libldap in certain third-party OpenLDAP packages has a certificate-validation flaw when the third-party package is asserting RFC6125 support. It considers CN even when there is a non-matching subjectAltName (SAN). This is fixed in, for example, openldap-2.4.46-10.el8 in Red Hat Enterprise Linux.
Vulnerability in the Java SE, JRockit component of Oracle Java SE (subcomponent: RMI). Supported versions that are affected are Java SE: 6u181, 7u171 and 8u162; JRockit: R28.3.17. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, JRockit. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Java SE, JRockit accessible data as well as unauthorized read access to a subset of Java SE, JRockit accessible data. Note: This vulnerability can only be exploited by supplying data to APIs in the specified Component without using Untrusted Java Web Start applications or Untrusted Java applets, such as through a web service. CVSS 3.0 Base Score 4.2 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:L/A:N).
The WebExtension APIs in Mozilla Firefox before 43.0 allow remote attackers to gain privileges, and possibly obtain sensitive information or conduct cross-site scripting (XSS) attacks, via a crafted web site.
The (1) serf_ssl_cert_issuer, (2) serf_ssl_cert_subject, and (3) serf_ssl_cert_certificate functions in Serf 0.2.0 through 1.3.x before 1.3.7 does not properly handle a NUL byte in a domain name in the subject's Common Name (CN) field of an X.509 certificate, which allows man-in-the-middle attackers to spoof arbitrary SSL servers via a crafted certificate issued by a legitimate Certification Authority.
Mozilla Firefox before the Preview Release, Mozilla before 1.7.3, and Thunderbird before 0.8 allows untrusted Javascript code to read and write to the clipboard, and possibly obtain sensitive information, via script-generated events such as Ctrl-Ins.
Apache Subversion 1.0.0 through 1.7.x before 1.7.17 and 1.8.x before 1.8.10 uses an MD5 hash of the URL and authentication realm to store cached credentials, which makes it easier for remote servers to obtain the credentials via a crafted authentication realm.
Unspecified vulnerability in Oracle Java SE 5.0u61, 6u71, 7u51, and 8; JRockit R27.8.1 and R28.3.1; and Java SE Embedded 7u51 allows remote attackers to affect confidentiality and integrity via unknown vectors related to Security.
The GnuTLS backend in libcurl 7.21.4 through 7.33.0, when disabling digital signature verification (CURLOPT_SSL_VERIFYPEER), also disables the CURLOPT_SSL_VERIFYHOST check for CN or SAN host name fields, which makes it easier for remote attackers to spoof servers and conduct man-in-the-middle (MITM) attacks.
Samba 3.2.x through 3.6.x before 3.6.20, 4.0.x before 4.0.11, and 4.1.x before 4.1.1, when vfs_streams_depot or vfs_streams_xattr is enabled, allows remote attackers to bypass intended file restrictions by leveraging ACL differences between a file and an associated alternate data stream (ADS).
mod_nss 1.0.8 and earlier, when NSSVerifyClient is set to none for the server/vhost context, does not enforce the NSSVerifyClient setting in the directory context, which allows remote attackers to bypass intended access restrictions.
Mozilla Firefox before 22.0 does not properly enforce the X-Frame-Options protection mechanism, which allows remote attackers to conduct clickjacking attacks via a crafted web site that uses the HTTP server push feature with multipart responses.
Mozilla Firefox before 24.0 on Android allows attackers to bypass the Same Origin Policy, and consequently conduct cross-site scripting (XSS) attacks or obtain password or cookie information, by using a symlink in conjunction with a file: URL for a local file.
The CallerIdentityLoginModule in JBoss Enterprise Application Platform (EAP) before 5.2.0, Web Platform (EWP) before 5.2.0, BRMS Platform before 5.3.1, and SOA Platform before 5.3.1 allows remote attackers to gain privileges of the previous user via a null password, which causes the previous user's password to be used.
The certificate-warning functionality in browser/components/certerror/content/aboutCertError.xhtml in Mozilla Firefox 4.x through 12.0, Firefox ESR 10.x before 10.0.6, Thunderbird 5.0 through 12.0, Thunderbird ESR 10.x before 10.0.6, and SeaMonkey before 2.10 does not properly handle attempted clickjacking of the about:certerror page, which allows man-in-the-middle attackers to trick users into adding an unintended exception via an IFRAME element.
The Serf RA layer in Apache Subversion 1.4.0 through 1.7.x before 1.7.18 and 1.8.x before 1.8.10 does not properly handle wildcards in the Common Name (CN) or subjectAltName field of the X.509 certificate, which allows man-in-the-middle attackers to spoof servers via a crafted certificate.
Mozilla Network Security Service (NSS) library before 3.11.3, as used in Mozilla Firefox before 1.5.0.7, Thunderbird before 1.5.0.7, and SeaMonkey before 1.0.5, when using an RSA key with exponent 3, does not properly handle extra data in a signature, which allows remote attackers to forge signatures for SSL/TLS and email certificates, a similar vulnerability to CVE-2006-4339. NOTE: on 20061107, Mozilla released an advisory stating that these versions were not completely patched by MFSA2006-60. The newer fixes for 1.5.0.7 are covered by CVE-2006-5462.
Mozilla Firefox 1.5.0.4, 2.0.x before 2.0.0.8, Mozilla Suite 1.7.13, Mozilla SeaMonkey 1.0.2 and other versions before 1.1.5, and Netscape 8.1 and earlier allow user-assisted remote attackers to read arbitrary files by tricking a user into typing the characters of the target filename in a text box and using the OnKeyDown, OnKeyPress, and OnKeyUp Javascript keystroke events to change the focus and cause those characters to be inserted into a file upload input control, which can then upload the file when the user submits the form.
Mozilla Firefox before 16.0 on Android assigns chrome privileges to Reader Mode pages, which allows user-assisted remote attackers to bypass intended access restrictions via a crafted web site.
Vulnerability in the MySQL Connectors product of Oracle MySQL (component: Connector/J). Supported versions that are affected are 8.0.14 and prior and 5.1.48 and prior. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise MySQL Connectors. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in MySQL Connectors, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of MySQL Connectors accessible data as well as unauthorized read access to a subset of MySQL Connectors accessible data. CVSS 3.0 Base Score 4.7 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:C/C:L/I:L/A:N).
If the Remote Debugging via USB feature was enabled in Firefox for Android on an Android version prior to Android 6.0, untrusted apps could have connected to the feature and operated with the privileges of the browser to read and interact with web content. The feature was implemented as a unix domain socket, protected by the Android SELinux policy; however, SELinux was not enforced for versions prior to 6.0. This was fixed by removing the Remote Debugging via USB feature from affected devices. *Note: This issue only affected Firefox for Android. Other operating systems are unaffected.*. This vulnerability affects Firefox < 83.
Opera offers an Open button to verify that a user wishes to execute a downloaded file, which allows user-assisted remote attackers to construct a race condition that tricks a user into clicking Open via a request for a different mouse or keyboard action very shortly before the Open dialog appears. NOTE: this is a different issue than CVE-2005-2407.
A flaw was found in openshift-ansible. OpenShift Container Platform (OCP) 3.11 is too permissive in the way it specified CORS allowed origins during installation. An attacker, able to man-in-the-middle the connection between the user's browser and the openshift console, could use this flaw to perform a phishing attack. The main threat from this vulnerability is data confidentiality.
Vulnerability in the Java SE, Java SE Embedded product of Oracle Java SE (component: Deployment). The supported version that is affected is Java SE: 8u221; Java SE Embedded: 8u221. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Java SE, Java SE Embedded accessible data as well as unauthorized read access to a subset of Java SE, Java SE Embedded accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets (in Java SE 8), that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 4.2 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:L/A:N).
Vulnerability in the Java SE product of Oracle Java SE (component: Javadoc). Supported versions that are affected are Java SE: 7u231, 8u221, 11.0.4 and 13. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Java SE accessible data as well as unauthorized read access to a subset of Java SE accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets (in Java SE 8), that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 4.7 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:C/C:L/I:L/A:N).
template/en/default/list/list.js.tmpl in Bugzilla 2.x and 3.x before 3.6.9, 3.7.x and 4.0.x before 4.0.6, and 4.1.x and 4.2.x before 4.2.1 does not properly handle multiple logins, which allows remote attackers to conduct cross-site scripting (XSS) attacks and obtain sensitive bug information via a crafted web page.
Vulnerability in the Java SE component of Oracle Java SE (subcomponent: Smart Card IO). Supported versions that are affected are Java SE: 6u161, 7u151, 8u144 and 9. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Java SE accessible data as well as unauthorized access to critical data or complete access to all Java SE accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 6.8 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:N).
A vulnerability was found in openstack-nova's console proxy, noVNC. By crafting a malicious URL, noVNC could be made to redirect to any desired URL.
Mozilla Firefox before 48.0 and Firefox ESR 45.x before 45.3 allow user-assisted remote attackers to bypass the Same Origin Policy, and conduct Universal XSS (UXSS) attacks or read arbitrary files, by arranging for the presence of a crafted HTML document and a crafted shortcut file in the same local directory.
If a Thunderbird user has previously imported Alice's OpenPGP key, and Alice has extended the validity period of her key, but Alice's updated key has not yet been imported, an attacker may send an email containing a crafted version of Alice's key with an invalid subkey, Thunderbird might subsequently attempt to use the invalid subkey, and will fail to send encrypted email to Alice. This vulnerability affects Thunderbird < 78.9.1.
An issue was discovered in OpenSSH 7.9. Due to missing character encoding in the progress display, a malicious server (or Man-in-The-Middle attacker) can employ crafted object names to manipulate the client output, e.g., by using ANSI control codes to hide additional files being transferred. This affects refresh_progress_meter() in progressmeter.c.
The host name verification when using TLS with the WebSocket client was missing. It is now enabled by default. Versions Affected: Apache Tomcat 9.0.0.M1 to 9.0.9, 8.5.0 to 8.5.31, 8.0.0.RC1 to 8.0.52, and 7.0.35 to 7.0.88.
A flaw was found in Keycloak. This flaw depends on a non-default configuration "Revalidate Client Certificate" to be enabled and the reverse proxy is not validating the certificate before Keycloak. Using this method an attacker may choose the certificate which will be validated by the server. If this happens and the KC_SPI_TRUSTSTORE_FILE_FILE variable is missing/misconfigured, any trustfile may be accepted with the logging information of "Cannot validate client certificate trust: Truststore not available". This may not impact availability as the attacker would have no access to the server, but consumer applications Integrity or Confidentiality may be impacted considering a possible access to them. Considering the environment is correctly set to use "Revalidate Client Certificate" this flaw is avoidable.
When using an OCSP responder Apache Tomcat Native 1.2.0 to 1.2.16 and 1.1.23 to 1.1.34 did not correctly handle invalid responses. This allowed for revoked client certificates to be incorrectly identified. It was therefore possible for users to authenticate with revoked certificates when using mutual TLS. Users not using OCSP checks are not affected by this vulnerability.
The TLS protocol, and the SSL protocol 3.0 and possibly earlier, as used in Microsoft Internet Information Services (IIS) 7.0, mod_ssl in the Apache HTTP Server 2.2.14 and earlier, OpenSSL before 0.9.8l, GnuTLS 2.8.5 and earlier, Mozilla Network Security Services (NSS) 3.12.4 and earlier, multiple Cisco products, and other products, does not properly associate renegotiation handshakes with an existing connection, which allows man-in-the-middle attackers to insert data into HTTPS sessions, and possibly other types of sessions protected by TLS or SSL, by sending an unauthenticated request that is processed retroactively by a server in a post-renegotiation context, related to a "plaintext injection" attack, aka the "Project Mogul" issue.
offlineimap before 6.3.2 does not check for SSL server certificate validation when "ssl = yes" option is specified which can allow man-in-the-middle attacks.
The apt package in Debian jessie before 1.0.9.8.4, in Debian unstable before 1.4~beta2, in Ubuntu 14.04 LTS before 1.0.1ubuntu2.17, in Ubuntu 16.04 LTS before 1.2.15ubuntu0.2, and in Ubuntu 16.10 before 1.3.2ubuntu0.1 allows man-in-the-middle attackers to bypass a repository-signing protection mechanism by leveraging improper error handling when validating InRelease file signatures.
OCSP revocation status of recipient certificates was not checked when sending S/Mime encrypted email, and revoked certificates would be accepted. Thunderbird versions from 68 to 102.9.1 were affected by this bug. This vulnerability affects Thunderbird < 102.10.
Shotwell version 0.22.0 (and possibly other versions) is vulnerable to a TLS/SSL certification validation flaw resulting in a potential for man in the middle attacks.
The Network Security Services (NSS) library before 3.12.3, as used in Firefox; GnuTLS before 2.6.4 and 2.7.4; OpenSSL 0.9.8 through 0.9.8k; and other products support MD2 with X.509 certificates, which might allow remote attackers to spoof certificates by using MD2 design flaws to generate a hash collision in less than brute-force time. NOTE: the scope of this issue is currently limited because the amount of computation required is still large.
Certificate OCSP revocation status was not checked when verifying S/Mime signatures. Mail signed with a revoked certificate would be displayed as having a valid signature. Thunderbird versions from 68 to 102.7.0 were affected by this bug. This vulnerability affects Thunderbird < 102.7.1.
A flaw was found in RHDS 11 and RHDS 12. While browsing entries LDAP tries to decode the userPassword attribute instead of the userCertificate attribute which could lead into sensitive information leaked. An attacker with a local account where the cockpit-389-ds is running can list the processes and display the hashed passwords. The highest threat from this vulnerability is to data confidentiality.
The TLS protocol 1.2 and earlier supports the rsa_fixed_dh, dss_fixed_dh, rsa_fixed_ecdh, and ecdsa_fixed_ecdh values for ClientCertificateType but does not directly document the ability to compute the master secret in certain situations with a client secret key and server public key but not a server secret key, which makes it easier for man-in-the-middle attackers to spoof TLS servers by leveraging knowledge of the secret key for an arbitrary installed client X.509 certificate, aka the "Key Compromise Impersonation (KCI)" issue.
If a user visited a webpage with an invalid TLS certificate, and granted an exception, the webpage was able to provide a WebAuthn challenge that the user would be prompted to complete. This is in violation of the WebAuthN spec which requires "a secure transport established without errors". This vulnerability affects Firefox < 140 and Thunderbird < 140.
A flaw was found in Cockpit in versions prior to 260 in the way it handles the certificate verification performed by the System Security Services Daemon (SSSD). This flaw allows client certificates to authenticate successfully, regardless of the Certificate Revocation List (CRL) configuration or the certificate status. The highest threat from this vulnerability is to confidentiality.
In RHEV-M VDC 2.2.0, it was found that the SSL certificate was not verified when using the client-side Red Hat Enterprise Virtualization Manager interface (a Windows Presentation Foundation (WPF) XAML browser application) to connect to the Red Hat Enterprise Virtualization Manager. An attacker on the local network could use this flaw to conduct a man-in-the-middle attack, tricking the user into thinking they are viewing the Red Hat Enterprise Virtualization Manager when the content is actually attacker-controlled, or modifying actions a user requested Red Hat Enterprise Virtualization Manager to perform.
Icinga is a monitoring system which checks the availability of network resources, notifies users of outages, and generates performance data for reporting. In versions 2.5.0 through 2.13.0, ElasticsearchWriter, GelfWriter, InfluxdbWriter and Influxdb2Writer do not verify the server's certificate despite a certificate authority being specified. Icinga 2 instances which connect to any of the mentioned time series databases (TSDBs) using TLS over a spoofable infrastructure should immediately upgrade to version 2.13.1, 2.12.6, or 2.11.11 to patch the issue. Such instances should also change the credentials (if any) used by the TSDB writer feature to authenticate against the TSDB. There are no workarounds aside from upgrading.
Mozilla Network Security Services (NSS) before 3.12.3, Firefox before 3.0.13, Thunderbird before 2.0.0.23, and SeaMonkey before 1.1.18 do not properly handle a '\0' character in a domain name in the subject's Common Name (CN) field of an X.509 certificate, which allows man-in-the-middle attackers to spoof arbitrary SSL servers via a crafted certificate issued by a legitimate Certification Authority. NOTE: this was originally reported for Firefox before 3.5.
It was found in OpenShift, before version 4.8, that the generated certificate for the in-cluster Service CA, incorrectly included additional certificates. The Service CA is automatically mounted into all pods, allowing them to safely connect to trusted in-cluster services that present certificates signed by the trusted Service CA. The incorrect inclusion of additional CAs in this certificate would allow an attacker that compromises any of the additional CAs to masquerade as a trusted in-cluster service.
Oracle MySQL before 5.7.3, Oracle MySQL Connector/C (aka libmysqlclient) before 6.1.3, and MariaDB before 5.5.44 use the --ssl option to mean that SSL is optional, which allows man-in-the-middle attackers to spoof servers via a cleartext-downgrade attack, aka a "BACKRONYM" attack.
The crypto/x509 package of Go before 1.10.6 and 1.11.x before 1.11.3 does not limit the amount of work performed for each chain verification, which might allow attackers to craft pathological inputs leading to a CPU denial of service. Go TLS servers accepting client certificates and TLS clients are affected.