The Samsung D6000 TV and possibly other products allow remote attackers to cause a denial of service (continuous restart) via a crafted controller name.
Buffer overflow in the PrepareSync method in the SyncService.dll ActiveX control in Samsung Kies before 2.5.1.12123_2_7 allows remote attackers to execute arbitrary code via a long string to the password argument.
The Samsung D6000 TV and possibly other products allows remote attackers to cause a denial of service (crash) via a long string in certain fields, as demonstrated by the MAC address field, possibly a buffer overflow.
Multiple stack-based buffer overflows in the BackupToAvi method in the (1) UMS_Ctrl 1.5.1.1 and (2) UMS_Ctrl_STW 2.0.1.0 ActiveX controls in Samsung NET-i viewer 1.37.120316 allow remote attackers to execute arbitrary code via a long string in the fname parameter. NOTE: some of these details are obtained from third party information.
Samsung NET-i viewer 1.37.120316 allows remote attackers to cause a denial of service (infinite loop) via a negative size value in a TCP request to (1) NiwMasterService or (2) NiwStorageService. NOTE: some of these details are obtained from third party information.
Mesa, as used in Google Chrome before 21.0.1183.0 on the Acer AC700, Cr-48, and Samsung Series 5 and 5 550 Chromebook platforms, and the Samsung Chromebox Series 3, allows remote attackers to execute arbitrary code via unspecified vectors that trigger an "array overflow."
LibQJpeg in the Samsung Galaxy S6 before the October 2015 MR allows remote attackers to cause a denial of service (memory corruption and SIGSEGV) via a crafted image file.
On Samsung mobile devices with N(7.x) software, a buffer overflow in the vision service allows code execution in a privileged process via a large frame size, aka SVE-2017-11165.
An exploitable buffer overflow vulnerability exists in the credentials handler of video-core's HTTP server of Samsung SmartThings Hub STH-ETH-250-Firmware version 0.20.17. The strncpy overflows the destination buffer, which has a size of 128 bytes. An attacker can send an arbitrarily long "secretKey" value in order to exploit this vulnerability.
Multiple exploitable buffer overflow vulnerabilities exist in the credentials handler of video-core's HTTP server of Samsung SmartThings Hub STH-ETH-250 devices with firmware version 0.20.17. The video-core process incorrectly extracts fields from a user-controlled JSON payload, leading to a buffer overflow on the stack. A strncpy overflows the destination buffer, which has a size of 16 bytes. An attacker can send an arbitrarily long "region" value in order to exploit this vulnerability.
An exploitable buffer overflow vulnerability exists in the credentials handler of video-core's HTTP server of Samsung SmartThings Hub STH-ETH-250-Firmware version 0.20.17. The strncpy overflows the destination buffer, which has a size of 32 bytes. An attacker can send an arbitrarily long "accessKey" value in order to exploit this vulnerability.
An exploitable buffer overflow vulnerability exists in the remote video-host communication of video-core's HTTP server of Samsung SmartThings Hub STH-ETH-250 devices with firmware version 0.20.17. The video-core process insecurely parses the AWSELB cookie while communicating with remote video-host servers, leading to a buffer overflow on the heap. An attacker able to impersonate the remote HTTP servers could trigger this vulnerability.
An exploitable buffer overflow vulnerability exists in the credentials handler of video-core's HTTP server of Samsung SmartThings Hub STH-ETH-250-Firmware version 0.20.17. The strncpy overflows the destination buffer, which has a size of 160 bytes. An attacker can send an arbitrarily long "directory" value in order to exploit this vulnerability.
An exploitable buffer overflow vulnerability exists in the credentials handler of video-core's HTTP server of Samsung SmartThings Hub STH-ETH-250-Firmware version 0.20.17. The video-core process incorrectly extracts fields from a user-controlled JSON payload, leading to a buffer overflow on the stack. The strncpy overflows the destination buffer, which has a size of 2,000 bytes. An attacker can send an arbitrarily long "sessionToken" value in order to exploit this vulnerability.
An exploitable buffer overflow vulnerability exists in the credentials handler of video-core's HTTP server of Samsung SmartThings Hub STH-ETH-250 - Firmware version 0.20.17. The video-core process incorrectly extracts the videoHostUrl field from a user-controlled JSON payload, leading to a buffer overflow on the stack. An attacker can send an HTTP request to trigger this vulnerability.
On Samsung SmartThings Hub STH-ETH-250 devices with firmware version 0.20.17, the video-core process insecurely extracts the fields from the "shard" table of its SQLite database, leading to a buffer overflow on the stack. An attacker can send an HTTP request to trigger this vulnerability. The strcpy call overflows the destination buffer, which has a size of 16 bytes. An attacker can send an arbitrarily long "region" value in order to exploit this vulnerability.
Out-of-bounds array access in dhd_rx_frame in drivers/net/wireless/bcmdhd4358/dhd_linux.c in the bcmdhd4358 Wi-Fi driver on the Samsung Galaxy S6 SM-G920F G920FXXU5EQH7 allows an attacker (who has obtained code execution on the Wi-Fi chip) to cause invalid accesses to operating system memory due to improper validation of the network interface index provided by the Wi-Fi chip's firmware.
Buffer overflow in dhd_bus_flow_ring_delete_response in drivers/net/wireless/bcmdhd4358/dhd_pcie.c in the bcmdhd4358 Wi-Fi driver on the Samsung Galaxy S6 SM-G920F G920FXXU5EQH7 allow an attacker (who has obtained code execution on the Wi-Fi chip) to cause the device driver to perform invalid memory accesses. The Samsung ID is SVE-2018-11785.
Buffer overflow in dhd_bus_flow_ring_create_response in drivers/net/wireless/bcmdhd4358/dhd_pcie.c in the bcmdhd4358 Wi-Fi driver on the Samsung Galaxy S6 SM-G920F G920FXXU5EQH7 allow an attacker (who has obtained code execution on the Wi-Fi) chip to cause the device driver to perform invalid memory accesses. The Samsung ID is SVE-2018-11785.
Buffer overflow in dhd_bus_flow_ring_flush_response in drivers/net/wireless/bcmdhd4358/dhd_pcie.c in the bcmdhd4358 Wi-Fi driver on the Samsung Galaxy S6 allow an attacker (who has obtained code execution on the Wi-Fi chip) to cause the device driver to perform invalid memory accesses. The Samsung ID is SVE-2018-11785.
Installing a zero-permission Android application on certain Samsung Android devices with KK(4.4), L(5.0/5.1), and M(6.0) software can continually crash the system_server process in the Android OS. The zero-permission app will create an active install session for a separate app that it has embedded within it. The active install session of the embedded app is performed using the android.content.pm.PackageInstaller class and its nested classes in the Android API. The active install session will write the embedded APK file to the /data/app directory, but the app will not be installed since third-party applications cannot programmatically install apps. Samsung has modified AOSP in order to accelerate the parsing of APKs by introducing the com.android.server.pm.PackagePrefetcher class and its nested classes. These classes will parse the APKs present in the /data/app directory and other directories, even if the app is not actually installed. The embedded APK that was written to the /data/app directory via the active install session has a very large but valid AndroidManifest.xml file. Specifically, the AndroidManifest.xml file contains a very large string value for the name of a permission-tree that it declares. When system_server tries to parse the APK file of the embedded app from the active install session, it will crash due to an uncaught error (i.e., java.lang.OutOfMemoryError) or an uncaught exception (i.e., std::bad_alloc) because of memory constraints. The Samsung Android device will encounter a soft reboot due to a system_server crash, and this action will keep repeating since parsing the APKs in the /data/app directory as performed by the system_server process is part of the normal boot process. The Samsung ID is SVE-2016-6917.
An issue was discovered on Samsung mobile devices with M(6.0) and N(7.0) (Exynos7420, Exynos8890, or MSM8996 chipsets) software. RKP allows memory corruption. The Samsung ID is SVE-2016-7897 (January 2017).
An issue was discovered in NRMM in Samsung Mobile Processor, Wearable Processor, and Modem Exynos 9820, 9825, 980, 990, 850, 1080, 2100, 1280, 2200, 1330, 1380, 1480, 2400, 9110, W920, W930, W1000, Modem 5123, Modem 5300, and Modem 5400. Lack of a boundary check during the decoding of DL NAS Transport messages leads to a Denial of Service.
Heap-based buffer overflow in nipplib.dll in Novell iPrint Client before 5.64 allows remote attackers to execute arbitrary code via a crafted core-package parameter in a printer-url.
Multiple stack-based buffer overflows in the PIPIWebPlayer ActiveX control (PIWebPlayer.ocx) in PIPI Player 2.8.0.0 allow remote attackers to execute arbitrary code via long arguments to the (1) PlayURL or (2) PlayURLWithLocalPlayer methods.
Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2011-0620, CVE-2011-0621, and CVE-2011-0622.
Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2011-0619, CVE-2011-0620, and CVE-2011-0622.
Heap-based buffer overflow in nipplib.dll in Novell iPrint Client before 5.64 allows remote attackers to execute arbitrary code via a crafted uri parameter in a printer-url.
WebKit, as used in Apple Safari before 5.0.6, allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via a crafted web site, a different vulnerability than other WebKit CVEs listed in APPLE-SA-2011-07-20-1.
Integer truncation error in opera.dll in Opera before 11.01 allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via an HTML form with a select element that contains a large number of children.
JustSystems Ichitaro 2005 through 2011, Ichitaro Government 6, Ichitaro Government 2006 through 2010, Ichitaro Portable, Ichitaro Pro, and Ichitaro Viewer allow remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via a crafted document, as exploited in the wild in early 2011.
Stack-based buffer overflow in oninit in IBM Informix Dynamic Server (IDS) 11.50 allows remote attackers to execute arbitrary code via crafted arguments in the USELASTCOMMITTED session environment option in a SQL SET ENVIRONMENT statement.
Stack-based buffer overflow in nipplib.dll in Novell iPrint Client before 5.64 allows remote attackers to execute arbitrary code via a crafted op-printer-list-all-jobs parameter in a printer-url.
Multiple stack-based buffer overflows in the Web Viewer ActiveX controls in CA Output Management Web Viewer 11.0 and 11.5 allow remote attackers to execute arbitrary code via (1) a long SRC property value to the PPSViewer ActiveX control in PPSView.ocx before 1.0.0.7 or (2) a long Title property value to the UOMWV_Helper ActiveX control in UOMWV_HelperActiveX.ocx before 11.5.0.1.
Stack-based buffer overflow in the DECT dissector in epan/dissectors/packet-dect.c in Wireshark 1.4.x before 1.4.5 allows remote attackers to execute arbitrary code via a crafted .pcap file.
Buffer overflow in Microsoft PowerPoint 2002 SP3 and 2003 SP3 allows remote attackers to execute arbitrary code via a crafted PowerPoint document, aka "Presentation Buffer Overrun RCE Vulnerability."
Microsoft Excel 2002 SP3 and 2003 SP3, Office 2004 and 2008 for Mac, and Open XML File Format Converter for Mac do not properly validate record information during parsing of Excel spreadsheets, which allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted spreadsheet, aka "Excel Out of Bounds WriteAV Vulnerability."
Buffer overflow in Invisible Browsing 5.0.52 allows user-assisted remote attackers to execute arbitrary code via a crafted .ibkey file containing a long string.
Microsoft Internet Explorer 8 and 9 allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted web site, aka "Internet Explorer Memory Corruption Vulnerability."
Stack-based buffer overflow in Microsoft Excel 2002 SP3, 2003 SP3, and 2007 SP2; Office 2004 for Mac; Excel Viewer SP2; and Office Compatibility Pack for Word, Excel, and PowerPoint 2007 File Formats SP2 allows remote attackers to execute arbitrary code via vectors related to an axis properties record, and improper incrementing of an array index, aka "Excel Array Indexing Vulnerability."
Stack-based buffer overflow in rtfsr.dll in Autonomy KeyView, as used in IBM Lotus Notes before 8.5.2 FP3, allows remote attackers to execute arbitrary code via a crafted link in a .rtf attachment, aka SPR PRAD8823JQ.
Microsoft Excel 2002 SP3, Office 2008 for Mac, and Open XML File Format Converter for Mac do not properly validate record information during parsing of Excel spreadsheets, which allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted spreadsheet, aka "Excel Memory Corruption Vulnerability."
Adobe Reader and Acrobat 9.x before 9.3.3, and 8.x before 8.2.3 on Windows and Mac OS X, allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2010-1295, CVE-2010-2202, CVE-2010-2207, CVE-2010-2209, CVE-2010-2210, and CVE-2010-2212.
The Windows Messenger ActiveX control in msgsc.dll in Microsoft Windows XP SP2 and SP3 allows remote attackers to execute arbitrary code via unspecified vectors that "corrupt the system state," aka "Microsoft Windows Messenger ActiveX Control Vulnerability."
Heap-based buffer overflow in nipplib.dll in Novell iPrint Client before 5.64 allows remote attackers to execute arbitrary code via a crafted driver-version parameter in a printer-url.
Heap-based buffer overflow in nipplib.dll in Novell iPrint Client before 5.64 allows remote attackers to execute arbitrary code via a crafted client-file-name parameter in a printer-url.
Adobe Flash Player before 9.0.277.0 and 10.x before 10.1.53.64, and Adobe AIR before 2.0.2.12610, allow attackers to cause a denial of service (pointer memory corruption) or possibly execute arbitrary code via unspecified vectors.
Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2011-0619, CVE-2011-0620, and CVE-2011-0621.
Buffer overflow in kpprzrdr.dll in Autonomy KeyView, as used in IBM Lotus Notes before 8.5.2 FP3, allows remote attackers to execute arbitrary code via a crafted .prz attachment. NOTE: some of these details are obtained from third party information.
WebKit, as used in Apple Safari before 5.0.6, allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via a crafted web site, a different vulnerability than other WebKit CVEs listed in APPLE-SA-2011-07-20-1.