Cisco IOS before 15.0(1)XA1, when certain TFTP debugging is enabled, allows remote attackers to cause a denial of service (device crash) via a TFTP copy over IPv6, aka Bug ID CSCtb28877.
The Secure Channel (aka SChannel) security package in Microsoft Windows Vista SP1 and SP2, Windows Server 2008 Gold, SP2, and R2, and Windows 7, when IIS 7.x is used, does not properly process client certificates during SSL and TLS handshakes, which allows remote attackers to cause a denial of service (LSASS outage and reboot) via a crafted packet, aka "TLSv1 Denial of Service Vulnerability."
windrvr1260.sys in Jungo DriverWizard WinDriver 12.6.0 allows attackers to cause a denial of service (BSOD) via a crafted .exe file.
Some Huawei mobile phone with the versions before BLA-L29 8.0.0.145(C432) have a denial of service (DoS) vulnerability because they do not adapt to specific screen gestures. An attacker may trick users into installing a malicious app. As a result, apps running on the frontend crash after the users make specific screen gestures.
The kernel in Apple iOS before 8.3, Apple OS X before 10.10.3, and Apple TV before 7.2 does not properly handle TCP headers, which allows man-in-the-middle attackers to cause a denial of service via unspecified vectors.
hostd-vmdb in VMware ESXi 4.0 through 5.0 and ESX 4.0 through 4.1 allows remote attackers to cause a denial of service (hostd-vmdb service outage) by modifying management traffic.
A flaw was found in OpenEXR's TiledInputFile functionality. This flaw allows an attacker who can submit a crafted single-part non-image to be processed by OpenEXR, to trigger a floating-point exception error. The highest threat from this vulnerability is to system availability.
A vulnerability in the Border Gateway Protocol (BGP) Multicast VPN (MVPN) implementation of Cisco NX-OS Software could allow an unauthenticated, remote attacker to cause an affected device to unexpectedly reload, resulting in a denial of service (DoS) condition. The vulnerability is due to incomplete input validation of a specific type of BGP MVPN update message. An attacker could exploit this vulnerability by sending this specific, valid BGP MVPN update message to a targeted device. A successful exploit could allow the attacker to cause one of the BGP-related routing applications to restart multiple times, leading to a system-level restart. Note: The Cisco implementation of BGP accepts incoming BGP traffic from only explicitly configured peers. To exploit this vulnerability, an attacker must send a specific BGP MVPN update message over an established TCP connection that appears to come from a trusted BGP peer. To do so, the attacker must obtain information about the BGP peers in the trusted network of the affected system.