An OS command injection vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow users to execute commands via a network. We have already fixed the vulnerability in the following versions: QTS 5.1.4.2596 build 20231128 and later QTS 4.5.4.2627 build 20231225 and later QuTS hero h5.1.4.2596 build 20231128 and later QuTS hero h4.5.4.2626 build 20231225 and later QuTScloud c5.1.5.2651 and later
Certain NETGEAR devices are affected by command injection by an unauthenticated attacker. This affects R7800 before 1.0.2.74, R9000 before 1.0.5.2, and XR500 before 2.3.2.66.
In Vitogate 300 2.1.3.0, /cgi-bin/vitogate.cgi allows an unauthenticated attacker to bypass authentication and execute arbitrary commands via shell metacharacters in the ipaddr params JSON data for the put method.
VinChin Backup & Recovery v5.0.*, v6.0.*, v6.7.*, and v7.0.* was discovered to contain a command injection vulnerability.
Netis N3Mv2-V1.0.1.865 was discovered to contain a command injection vulnerability via the pin_host parameter in the WPS Settings.
Certain NETGEAR devices are affected by command injection by an unauthenticated attacker. This affects CBR40 before 2.5.0.24, CBR750 before 4.6.3.6, EAX20 before 1.0.0.58, EAX80 before 1.0.1.68, EX7500 before 1.0.0.74, LAX20 before 1.1.6.28, MK62 before 1.0.6.116, MR60 before 1.0.6.116, MS60 before 1.0.6.116, R6400 before 1.0.1.70, R6400v2 before 1.0.4.118, R6700v3 before 1.0.4.118, R6900P before 1.3.3.140, R7000 before 1.0.11.116, R7000P before 1.3.3.140, R7850 before 1.0.5.68, R7900 before 1.0.4.38, R7900P before 1.4.2.84, R7960P before 1.4.2.84, R8000 before 1.0.4.68, R8000P before 1.4.2.84, RAX15 before 1.0.3.96, RAX20 before 1.0.3.96, RAX200 before 1.0.4.120, RAX35v2 before 1.0.3.96, RAX40v2 before 1.0.3.96, RAX43 before 1.0.3.96, RAX45 before 1.0.3.96, RAX50 before 1.0.3.96, RAX75 before 1.0.4.120, RAX80 before 1.0.4.120, RBK752 before 3.2.17.12, RBK852 before 3.2.17.12, RBR750 before 3.2.17.12, RBR850 before 3.2.17.12, RBS750 before 3.2.17.12, RBS850 before 3.2.17.12, RS400 before 1.5.1.80, XR1000 before 1.0.0.58, and XR300 before 1.0.3.68.
D-Link device DI-7200GV2.E1 v21.04.09E1 was discovered to contain a command injection vulnerability in the function upgrade_filter. This vulnerability allows attackers to execute arbitrary commands via the path and time parameters.
D-Link device DIR_878_FW1.30B08_Hotfix_02 was discovered to contain a command injection vulnerability in the twsystem function. This vulnerability allows attackers to execute arbitrary commands via a crafted HNAP1 POST request.
Certain NETGEAR devices are affected by command injection by an unauthenticated attacker. This affects CBR40 before 2.5.0.24, CBR750 before 4.6.3.6, EAX20 before 1.0.0.58, EAX80 before 1.0.1.68, EX7500 before 1.0.0.74, LAX20 before 1.1.6.28, MK62 before 1.0.6.116, MR60 before 1.0.6.116, MS60 before 1.0.6.116, R6400v2 before 1.0.4.118, R6700v3 before 1.0.4.118, R6900P before 1.3.3.140, R7000 before 1.0.11.126, R7000P before 1.3.3.140, R7850 before 1.0.5.74, R7900 before 1.0.4.46, R7900P before 1.4.2.84, R7960P before 1.4.2.84, R8000 before 1.0.4.74, R8000P before 1.4.2.84, RAX15 before 1.0.3.96, RAX20 before 1.0.3.96, RAX200 before 1.0.4.120, RAX35v2 before 1.0.3.96, RAX40v2 before 1.0.3.96, RAX43 before 1.0.3.96, RAX45 before 1.0.3.96, RAX50 before 1.0.3.96, RAX75 before 1.0.4.120, RAX80 before 1.0.4.120, RBK752 before 3.2.17.12, RBK852 before 3.2.17.12, RBR750 before 3.2.17.12, RBR850 before 3.2.17.12, RBS750 before 3.2.17.12, RBS850 before 3.2.17.12, RS400 before 1.5.1.80, XR1000 before 1.0.0.58, and XR300 before 1.0.3.68.
D-Link device D-Link DIR-823-Pro v1.0.2 was discovered to contain a command injection vulnerability in the function SetNetworkTomographySettings. This vulnerability allows attackers to execute arbitrary commands via the tomography_ping_address, tomography_ping_number, tomography_ping_size, tomography_ping_timeout, and tomography_ping_ttl parameters.
Certain NETGEAR devices are affected by command injection by an unauthenticated attacker. This affects D7000v2 before 1.0.0.66, D8500 before 1.0.3.58, R7000 before 1.0.11.110, R7100LG before 1.0.0.72, R7900 before 1.0.4.30, R8000 before 1.0.4.62, XR300 before 1.0.3.56, R7000P before 1.3.2.132, R8500 before 1.0.2.144, R6900P before 1.3.2.132, and R8300 before 1.0.2.144.
D-Link device DIR_882 DIR_882_FW1.30B06_Hotfix_02 was discovered to contain a command injection vulnerability in the LocalIPAddress parameter. This vulnerability allows attackers to execute arbitrary commands via a crafted HNAP1 POST request.
Certain NETGEAR devices are affected by command injection by an unauthenticated attacker. This affects XR300 before 1.0.3.68, R7000P before 1.3.3.140, and R6900P before 1.3.3.140.
TOTOLINK X5000R v9.1.0u.6118_B20201102 was discovered to contain a command injection vulnerability in the function NTPSyncWithHost. This vulnerability allows attackers to execute arbitrary commands via the parameter host_time.
Tenda routers G1 and G3 v15.11.0.17(9502)_CN were discovered to contain a command injection vulnerability in the function uploadPicture. This vulnerability allows attackers to execute arbitrary commands via the pic_name parameter.
Certain NETGEAR devices are affected by command injection by an unauthenticated attacker. This affects CBR40 before 2.5.0.24, CBR750 before 4.6.3.6, D7000v2 before 1.0.0.74, LAX20 before 1.1.6.28, MK62 before 1.0.6.116, MR60 before 1.0.6.116, MS60 before 1.0.6.116, MR80 before 1.1.2.20, MS80 before 1.1.2.20, RAX15 before 1.0.3.96, RAX20 before 1.0.3.96, RAX200 before 1.0.4.120, RAX45 before 1.0.3.96, RAX50 before 1.0.3.96, RAX43 before 1.0.3.96, RAX40v2 before 1.0.3.96, RAX35v2 before 1.0.3.96, RAX75 before 1.0.4.120, RAX80 before 1.0.4.120, RBK752 before 3.2.17.12, RBR750 before 3.2.17.12, RBS750 before 3.2.17.12, RBK852 before 3.2.17.12, RBR850 before 3.2.17.12, RBS850 before 3.2.17.12, and XR1000 before 1.0.0.58.
D-Link device DIR_882 DIR_882_FW1.30B06_Hotfix_02 was discovered to contain a command injection vulnerability in the twsystem function. This vulnerability allows attackers to execute arbitrary commands via a crafted HNAP1 POST request.
Certain NETGEAR devices are affected by command injection by an unauthenticated attacker. This affects EX6200v2 before 1.0.1.86, EX6250 before 1.0.0.134, EX7700 before 1.0.0.216, EX8000 before 1.0.1.232, LBR1020 before 2.6.3.58, LBR20 before 2.6.3.50, R7800 before 1.0.2.80, R8900 before 1.0.5.26, R9000 before 1.0.5.26, RBS50Y before 2.7.3.22, WNR2000v5 before 1.0.0.76, XR700 before 1.0.1.36, EX6150v2 before 1.0.1.98, EX7300 before 1.0.2.158, EX7320 before 1.0.0.134, RAX10 before 1.0.2.88, RAX120 before 1.2.0.16, RAX70 before 1.0.2.88, EX6100v2 before 1.0.1.98, EX6400 before 1.0.2.158, EX7300v2 before 1.0.0.134, R6700AX before 1.0.2.88, RAX120v2 before 1.2.0.16, RAX78 before 1.0.2.88, EX6410 before 1.0.0.134, RBR10 before 2.7.3.22, RBR20 before 2.7.3.22, RBR350 before 4.3.4.7, RBR40 before 2.7.3.22, RBR50 before 2.7.3.22, EX6420 before 1.0.0.134, RBS10 before 2.7.3.22, RBS20 before 2.7.3.22, RBS350 before 4.3.4.7, RBS40 before 2.7.3.22, RBS50 before 2.7.3.22, EX6400v2 before 1.0.0.134, RBK12 before 2.7.3.22, RBK20 before 2.7.3.22, RBK352 before 4.3.4.7, RBK40 before 2.7.3.22, and RBK50 before 2.7.3.22.
A vulnerability was found in Byzoro Smart S85F Management Platform up to 20230807. It has been declared as critical. Affected by this vulnerability is an unknown functionality of the file /log/decodmail.php. The manipulation of the argument file leads to command injection. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. The identifier VDB-237517 was assigned to this vulnerability. NOTE: The vendor was contacted early about this disclosure but did not respond in any way.
A Command injection vulnerability exists in Tenda AC10U AC1200 Smart Dual-band Wireless Router AC10U V1.0 Firmware V15.03.06.49_multi via the setUsbUnload functionality. The vulnerability is caused because the client controlled "deviceName" value is passed directly to the "doSystemCmd" function.
Apache kylin checks the legitimacy of the project before executing some commands with the project name passed in by the user. There is a mismatch between what is being checked and what is being used as the shell command argument in DiagnosisService. This may cause an illegal project name to pass the check and perform the following steps, resulting in a command injection vulnerability. This issue affects Apache Kylin 4.0.0.
A Command Injection vulnerability in Schneider Electric homeLYnk Controller exists in all versions before 1.5.0.
An issue in TOTOLINK X6000R V9.4.0cu.652_B20230116 and V9.4.0cu.852_B20230719 allows a remote attacker to execute arbitrary code via the command parameter of the setting/setTracerouteCfg component.
D-Link device DI-7200GV2.E1 v21.04.09E1 was discovered to contain a command injection vulnerability in the function msp_info.htm. This vulnerability allows attackers to execute arbitrary commands via the cmd parameter.
The Screensavercc component in eLux RP before 5.5.0 allows attackers to bypass intended configuration restrictions and execute arbitrary commands with root privileges by inserting commands in a local configuration dialog in the control panel.
Certain NETGEAR devices are affected by command injection by an unauthenticated attacker. This affects D7800 before 1.0.1.64, EX6200v2 before 1.0.1.86, EX6250 before 1.0.0.134, EX7700 before 1.0.0.216, EX8000 before 1.0.1.232, LBR20 before 2.6.3.50, R7800 before 1.0.2.80, R8900 before 1.0.5.26, R9000 before 1.0.5.26, RAX120 before 1.2.0.16, RBS50Y before 1.0.0.56, WNR2000v5 before 1.0.0.76, XR450 before 2.3.2.114, XR500 before 2.3.2.114, XR700 before 1.0.1.36, EX6150v2 before 1.0.1.98, EX7300 before 1.0.2.158, EX7320 before 1.0.0.134, EX6100v2 before 1.0.1.98, EX6400 before 1.0.2.158, EX7300v2 before 1.0.0.134, EX6410 before 1.0.0.134, RBR10 before 2.6.1.44, RBR20 before 2.6.2.104, RBR40 before 2.6.2.104, RBR50 before 2.7.2.102, EX6420 before 1.0.0.134, RBS10 before 2.6.1.44, RBS20 before 2.6.2.104, RBS40 before 2.6.2.104, RBS50 before 2.7.2.102, EX6400v2 before 1.0.0.134, RBK12 before 2.6.1.44, RBK20 before 2.6.2.104, RBK40 before 2.6.2.104, and RBK50 before 2.7.2.102.
D-Link device D-Link DIR-823-Pro v1.0.2 was discovered to contain a command injection vulnerability in the function SetStaticRouteSettings. This vulnerability allows attackers to execute arbitrary commands via the staticroute_list parameter.
An issue in TOTOLINK X6000R V9.4.0cu.652_B20230116 and V9.4.0cu.852_B20230719 allows a remote attacker to execute arbitrary code via the hostName parameter of the switchOpMode component.
Accellion File Transfer Appliance version FTA_8_0_540 suffers from an instance of CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection').
Netis N3Mv2-V1.0.1.865 was discovered to contain a command injection vulnerability in the Changing Username and Password function. This vulnerability is exploited via a crafted payload.
D-LINK DWL-6610 FW_v_4.3.0.8B003C was discovered to contain a command injection vulnerability in the function pcap_download_handler. This vulnerability allows attackers to execute arbitrary commands via the update.device.packet-capture.tftp-file-name parameter.
D-LINK DWL-6610 FW_v_4.3.0.8B003C was discovered to contain a command injection vulnerability in the function web_cert_download_handler. This vulnerability allows attackers to execute arbitrary commands via the certDownload parameter.
D-LINK DWL-6610 FW_v_4.3.0.8B003C was discovered to contain a command injection vulnerability in the function config_upload_handler. This vulnerability allows attackers to execute arbitrary commands via the configRestore parameter.
D-Link device DI-7200GV2.E1 v21.04.09E1 was discovered to contain a command injection vulnerability in the function proxy_client.asp. This vulnerability allows attackers to execute arbitrary commands via the proxy_srv, proxy_srvport, proxy_lanip, proxy_lanport parameters.
Certain NETGEAR devices are affected by command injection by an unauthenticated attacker. This affects D7000v2 before 1.0.0.74, LAX20 before 1.1.6.28, MK62 before 1.0.6.116, MR60 before 1.0.6.116, MS60 before 1.0.6.116, RAX15 before 1.0.3.96, RAX20 before 1.0.3.96, RAX200 before 1.0.4.120, RAX45 before 1.0.3.96, RAX50 before 1.0.3.96, RAX43 before 1.0.3.96, RAX40v2 before 1.0.3.96, RAX35v2 before 1.0.3.96, RAX75 before 1.0.4.120, RAX80 before 1.0.4.120, RBK752 before 3.2.17.12, RBR750 before 3.2.17.12, RBS750 before 3.2.17.12, RBK852 before 3.2.17.12, RBR850 before 3.2.17.12, RBS850 before 3.2.17.12, and XR1000 before 1.0.0.58.
Certain NETGEAR devices are affected by command injection by an unauthenticated attacker. This affects CBR40 before 2.5.0.24, CBR750 before 4.6.3.6, RBK752 before 3.2.17.12, RBR750 before 3.2.17.12, RBS750 before 3.2.17.12, RBK852 before 3.2.17.12, RBR850 before 3.2.17.12, and RBS850 before 3.2.17.12.
TOTOLINK X5000R v9.1.0u.6118_B20201102 was discovered to contain a command injection vulnerability in the function UploadFirmwareFile. This vulnerability allows attackers to execute arbitrary commands via the parameter FileName.
D-Link device DI-7200GV2.E1 v21.04.09E1 was discovered to contain a command injection vulnerability in the function urlrd_opt.asp. This vulnerability allows attackers to execute arbitrary commands via the url_en parameter.
Certain NETGEAR devices are affected by command injection by an unauthenticated attacker. This affects CBR40 before 2.5.0.24, EAX20 before 1.0.0.48, EAX80 before 1.0.1.64, EX7500 before 1.0.0.72, R6400 before 1.0.1.68, R6900P before 1.3.2.132, R7000 before 1.0.11.116, R7000P before 1.3.2.132, R7900 before 1.0.4.38, R7960P before 1.4.1.66, R8000 before 1.0.4.66, RAX200 before 1.0.3.106, RS400 before 1.5.1.80, XR300 before 1.0.3.68, MK62 before 1.0.6.110, MR60 before 1.0.6.110, R6400v2 before 1.0.4.106, R8000P before 1.4.1.66, RAX20 before 1.0.2.64, RAX45 before 1.0.2.82, RAX80 before 1.0.3.106, MS60 before 1.0.6.110, R6700v3 before 1.0.4.106, R7900P before 1.4.1.66, RAX15 before 1.0.2.64, RAX50 before 1.0.2.82, RAX75 before 1.0.3.106, RBR750 before 3.2.16.22, RBR850 before 3.2.16.22, RBS750 before 3.2.16.22, RBS850 before 3.2.16.22, RBK752 before 3.2.16.22, and RBK852 before 3.2.16.22.
Embedded web server command injection vulnerability in Lexmark devices through 2021-12-07.
systeminformation is a System Information Library for Node.JS. Versions 5.0.0 through 5.21.6 have a SSID Command Injection Vulnerability. The problem was fixed with a parameter check in version 5.21.7. As a workaround, check or sanitize parameter strings that are passed to `wifiConnections()`, `wifiNetworks()` (string only).
lib/cmd.js in the node-windows package before 1.0.0-beta.6 for Node.js allows command injection via the PID parameter.
BeyondTrust Privileged Remote Access (PRA) and Remote Support (RS) versions 23.2.1 and 23.2.2 contain a command injection vulnerability which can be exploited through a malicious HTTP request. Successful exploitation of this vulnerability can allow an unauthenticated remote attacker to execute underlying operating system commands within the context of the site user. This issue is fixed in version 23.2.3.
D-LINK DIR-806 1200M11AC wireless router DIR806A1_FW100CNb11 is vulnerable to command injection due to lax filtering of HTTP_ST parameters.
An Access Control vulnerability exists in D-Link DIR-823G REVA1 1.02B05 (Lastest) via any parameter in the HNAP1 function
Totolink devices A3100R v4.1.2cu.5050_B20200504, A830R v5.9c.4729_B20191112, and A720R v4.1.5cu.470_B20200911 were discovered to contain command injection vulnerability in the function setNoticeCfg. This vulnerability allows attackers to execute arbitrary commands via the IpFrom parameter.
A remote code execution vulnerability in development mode Rails <5.2.2.1, <6.0.0.beta3 can allow an attacker to guess the automatically generated development mode secret token. This secret token can be used in combination with other Rails internals to escalate to a remote code execution exploit.
A Command Injection vulnerability exits in TOTOLINK A3100R <=V4.1.2cu.5050_B20200504 in adm/ntm.asp via the hosTime parameters.
An issue was discovered in Zammad before 4.1.1. Command Injection can occur via custom Packages.
iTextPDF in iText 7 and up to (excluding 4.4.13.3) 7.1.17 allows command injection via a CompareTool filename that is mishandled on the gs (aka Ghostscript) command line in GhostscriptHelper.java.