Integer underflow in the EVP_DecodeUpdate function in crypto/evp/encode.c in the base64-decoding implementation in OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via crafted base64 data that triggers a buffer overflow.
The dtls1_clear_queues function in ssl/d1_lib.c in OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h frees data structures without considering that application data can arrive between a ChangeCipherSpec message and a Finished message, which allows remote DTLS peers to cause a denial of service (memory corruption and application crash) or possibly have unspecified other impact via unexpected application data.
The asn1_d2i_read_bio function in crypto/asn1/a_d2i_fp.c in OpenSSL before 0.9.8v, 1.0.0 before 1.0.0i, and 1.0.1 before 1.0.1a does not properly interpret integer data, which allows remote attackers to conduct buffer overflow attacks, and cause a denial of service (memory corruption) or possibly have unspecified other impact, via crafted DER data, as demonstrated by an X.509 certificate or an RSA public key.
OpenSSL before 1.0.0c, when J-PAKE is enabled, does not properly validate the public parameters in the J-PAKE protocol, which allows remote attackers to bypass the need for knowledge of the shared secret, and successfully authenticate, by sending crafted values in each round of the protocol.
The Cryptographic Message Syntax (CMS) implementation in crypto/cms/cms_asn1.c in OpenSSL before 0.9.8o and 1.x before 1.0.0a does not properly handle structures that contain OriginatorInfo, which allows context-dependent attackers to modify invalid memory locations or conduct double-free attacks, and possibly execute arbitrary code, via unspecified vectors.
OpenSSL, probably 0.9.6, does not verify the Basic Constraints for an intermediate CA-signed certificate, which allows remote attackers to spoof the certificates of trusted sites via a man-in-the-middle attack, a related issue to CVE-2002-0970.
Integer overflow in the MDC2_Update function in crypto/mdc2/mdc2dgst.c in OpenSSL before 1.1.0 allows remote attackers to cause a denial of service (out-of-bounds write and application crash) or possibly have unspecified other impact via unknown vectors.
OpenSSL through 1.0.2h incorrectly uses pointer arithmetic for heap-buffer boundary checks, which might allow remote attackers to cause a denial of service (integer overflow and application crash) or possibly have unspecified other impact by leveraging unexpected malloc behavior, related to s3_srvr.c, ssl_sess.c, and t1_lib.c.
In order to decrypt SM2 encrypted data an application is expected to call the API function EVP_PKEY_decrypt(). Typically an application will call this function twice. The first time, on entry, the "out" parameter can be NULL and, on exit, the "outlen" parameter is populated with the buffer size required to hold the decrypted plaintext. The application can then allocate a sufficiently sized buffer and call EVP_PKEY_decrypt() again, but this time passing a non-NULL value for the "out" parameter. A bug in the implementation of the SM2 decryption code means that the calculation of the buffer size required to hold the plaintext returned by the first call to EVP_PKEY_decrypt() can be smaller than the actual size required by the second call. This can lead to a buffer overflow when EVP_PKEY_decrypt() is called by the application a second time with a buffer that is too small. A malicious attacker who is able present SM2 content for decryption to an application could cause attacker chosen data to overflow the buffer by up to a maximum of 62 bytes altering the contents of other data held after the buffer, possibly changing application behaviour or causing the application to crash. The location of the buffer is application dependent but is typically heap allocated. Fixed in OpenSSL 1.1.1l (Affected 1.1.1-1.1.1k).
Buffer overflow in OpenSSL 0.9.7 before 0.9.7-beta3, with Kerberos enabled, allows attackers to execute arbitrary code via a long master key.
The BN_bn2dec function in crypto/bn/bn_print.c in OpenSSL before 1.1.0 does not properly validate division results, which allows remote attackers to cause a denial of service (out-of-bounds write and application crash) or possibly have unspecified other impact via unknown vectors.
The SSL and TLS components for OpenSSL 0.9.6i and earlier, 0.9.7, and 0.9.7a allow remote attackers to perform an unauthorized RSA private key operation via a modified Bleichenbacher attack that uses a large number of SSL or TLS connections using PKCS #1 v1.5 padding that cause OpenSSL to leak information regarding the relationship between ciphertext and the associated plaintext, aka the "Klima-Pokorny-Rosa attack."
Buffer overflows in OpenSSL 0.9.6d and earlier, and 0.9.7-beta2 and earlier, allow remote attackers to execute arbitrary code via (1) a large client master key in SSL2 or (2) a large session ID in SSL3.
OpenSSL 0.9.6d and earlier, and 0.9.7-beta2 and earlier, does not properly handle ASCII representations of integers on 64 bit platforms, which could allow attackers to cause a denial of service and possibly execute arbitrary code.
Multiple integer signedness errors in crypto/buffer/buffer.c in OpenSSL 0.9.8v allow remote attackers to conduct buffer overflow attacks, and cause a denial of service (memory corruption) or possibly have unspecified other impact, via crafted DER data, as demonstrated by an X.509 certificate or an RSA public key. NOTE: this vulnerability exists because of an incomplete fix for CVE-2012-2110.
OpenSSL and SSLeay allow remote attackers to reuse SSL sessions and bypass access controls.
The dtls1_buffer_record function in ssl/d1_pkt.c in OpenSSL 0.9.8k and earlier 0.9.8 versions allows remote attackers to cause a denial of service (memory consumption) via a large series of "future epoch" DTLS records that are buffered in a queue, aka "DTLS record buffer limitation bug."
The ASN1_STRING_print_ex function in OpenSSL before 0.9.8k allows remote attackers to cause a denial of service (invalid memory access and application crash) via vectors that trigger printing of a (1) BMPString or (2) UniversalString with an invalid encoded length.
Buffer overflow in the SSL_get_shared_ciphers function in OpenSSL 0.9.7 before 0.9.7l, 0.9.8 before 0.9.8d, and earlier versions has unspecified impact and remote attack vectors involving a long list of ciphers.
The doapr_outch function in crypto/bio/b_print.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g does not verify that a certain memory allocation succeeds, which allows remote attackers to cause a denial of service (out-of-bounds write or memory consumption) or possibly have unspecified other impact via a long string, as demonstrated by a large amount of ASN.1 data, a different vulnerability than CVE-2016-0799.
The ASN.1 implementation in OpenSSL before 1.0.1o and 1.0.2 before 1.0.2c allows remote attackers to execute arbitrary code or cause a denial of service (buffer underflow and memory corruption) via an ANY field in crafted serialized data, aka the "negative zero" issue.
The fmtstr function in crypto/bio/b_print.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g improperly calculates string lengths, which allows remote attackers to cause a denial of service (overflow and out-of-bounds read) or possibly have unspecified other impact via a long string, as demonstrated by a large amount of ASN.1 data, a different vulnerability than CVE-2016-2842.
The X509_cmp_time function in crypto/x509/x509_vfy.c in OpenSSL before 0.9.8zg, 1.0.0 before 1.0.0s, 1.0.1 before 1.0.1n, and 1.0.2 before 1.0.2b allows remote attackers to cause a denial of service (out-of-bounds read and application crash) via a crafted length field in ASN1_TIME data, as demonstrated by an attack against a server that supports client authentication with a custom verification callback.
Memory leak in the dtls1_buffer_record function in d1_pkt.c in OpenSSL 1.0.0 before 1.0.0p and 1.0.1 before 1.0.1k allows remote attackers to cause a denial of service (memory consumption) by sending many duplicate records for the next epoch, leading to failure of replay detection.
The X509_NAME_oneline function in crypto/x509/x509_obj.c in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h allows remote attackers to obtain sensitive information from process stack memory or cause a denial of service (buffer over-read) via crafted EBCDIC ASN.1 data.
While parsing an IPAddressFamily extension in an X.509 certificate, it is possible to do a one-byte overread. This would result in an incorrect text display of the certificate. This bug has been present since 2006 and is present in all versions of OpenSSL before 1.0.2m and 1.1.0g.
Stack-based buffer overflow in MoviePlay 4.76 allows remote attackers to execute arbitrary code via a long filename in a LST file.
The video functionality in Google Chrome before 10.0.648.127 allows remote attackers to cause a denial of service or possibly have unspecified other impact via unknown vectors that trigger use of a malformed "out-of-bounds structure."
The regular-expression functionality in Google Chrome before 10.0.648.127 does not properly implement reentrancy, which allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via unknown vectors.
Buffer overflow in the DB2 Administration Server (DAS) component in IBM DB2 9.1 before FP10, 9.5 before FP7, and 9.7 before FP3 on Linux, UNIX, and Windows allows remote attackers to execute arbitrary code via unspecified vectors.
Buffer overflow in the key exchange functionality in Icon Labs Iconfidant SSL Server before 1.3.0 allows remote attackers to execute arbitrary code via a client master key packet in which the sum of unspecified length fields is greater than a certain value.
afpserver in Apple OS X before 10.10.4 allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors.
Stack-based buffer overflow in NetSupport Manager Agent for Linux 11.00, for Solaris 9.50, and for Mac OS X 11.00 allows remote attackers to execute arbitrary code via a long control hostname to TCP port 5405, probably a different vulnerability than CVE-2007-5252.
D-Link DIR-615 devices have a buffer overflow via a long Authorization HTTP header.
Buffer overflow in the ATSFontDeactivate API in Apple Type Services (ATS) in Apple Mac OS X before 10.7.2 allows remote attackers to execute arbitrary code or cause a denial of service (application crash) via unspecified vectors.
The compress_add_dlabel_points function in dns/Compress.c in MaraDNS 1.4.03, 1.4.05, and probably other versions allows remote attackers to cause a denial of service (segmentation fault) and possibly execute arbitrary code via a long DNS hostname with a large number of labels, which triggers a heap-based buffer overflow.
WebKit, as used in Apple iOS before 4.3, allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via a crafted web site, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-09-1.
Buffer overflow in International Components for Unicode (ICU) in Apple Mac OS X before 10.6.8 allows context-dependent attackers to execute arbitrary code or cause a denial of service (application crash) via vectors involving uppercase strings.
Buffer overflow in the Authenticate method in the INCREDISPOOLERLib.Pop ActiveX control in ImSpoolU.dll in IncrediMail 2.0 allows remote attackers to cause a denial of service (application crash) or possibly have unspecified other impact via a long string in the first argument.
Heap-based buffer overflow in the unhtmlify function in foomatic-rip in foomatic-filters before 4.0.6 allows remote attackers to cause a denial of service (memory corruption and crash) or possibly execute arbitrary code via a long job title.
Buffer overflow in the lsConnectionCached function in editcp in EDItran Communications Platform 4.1 R7 allows remote attackers to cause a denial of service (daemon crash) or possibly execute arbitrary code via a crafted packet to TCP port 7777.
Stack-based buffer overflow in Kolibri 2.0 allows remote attackers to execute arbitrary code via a long URI in a HEAD request.
Heap-based buffer overflow in novell-tftp.exe in Novell ZENworks Configuration Manager (ZCM) 10.3.1, 10.3.2, and 11.0, and earlier versions, allows remote attackers to execute arbitrary code via a long TFTP request.
There is a vulnerability when configuring permission isolation in smartphones. Successful exploitation of this vulnerability may cause out-of-bounds access.
Buffer overflow in mng_core_com.dll in CA XOsoft Replication r12.0 SP1 and r12.5 SP2 rollup, CA XOsoft High Availability r12.0 SP1 and r12.5 SP2 rollup, CA XOsoft Content Distribution r12.0 SP1 and r12.5 SP2 rollup, and CA ARCserve Replication and High Availability (RHA) r15.0 SP1 allows remote attackers to execute arbitrary code via a crafted create_session_bab operation in a SOAP request to xosoapapi.asmx.
pcre_jit_compile.c in PCRE 8.35 does not properly use table jumps to optimize nested alternatives, which allows remote attackers to cause a denial of service (stack memory corruption) or possibly have unspecified other impact via a crafted string, as demonstrated by packets encountered by Suricata during use of a regular expression in an Emerging Threats Open ruleset.
Buffer overflow in libarchive 3.0 pre-release code allows remote attackers to cause a denial of service (application crash) or possibly have unspecified other impact via a crafted CAB file, which is not properly handled during the reading of Huffman code data within LZX compressed data.
Multiple buffer overflows in the Syslog server in ManageEngine EventLog Analyzer 6.1 allow remote attackers to cause a denial of service (SysEvttCol.exe process crash) or possibly execute arbitrary code via a long Syslog PRI message header to UDP port (1) 513 or (2) 514. Fixed in 7.2 Build 7020.
Multiple stack-based buffer overflows in opt/novell/iprint/bin/ipsmd in Novell iPrint for Linux Open Enterprise Server 2 SP2 and SP3 allow remote attackers to execute arbitrary code via unspecified LPR opcodes.
Heap-based buffer overflow in the dissect_ldss_transfer function (epan/dissectors/packet-ldss.c) in the LDSS dissector in Wireshark 1.2.0 through 1.2.12 and 1.4.0 through 1.4.1 allows remote attackers to cause a denial of service (crash) and possibly execute arbitrary code via an LDSS packet with a long digest line that triggers memory corruption.