In Malwarebytes Premium 3.3.1.2183, the driver file (FARFLT.SYS) allows local users to cause a denial of service (BSOD) or possibly have unspecified other impact because of not validating input values from IOCtl 0x9c40e010. NOTE: the vendor reported that they "have not been able to reproduce the issue on any Windows operating system version (32-bit or 64-bit).
In Malwarebytes Premium 3.3.1.2183, the driver file (FARFLT.SYS) allows local users to cause a denial of service (BSOD) or possibly have unspecified other impact because of not validating input values from IOCtl 0x9c40e004. NOTE: the vendor reported that they "have not been able to reproduce the issue on any Windows operating system version (32-bit or 64-bit).
In Malwarebytes Premium 3.3.1.2183, the driver file (FARFLT.SYS) allows local users to cause a denial of service (BSOD) or possibly have unspecified other impact because of not validating input values from IOCtl 0x9c40e000. NOTE: the vendor reported that they "have not been able to reproduce the issue on any Windows operating system version (32-bit or 64-bit).
In Malwarebytes Premium 3.3.1.2183, the driver file (FARFLT.SYS) allows local users to cause a denial of service (BSOD) or possibly have unspecified other impact because of not validating input values from IOCtl 0x9c40e018. NOTE: the vendor reported that they "have not been able to reproduce the issue on any Windows operating system version (32-bit or 64-bit).
In Malwarebytes Premium 3.3.1.2183, the driver file (FARFLT.SYS) allows local users to cause a denial of service (BSOD) or possibly have unspecified other impact because of not validating input values from IOCtl 0x9c40e008. NOTE: the vendor reported that they "have not been able to reproduce the issue on any Windows operating system version (32-bit or 64-bit).
In Malwarebytes Premium 3.3.1.2183, the driver file (FARFLT.SYS) allows local users to cause a denial of service (BSOD) or possibly have unspecified other impact because of not validating input values from IOCtl 0x9c40e02c. NOTE: the vendor reported that they "have not been able to reproduce the issue on any Windows operating system version (32-bit or 64-bit).
In Malwarebytes Premium 3.3.1.2183, the driver file (FARFLT.SYS) allows local users to cause a denial of service (BSOD) or possibly have unspecified other impact because of not validating input values from IOCtl 0x9c40e014. NOTE: the vendor reported that they "have not been able to reproduce the issue on any Windows operating system version (32-bit or 64-bit).
In Malwarebytes Premium 3.3.1.2183, the driver file (FARFLT.SYS) allows local users to cause a denial of service (BSOD) or possibly have unspecified other impact because of not validating input values from IOCtl 0x9C40E020. NOTE: the vendor reported that they "have not been able to reproduce the issue on any Windows operating system version (32-bit or 64-bit).
In Malwarebytes Premium 3.3.1.2183, the driver file (FARFLT.SYS) allows local users to cause a denial of service (BSOD) or possibly have unspecified other impact because of not validating input values from IOCtl 0x9C40E024. NOTE: the vendor reported that they "have not been able to reproduce the issue on any Windows operating system version (32-bit or 64-bit).
In Malwarebytes Premium 3.3.1.2183, the driver file (FARFLT.SYS) allows local users to cause a denial of service (BSOD) or possibly have unspecified other impact because of not validating input values from IOCtl 0x9c40e00c. NOTE: the vendor reported that they "have not been able to reproduce the issue on any Windows operating system version (32-bit or 64-bit).
PCManFM 1.2.5 insecurely uses /tmp for a socket file, allowing a local user to cause a denial of service (application unavailability).
Data corruption vulnerability in firmware in Intel Solid-State Drive Consumer, Professional, Embedded, Data Center affected firmware versions LSBG200, LSF031C, LSF036C, LBF010C, LSBG100, LSF031C, LSF036C, LBF010C, LSF031P, LSF036P, LBF010P, LSF031P, LSF036P, LBF010P, LSMG200, LSF031E, LSF036E, LSMG100, LSF031E, LSF036E, LSDG200, LSF031D, LSF036D allows local users to cause a denial of service via unspecified vectors.
Input validation error in Intel MinnowBoard 3 Firmware versions prior to 0.65 allow local attacker to cause denial of service via UEFI APIs.
In Vectura Perfect Privacy VPN Manager v1.10.10 and v1.10.11, when resetting the network data via the software client, with a running VPN connection, a critical error occurs which leads to a "FrmAdvancedProtection" crash. Although the mechanism malfunctions and an error occurs during the runtime with the stack trace being issued, the software process is not properly terminated. The software client is still attempting to maintain the connection even though the network connection information is being reset live. In that insecure mode, the "FrmAdvancedProtection" component crashes, but the process continues to run with different errors and process corruptions. This local corruption vulnerability can be exploited by local attackers.
Huawei AR120-S V200R006C10, V200R007C00, V200R008C20, V200R008C30, AR1200 V200R006C10, V200R006C13, V200R007C00, V200R007C01, V200R007C02, V200R008C20, V200R008C30, AR1200-S V200R006C10, V200R007C00, V200R008C20, V200R008C30, AR150 V200R006C10, V200R007C00, V200R007C01, V200R007C02, V200R008C20, V200R008C30, AR150-S V200R006C10, V200R007C00, V200R008C20, V200R008C30, AR160 V200R006C10, V200R006C12, V200R007C00, V200R007C01, V200R007C02, V200R008C20, V200R008C30, AR200 V200R006C10, V200R007C00, V200R007C01, V200R008C20, V200R008C30, AR200-S V200R006C10, V200R007C00, V200R008C20, V200R008C30, AR2200 V200R006C10, V200R006C13, V200R006C16, V200R007C00, V200R007C01, V200R007C02, V200R008C20, V200R008C30, AR2200-S V200R006C10, V200R007C00, V200R008C20, V200R008C30, AR3200 V200R006C10, V200R006C11, V200R007C00, V200R007C01, V200R007C02, V200R008C00, V200R008C10, V200R008C20, V200R008C30, AR3600 V200R006C10, V200R007C00, V200R007C01, V200R008C20, AR510 V200R006C10, V200R006C12, V200R006C13, V200R006C15, V200R006C16, V200R006C17, V200R007C00, V200R008C20, V200R008C30, DP300 V500R002C00, MAX PRESENCE V100R001C00, NetEngine16EX V200R006C10, V200R007C00, V200R008C20, V200R008C30, RP200 V500R002C00, V600R006C00, SRG1300 V200R006C10, V200R007C00, V200R007C02, V200R008C20, V200R008C30, SRG2300 V200R006C10, V200R007C00, V200R007C02, V200R008C20, V200R008C30, SRG3300 V200R006C10, V200R007C00, V200R008C20, V200R008C30, TE30 V100R001C02, V100R001C10, V500R002C00, V600R006C00, TE40 V500R002C00, V600R006C00, TE50 V500R002C00, V600R006C00, TE60 V100R001C01, V100R001C10, V500R002C00, V600R006C00, TP3106 V100R002C00, TP3206 V100R002C00, V100R002C10 have a denial of service vulnerability in the specific module. An authenticated, local attacker may craft a specific XML file to the affected products. Due to improper handling of input, successful exploit will cause some service abnormal.
The PV domain builder in Xen 4.2 and earlier does not validate the size of the kernel or ramdisk (1) before or (2) after decompression, which allows local guest administrators to cause a denial of service (domain 0 memory consumption) via a crafted (a) kernel or (b) ramdisk.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions under certain conditions, Go code can trigger a segfault in string deallocation. For string tensors, `C.TF_TString_Dealloc` is called during garbage collection within a finalizer function. However, tensor structure isn't checked until encoding to avoid a performance penalty. The current method for dealloc assumes that encoding succeeded, but segfaults when a string tensor is garbage collected whose encoding failed (e.g., due to mismatched dimensions). To fix this, the call to set the finalizer function is deferred until `NewTensor` returns and, if encoding failed for a string tensor, deallocs are determined based on bytes written. We have patched the issue in GitHub commit 8721ba96e5760c229217b594f6d2ba332beedf22. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, which is the other affected version.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.MapStage`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/map_stage_op.cc#L513) does not check that the `key` input is a valid non-empty tensor. We have patched the issue in GitHub commit d7de67733925de196ec8863a33445b73f9562d1d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Linux kernel 2.6.8 to 2.6.14-rc2 allows local users to cause a denial of service (kernel OOPS) via a userspace process that issues a USB Request Block (URB) to a USB device and terminates before the URB is finished, which leads to a stale pointer reference.
Linux kernel 2.6 and 2.4 on the IA64 architecture allows local users to cause a denial of service (kernel crash) via ptrace and the restore_sigcontext function.
Remote Desktop in Windows XP SP1 does not verify the "Force shutdown from a remote system" setting, which allows remote attackers to shut down the system by executing TSShutdn.exe.
TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `SparseReshape` results in a denial of service based on a `CHECK`-failure. The implementation(https://github.com/tensorflow/tensorflow/blob/e87b51ce05c3eb172065a6ea5f48415854223285/tensorflow/core/kernels/sparse_reshape_op.cc#L40) has no validation that the input arguments specify a valid sparse tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are the only affected versions.
lnsfw1.sys 6.0.2900.5512 in Look 'n' Stop Firewall 2.06p4 and 2.07 allows local users to cause a denial of service (crash) via a crafted 0x80000064 IOCTL request that triggers an assertion failure. NOTE: some of these details are obtained from third party information.
acpid.c in acpid before 2.0.9 does not properly handle a situation in which a process has connected to acpid.socket but is not reading any data, which allows local users to cause a denial of service (daemon hang) via a crafted application that performs a connect system call but no read system calls.
The pipe_fcntl function in fs/pipe.c in the Linux kernel before 2.6.37 does not properly determine whether a file is a named pipe, which allows local users to cause a denial of service via an F_SETPIPE_SZ fcntl call.
The staprun runtime tool in SystemTap 1.3 does not verify that a module to unload was previously loaded by SystemTap, which allows local users to cause a denial of service (unloading of arbitrary kernel modules).
Insufficient input validation in the firmware for the Intel(R) 700-series of Ethernet Controllers before version 7.3 may allow a privileged user to potentially enable denial of service via local access.
client/mount.cifs.c in mount.cifs in smbfs in Samba 3.4.5 and earlier does not verify that the (1) device name and (2) mountpoint strings are composed of valid characters, which allows local users to cause a denial of service (mtab corruption) via a crafted string.
The /etc/profile.d/60alias.sh script in the Mandriva bash package for Bash 2.05b, 3.0, 3.2, 3.2.48, and 4.0 enables the --show-control-chars option in LS_OPTIONS, which allows local users to send escape sequences to terminal emulators, or hide the existence of a file, via a crafted filename.
The tgbvpn.sys driver in TheGreenBow IPSec VPN Client 4.61.003 allows local users to cause a denial of service (NULL pointer dereference and system crash) via a crafted request to the 0x80000034 IOCTL, probably involving an input or output buffer size of 0.
A flaw was found in NetworkManager in versions before 1.30.0. Setting match.path and activating a profile crashes NetworkManager. The highest threat from this vulnerability is to system availability.
A validation issue was addressed with improved input sanitization. This issue is fixed in iOS 13.5 and iPadOS 13.5, macOS Catalina 10.15.5. A USB device may be able to cause a denial of service.
Improper input validation in firmware for some Intel(R) PROSet/Wireless Wi-Fi in multiple operating systems and some Killer(TM) Wi-Fi in Windows 10 and 11 may allow a privileged user to potentially enable denial of service via local access.
Improper input validation in a subsystem for some Intel Server Boards, Server Systems and Compute Modules before version 1.59 may allow an authenticated user to potentially enable denial of service via local access.
vetmonnt.sys in CA Internet Security Suite r3, vetmonnt.sys before 9.0.0.184 in Internet Security Suite r4, and vetmonnt.sys before 10.0.0.217 in Internet Security Suite r5 do not properly verify IOCTL calls, which allows local users to cause a denial of service (system crash) via a crafted call.
Improper input validation in the API for Intel(R) Graphics Driver versions before 26.20.100.7209 may allow an authenticated user to potentially enable denial of service via local access.
The Meeting component in Huawei eSpace Desktop before V100R001C03 allows local users to cause a denial of service (program exit) via a crafted image.
The tcmu-runner daemon in tcmu-runner version 1.0.5 to 1.2.0 is vulnerable to a local denial of service attack
Insufficient input validation in Kernel Mode module for Intel(R) Graphics Driver before version 25.20.100.6519 may allow an authenticated user to potentially enable denial of service via local access.
The KVM subsystem in the Linux kernel through 4.13.3 allows guest OS users to cause a denial of service (assertion failure, and hypervisor hang or crash) via an out-of bounds guest_irq value, related to arch/x86/kvm/vmx.c and virt/kvm/eventfd.c.
A vulnerability in the bridge protocol data unit (BPDU) forwarding functionality of Cisco Aironet Access Points (APs) could allow an unauthenticated, adjacent attacker to cause an AP port to go into an error disabled state. The vulnerability occurs because BPDUs received from specific wireless clients are forwarded incorrectly. An attacker could exploit this vulnerability on the wireless network by sending a steady stream of crafted BPDU frames. A successful exploit could allow the attacker to cause a limited denial of service (DoS) attack because an AP port could go offline.
Insufficient input validation in i40e driver for Intel(R) Ethernet 700 Series Controllers versions before 2.8.43 may allow an authenticated user to potentially enable a denial of service via local access.
Insufficient input validation in the Intel(R) SGX driver for Linux may allow an authenticated user to potentially enable a denial of service via local access.
Insufficient input validation in i40e driver for Intel(R) Ethernet 700 Series Controllers versions before 7.0 may allow an authenticated user to potentially enable a denial of service via local access.
Insufficient input validation in KMD module for Intel(R) Graphics Driver before version 10.18.14.5067 (aka 15.36.x.5067) and 10.18.10.5069 (aka 15.33.x.5069) may allow an authenticated user to potentially enable denial of service via local access.
Insufficient Input validation in the subsystem for Intel(R) CSME before versions 12.0.45,13.0.10 and 14.0.10 may allow a privileged user to potentially enable denial of service via local access.
The imx_fec_do_tx function in hw/net/imx_fec.c in QEMU (aka Quick Emulator) does not properly limit the buffer descriptor count when transmitting packets, which allows local guest OS administrators to cause a denial of service (infinite loop and QEMU process crash) via vectors involving a buffer descriptor with a length of 0 and crafted values in bd.flags.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a denial of service via a segmentation fault in `tf.raw_ops.MaxPoolGrad` caused by missing validation. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/maxpooling_op.cc) misses some validation for the `orig_input` and `orig_output` tensors. The fixes for CVE-2021-29579 were incomplete. We have patched the issue in GitHub commit 136b51f10903e044308cf77117c0ed9871350475. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
NVIDIA Virtual GPU Manager contains a vulnerability in the vGPU plugin, in which an input data size is not validated, which may lead to tampering or denial of service. This affects vGPU version 8.x (prior to 8.5), version 10.x (prior to 10.4) and version 11.0.
docker2aci <= 0.12.3 has an infinite loop when handling local images with cyclic dependency chain.