 SHDSL-Router (6GK5826-2AB00-2AB2) (All versions < V8.2), SCALANCE M874-2 (6GK5874-2AA00-2AA2) (All versions < V8.2), SCALANCE M874-3 (6GK5874-3AA00-2AA2) (All versions < V8.2), SCALANCE M874-3 3G-Router (CN) (6GK5874-3AA00-2FA2) (All versions < V8.2), SCALANCE M876-3 (6GK5876-3AA02-2BA2) (All versions < V8.2), SCALANCE M876-3 (ROK) (6GK5876-3AA02-2EA2) (All versions < V8.2), SCALANCE M876-4 (6GK5876-4AA10-2BA2) (All versions < V8.2), SCALANCE M876-4 (EU) (6GK5876-4AA00-2BA2) (All versions < V8.2), SCALANCE M876-4 (NAM) (6GK5876-4AA00-2DA2) (All versions < V8.2), SCALANCE MUM853-1 (A1) (6GK5853-2EA10-2AA1) (All versions < V8.2), SCALANCE MUM853-1 (B1) (6GK5853-2EA10-2BA1) (All versions < V8.2), SCALANCE MUM853-1 (EU) (6GK5853-2EA00-2DA1) (All versions < V8.2), SCALANCE MUM856-1 (A1) (6GK5856-2EA10-3AA1) (All versions < V8.2), SCALANCE MUM856-1 (B1) (6GK5856-2EA10-3BA1) (All versions < V8.2), SCALANCE MUM856-1 (CN) (6GK5856-2EA00-3FA1) (All versions < V8.2), SCALANCE MUM856-1 (EU) (6GK5856-2EA00-3DA1) (All versions < V8.2), SCALANCE MUM856-1 (RoW) (6GK5856-2EA00-3AA1) (All versions < V8.2), SCALANCE S615 EEC LAN-Router (6GK5615-0AA01-2AA2) (All versions < V8.2), SCALANCE S615 LAN-Router (6GK5615-0AA00-2AA2) (All versions < V8.2), SCALANCE WAB762-1 (6GK5762-1AJ00-6AA0) (All versions < V3.0.0), SCALANCE WAM763-1 (6GK5763-1AL00-7DA0) (All versions < V3.0.0), SCALANCE WAM763-1 (ME) (6GK5763-1AL00-7DC0) (All versions < V3.0.0), SCALANCE WAM763-1 (US) (6GK5763-1AL00-7DB0) (All versions < V3.0.0), SCALANCE WAM766-1 (6GK5766-1GE00-7DA0) (All versions < V3.0.0), SCALANCE WAM766-1 (ME) (6GK5766-1GE00-7DC0) (All versions < V3.0.0), SCALANCE WAM766-1 (US) (6GK5766-1GE00-7DB0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (6GK5766-1GE00-7TA0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (ME) (6GK5766-1GE00-7TC0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (US) (6GK5766-1GE00-7TB0) (All versions < V3.0.0), SCALANCE WUB762-1 (6GK5762-1AJ00-1AA0) (All versions < V3.0.0), SCALANCE WUB762-1 iFeatures (6GK5762-1AJ00-2AA0) (All versions < V3.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3AA0) (All versions < V3.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3DA0) (All versions < V3.0.0), SCALANCE WUM763-1 (US) (6GK5763-1AL00-3AB0) (All versions < V3.0.0), SCALANCE WUM763-1 (US) (6GK5763-1AL00-3DB0) (All versions < V3.0.0), SCALANCE WUM766-1 (6GK5766-1GE00-3DA0) (All versions < V3.0.0), SCALANCE WUM766-1 (ME) (6GK5766-1GE00-3DC0) (All versions < V3.0.0), SCALANCE WUM766-1 (USA) (6GK5766-1GE00-3DB0) (All versions < V3.0.0). Affected devices truncates usernames longer than 15 characters when accessed via SSH or Telnet. This could allow an attacker to compromise system integrity.
Affected devices don't process correctly certain special crafted packets sent to port 102/tcp, which could allow an attacker to cause a denial of service in the device.
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Jt981.dll library in affected applications lacks proper validation of user-supplied data when parsing JT files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13442)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The BMP_Loader.dll library in affected applications lacks proper validation of user-supplied data when parsing BMP files. This could result in an out of bounds read past the end of an allocated buffer. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13057)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The BMP_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing SGI files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13355)
An issue was discovered in tcp_rcv() in nptcp.c in HCC embedded InterNiche 4.0.1. The TCP header processing code doesn't sanitize the value of the IP total length field (header length + data length). With a crafted IP packet, an integer overflow occurs whenever the value of the IP data length is calculated by subtracting the length of the header from the total length of the IP packet.
libcurl keeps previously used connections in a connection pool for subsequenttransfers to reuse, if one of them matches the setup.Due to errors in the logic, the config matching function did not take 'issuercert' into account and it compared the involved paths *case insensitively*,which could lead to libcurl reusing wrong connections.File paths are, or can be, case sensitive on many systems but not all, and caneven vary depending on used file systems.The comparison also didn't include the 'issuer cert' which a transfer can setto qualify how to verify the server certificate.
Node.js before 16.6.0, 14.17.4, and 12.22.4 is vulnerable to Remote Code Execution, XSS, Application crashes due to missing input validation of host names returned by Domain Name Servers in Node.js dns library which can lead to output of wrong hostnames (leading to Domain Hijacking) and injection vulnerabilities in applications using the library.
A vulnerability in Siemens SICAM PAS (all versions before V8.09) could allow a remote attacker to cause a Denial of Service condition and potentially lead to unauthenticated remote code execution by sending specially crafted packets to port 19234/TCP.
Multiple open redirect vulnerabilities in xAdmin in EMC Document Sciences xPression 4.1 SP1 before Patch 47, 4.2 before Patch 26, and 4.5 before Patch 05, as used in Documentum Edition, Enterprise Edition Publish Engine, and Enterprise Edition Compuset Engine, allow remote attackers to redirect users to arbitrary web sites and conduct phishing attacks via unspecified parameters.
Laravel 5.4.x before 5.4.22 does not properly constrain the host portion of a password-reset URL, which makes it easier for remote attackers to conduct phishing attacks by specifying an attacker-controlled host.