Use after free in presentation API in Google Chrome prior to 85.0.4183.83 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.
In libzypp before 20170803 it was possible to retrieve unsigned packages without a warning to the user which could lead to man in the middle or malicious servers to inject malicious RPM packages into a users system.
nsFrameManager in Firefox 3.x before 3.0.4, Firefox 2.x before 2.0.0.18, Thunderbird 2.x before 2.0.0.18, and SeaMonkey 1.x before 1.1.13 allows remote attackers to cause a denial of service (crash) and possibly execute arbitrary code by modifying properties of a file input element while it is still being initialized, then using the blur method to access uninitialized memory.
Multiple memory corruption issues were addressed with improved memory handling. This issue is fixed in iOS 13.3.1 and iPadOS 13.3.1, tvOS 13.3.1, Safari 13.0.5, iTunes for Windows 12.10.4, iCloud for Windows 11.0, iCloud for Windows 7.17. Processing maliciously crafted web content may lead to arbitrary code execution.
RasterImage.cpp in Mozilla Firefox before 27.0, Firefox ESR 24.x before 24.3, Thunderbird before 24.3, and SeaMonkey before 2.24 does not prevent access to discarded data, which allows remote attackers to execute arbitrary code or cause a denial of service (incorrect write operations) via crafted image data, as demonstrated by Goo Create.
Integer overflow in Adobe Flash Player before 13.0.0.250 and 14.x and 15.x before 15.0.0.189 on Windows and OS X and before 11.2.202.411 on Linux, Adobe AIR before 15.0.0.293, Adobe AIR SDK before 15.0.0.302, and Adobe AIR SDK & Compiler before 15.0.0.302 allows attackers to execute arbitrary code via unspecified vectors.
Opera before 9.52 on Windows, Linux, FreeBSD, and Solaris, when processing custom shortcut and menu commands, can produce argument strings that contain uninitialized memory, which might allow user-assisted remote attackers to execute arbitrary code or conduct other attacks via vectors related to activation of a shortcut.
XStream before version 1.4.14 is vulnerable to Remote Code Execution.The vulnerability may allow a remote attacker to run arbitrary shell commands only by manipulating the processed input stream. Only users who rely on blocklists are affected. Anyone using XStream's Security Framework allowlist is not affected. The linked advisory provides code workarounds for users who cannot upgrade. The issue is fixed in version 1.4.14.
Multiple unspecified vulnerabilities in the browser engine in Mozilla Firefox before 28.0 and SeaMonkey before 2.25 allow remote attackers to cause a denial of service (memory corruption and application crash) or possibly execute arbitrary code via unknown vectors.
Unspecified vulnerability in Oracle Java SE 7u51 and 8, and Java SE Embedded 7u51, allows remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to Libraries, a different vulnerability than CVE-2014-0432 and CVE-2014-2402.
Mozilla developers and community members reported memory safety bugs present in Firefox 78 and Firefox ESR 78.0. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 79, Firefox ESR < 68.11, Firefox ESR < 78.1, Thunderbird < 68.11, and Thunderbird < 78.1.
JIT optimizations involving the Javascript arguments object could confuse later optimizations. This risk was already mitigated by various precautions in the code, resulting in this bug rated at only moderate severity. This vulnerability affects Firefox ESR < 78.1, Firefox < 79, and Thunderbird < 78.1.
Stack-based buffer overflow in Adobe Acrobat and Reader 8.1.2 and earlier allows remote attackers to execute arbitrary code via a PDF file that calls the util.printf JavaScript function with a crafted format string argument, a related issue to CVE-2008-1104.
Unspecified vulnerability in Oracle Java SE 7u40 and earlier, and JavaFX 2.2.40 and earlier, allows remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to JavaFX.
Unspecified vulnerability in Oracle Java SE 7u25 and earlier, and Java SE Embedded 7u25 and earlier, allows remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to Libraries.
Unspecified vulnerability in Oracle Java SE 7u40 and earlier and Java SE Embedded 7u40 and earlier allows remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to Swing, a different vulnerability than CVE-2013-5805.
Unspecified vulnerability in Oracle Java SE 6u65 and 7u45 allows remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to Deployment, a different vulnerability than CVE-2013-5902, CVE-2014-0410, CVE-2014-0415, CVE-2014-0418, and CVE-2014-0424.
Unspecified vulnerability in Oracle Java SE 7u40 and earlier and Java SE Embedded 7u40 and earlier allows remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to Swing, a different vulnerability than CVE-2013-5806.
Unspecified vulnerability in Oracle Java SE 7u45 and Java SE Embedded 7u45, and OpenJDK 7, allows remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to Libraries. NOTE: the previous information is from the January 2014 CPU. Oracle has not commented on third-party claims that the issue is related to improper handling of methods in MethodHandles in HotSpot JVM, which allows attackers to escape the sandbox.
Unspecified vulnerability in Oracle Java SE 7u40 and earlier, Java SE 6u60 and earlier, Java SE 5.0u51 and earlier, and Java SE Embedded 7u40 and earlier allows remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to Libraries, a different vulnerability than CVE-2013-5842.
Unspecified vulnerability in Oracle Java SE 7u40 and earlier and JavaFX 2.2.40 and earlier allows remote attackers to affect confidentiality, integrity, and availability via unknown vectors.
An elevation of privilege vulnerability exists when an attacker establishes a vulnerable Netlogon secure channel connection to a domain controller, using the Netlogon Remote Protocol (MS-NRPC). An attacker who successfully exploited the vulnerability could run a specially crafted application on a device on the network. To exploit the vulnerability, an unauthenticated attacker would be required to use MS-NRPC to connect to a domain controller to obtain domain administrator access. Microsoft is addressing the vulnerability in a phased two-part rollout. These updates address the vulnerability by modifying how Netlogon handles the usage of Netlogon secure channels. For guidelines on how to manage the changes required for this vulnerability and more information on the phased rollout, see How to manage the changes in Netlogon secure channel connections associated with CVE-2020-1472 (updated September 28, 2020). When the second phase of Windows updates become available in Q1 2021, customers will be notified via a revision to this security vulnerability. If you wish to be notified when these updates are released, we recommend that you register for the security notifications mailer to be alerted of content changes to this advisory. See Microsoft Technical Security Notifications.
Unspecified vulnerability in the Java Runtime Environment (JRE) component in Oracle Java SE 7 Update 17 and earlier, and OpenJDK 6 and 7, allows remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to HotSpot. NOTE: the previous information is from the April 2013 CPU. Oracle has not commented on claims from another vendor that this issue is related to incorrect MethodHandle lookups, which allows remote attackers to bypass Java sandbox restrictions.
Due to confusion about ValueTags on JavaScript Objects, an object may pass through the type barrier, resulting in memory corruption and a potentially exploitable crash. *Note: this issue only affects Firefox on ARM64 platforms.* This vulnerability affects Firefox ESR < 68.10, Firefox < 78, and Thunderbird < 68.10.0.
Mozilla developers and community members reported memory safety bugs present in Firefox 77. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 78.
A VideoStreamEncoder may have been freed in a race condition with VideoBroadcaster::AddOrUpdateSink, resulting in a use-after-free, memory corruption, and a potentially exploitable crash. This vulnerability affects Firefox < 78.
Unspecified vulnerability in the Java Runtime Environment (JRE) component in Oracle Java SE 7 Update 21 and earlier allows remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to Deployment.
When trying to connect to a STUN server, a race condition could have caused a use-after-free of a pointer, leading to memory corruption and a potentially exploitable crash. This vulnerability affects Firefox ESR < 68.10, Firefox < 78, and Thunderbird < 68.10.0.
Unspecified vulnerability in the Java Runtime Environment (JRE) component in Oracle Java SE 7 Update 17 and earlier, and OpenJDK 6 and 7, allows remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to Libraries. NOTE: the previous information is from the April 2013 CPU. Oracle has not commented on claims from another vendor that this issue is related to incorrect invocation of the defaultReadObject method in the ConcurrentHashMap class, which allows remote attackers to bypass the Java sandbox.
When processing callbacks that occurred during window flushing in the parent process, the associated window may die; causing a use-after-free condition. This could have led to memory corruption and a potentially exploitable crash. This vulnerability affects Firefox ESR < 68.10, Firefox < 78, and Thunderbird < 68.10.0.
Multiple unspecified vulnerabilities in the browser engine in Mozilla Firefox before 19.0, Firefox ESR 17.x before 17.0.3, Thunderbird before 17.0.3, Thunderbird ESR 17.x before 17.0.3, and SeaMonkey before 2.16 allow remote attackers to cause a denial of service (memory corruption and application crash) or possibly execute arbitrary code via unknown vectors.
An issue was discovered in Pulse Secure Pulse Connect Secure (PCS) through 2020-04-06. The applet in tncc.jar, executed on macOS, Linux, and Solaris clients when a Host Checker policy is enforced, allows a man-in-the-middle attacker to perform OS command injection attacks (against a client) via shell metacharacters to the doCustomRemediateInstructions method, because Runtime.getRuntime().exec() is used.
Multiple unspecified vulnerabilities in the browser engine in Mozilla Firefox before 19.0, Thunderbird before 17.0.3, and SeaMonkey before 2.16 allow remote attackers to cause a denial of service (memory corruption and application crash) or possibly execute arbitrary code via unknown vectors.
Mozilla Firefox before 18.0, Firefox ESR 10.x before 10.0.12 and 17.x before 17.0.2, Thunderbird before 17.0.2, Thunderbird ESR 10.x before 10.0.12 and 17.x before 17.0.2, and SeaMonkey before 2.15 allow remote attackers to execute arbitrary JavaScript code with chrome privileges by leveraging improper interaction between plugin objects and SVG elements.
Multiple unspecified vulnerabilities in the browser engine in Mozilla Firefox before 18.0, Thunderbird before 17.0.2, and SeaMonkey before 2.15 allow remote attackers to cause a denial of service (memory corruption and application crash) or possibly execute arbitrary code via unknown vectors.
Mozilla Firefox before 19.0, Thunderbird before 17.0.3, and SeaMonkey before 2.16 do not prevent multiple wrapping of WebIDL objects, which allows remote attackers to bypass intended access restrictions via unspecified vectors.
Buffer overflow in the CharDistributionAnalysis::HandleOneChar function in Mozilla Firefox before 18.0, Thunderbird before 17.0.2, and SeaMonkey before 2.15 allows remote attackers to execute arbitrary code via a crafted document.
Use-after-free vulnerability in the nsDisplayBoxShadowOuter::Paint function in Mozilla Firefox before 19.0, Thunderbird before 17.0.3, and SeaMonkey before 2.16 allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via unspecified vectors.
Use-after-free vulnerability in the ~nsHTMLEditRules implementation in Mozilla Firefox before 18.0, Firefox ESR 10.x before 10.0.12 and 17.x before 17.0.1, Thunderbird before 17.0.2, Thunderbird ESR 10.x before 10.0.12 and 17.x before 17.0.1, and SeaMonkey before 2.15 allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via unspecified vectors.
Use-after-free vulnerability in Mozilla Firefox before 18.0, Firefox ESR 17.x before 17.0.1, Thunderbird before 17.0.2, Thunderbird ESR 17.x before 17.0.1, and SeaMonkey before 2.15 allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via vectors related to Mesa drivers and a resized WebGL canvas.
Use-after-free vulnerability in the mozilla::TrackUnionStream::EndTrack implementation in Mozilla Firefox before 18.0, Firefox ESR 17.x before 17.0.1, Thunderbird before 17.0.2, Thunderbird ESR 17.x before 17.0.1, and SeaMonkey before 2.15 allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via unspecified vectors.
Mozilla Firefox before 18.0, Firefox ESR 17.x before 17.0.2, Thunderbird before 17.0.2, Thunderbird ESR 17.x before 17.0.2, and SeaMonkey before 2.15 allow remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted XBL file with multiple bindings that have SVG content.
Use-after-free vulnerability in the nsOverflowContinuationTracker::Finish function in Mozilla Firefox before 19.0, Firefox ESR 17.x before 17.0.3, Thunderbird before 17.0.3, Thunderbird ESR 17.x before 17.0.3, and SeaMonkey before 2.16 allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via a crafted document that uses Cascading Style Sheets (CSS) -moz-column-* properties.
The Chrome Object Wrapper (COW) and System Only Wrapper (SOW) implementations in Mozilla Firefox before 19.0, Firefox ESR 17.x before 17.0.3, Thunderbird before 17.0.3, Thunderbird ESR 17.x before 17.0.3, and SeaMonkey before 2.16 do not prevent modifications to a prototype, which allows remote attackers to obtain sensitive information from chrome objects or possibly execute arbitrary JavaScript code with chrome privileges via a crafted web site.
Use-after-free vulnerability in the mozVibrate implementation in the Vibrate library in Mozilla Firefox before 18.0, Firefox ESR 17.x before 17.0.2, Thunderbird before 17.0.2, Thunderbird ESR 17.x before 17.0.2, and SeaMonkey before 2.15 allows remote attackers to execute arbitrary code via vectors related to the domDoc pointer.
Heap-based buffer overflow in the gfxTextRun::ShrinkToLigatureBoundaries function in Mozilla Firefox before 18.0, Firefox ESR 17.x before 17.0.1, Thunderbird before 17.0.2, Thunderbird ESR 17.x before 17.0.1, and SeaMonkey before 2.15 allows remote attackers to execute arbitrary code via a crafted document.
A shell command injection in the obs-service-source_validator before 0.7 could be used to execute code as the packager when checking RPM SPEC files with specific macro constructs.
Multiple unspecified vulnerabilities in the browser engine in Mozilla Firefox before 18.0, Firefox ESR 17.x before 17.0.1, Thunderbird before 17.0.2, Thunderbird ESR 17.x before 17.0.1, and SeaMonkey before 2.15 allow remote attackers to cause a denial of service (memory corruption and application crash) or possibly execute arbitrary code via unknown vectors.
Use-after-free vulnerability in the ListenerManager implementation in Mozilla Firefox before 18.0, Firefox ESR 10.x before 10.0.12 and 17.x before 17.0.2, Thunderbird before 17.0.2, Thunderbird ESR 10.x before 10.0.12 and 17.x before 17.0.2, and SeaMonkey before 2.15 allows remote attackers to execute arbitrary code via vectors involving the triggering of garbage collection after memory allocation for listener objects.
The Chrome Object Wrapper (COW) implementation in Mozilla Firefox before 18.0, Firefox ESR 17.x before 17.0.2, Thunderbird before 17.0.2, Thunderbird ESR 17.x before 17.0.2, and SeaMonkey before 2.15 does not prevent modifications to the prototype of an object, which allows remote attackers to execute arbitrary JavaScript code with chrome privileges by referencing Object.prototype.__proto__ in a crafted HTML document.