Philips e-Alert Unit (non-medical device), Version R2.1 and prior. The software does not properly restrict the size or amount of resources requested or influenced by an actor, which can be used to consume more resources than intended.
Unspecified vulnerability in Adobe Flash Media Server (FMS) before 3.5.3 allows attackers to cause a denial of service (resource exhaustion) via unknown vectors.
A Denial of Service (DoS) vulnerability exists in the file upload feature of imartinez/privategpt version v0.6.2. The vulnerability is due to improper handling of form-data with a large filename in the file upload request. An attacker can exploit this by sending a payload with an excessively large filename, causing the server to become overwhelmed and unavailable to legitimate users.
Microsoft Internet Explorer 6 through 6.0.2900.2180, and 7.0.6000.16711, allows remote attackers to cause a denial of service (CPU consumption) via an automatically submitted form containing a KEYGEN element, a related issue to CVE-2009-1828.
Microsoft Internet Explorer 7 through 7.0.6000.16711 allows remote attackers to cause a denial of service (unusable browser) by calling the window.print function in a loop, aka a "printing DoS attack," possibly a related issue to CVE-2009-0821.
A Denial of Service (DoS) vulnerability exists in the file upload feature of haotian-liu/llava, specifically in Release v1.2.0 (LLaVA-1.6). The vulnerability is due to improper handling of form-data with a large filename in the file upload request. By sending a payload with an excessively large filename, the server becomes overwhelmed and unresponsive, leading to unavailability for legitimate users. This issue can be exploited without authentication, making it highly scalable and increasing the risk of exploitation.
Some HTTP/2 implementations are vulnerable to ping floods, potentially leading to a denial of service. The attacker sends continual pings to an HTTP/2 peer, causing the peer to build an internal queue of responses. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
Specific IPv6 DHCP packets received by the jdhcpd daemon will cause a memory resource consumption issue to occur on a Junos OS device using the jdhcpd daemon configured to respond to IPv6 requests. Once started, memory consumption will eventually impact any IPv4 or IPv6 request serviced by the jdhcpd daemon, thus creating a Denial of Service (DoS) condition to clients requesting and not receiving IP addresses. Additionally, some clients which were previously holding IPv6 addresses will not have their IPv6 Identity Association (IA) address and network tables agreed upon by the jdhcpd daemon after the failover event occurs, which leads to more than one interface, and multiple IP addresses, being denied on the client. Affected releases are Juniper Networks Junos OS: 17.4 versions prior to 17.4R2; 18.1 versions prior to 18.1R2.
Stack consumption vulnerability in the FTP Service in Microsoft Internet Information Services (IIS) 5.0 through 7.0 allows remote authenticated users to cause a denial of service (daemon crash) via a list (ls) -R command containing a wildcard that references a subdirectory, followed by a .. (dot dot), aka "IIS FTP Service DoS Vulnerability."
An issue was discovered in WTCMS 1.0. It allows remote attackers to cause a denial of service (resource consumption) via crafted dimensions for the verification code image.
In lm-sys/fastchat Release v0.2.36, the server fails to handle excessive characters appended to the end of multipart boundaries. This flaw can be exploited by sending malformed multipart requests with arbitrary characters at the end of the boundary. Each extra character is processed in an infinite loop, leading to excessive resource consumption and a complete denial of service (DoS) for all users. The vulnerability is unauthenticated, meaning no user login or interaction is required for an attacker to exploit this issue.
A Regular Expression Denial of Service (ReDoS) vulnerability exists in the gradio-app/gradio repository, affecting the gr.Datetime component. The affected version is git commit 98cbcae. The vulnerability arises from the use of a regular expression `^(?:\s*now\s*(?:-\s*(\d+)\s*([dmhs]))?)?\s*$` to process user input. In Python's default regex engine, this regular expression can take polynomial time to match certain crafted inputs. An attacker can exploit this by sending a crafted HTTP request, causing the gradio process to consume 100% CPU and potentially leading to a Denial of Service (DoS) condition on the server.
A vulnerability, which was classified as problematic, has been found in Tongda OA 2017 up to 11.7. This issue affects some unknown processing of the file /inc/package_static_resources.php. The manipulation leads to resource consumption. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used.
Opera 8.01 allows remote attackers to cause a denial of service (CPU consumption) via a crafted JPEG image, as demonstrated using random.jpg.
automatic1111/stable-diffusion-webui version 1.10.0 contains a vulnerability where the server fails to handle excessive characters appended to the end of multipart boundaries. This flaw can be exploited by sending malformed multipart requests with arbitrary characters at the end of the boundary, leading to excessive resource consumption and a complete denial of service (DoS) for all users. The vulnerability is unauthenticated, meaning no user login or interaction is required for an attacker to exploit this issue.
A vulnerability in szad670401/hyperlpr v3.0 allows for a Denial of Service (DoS) attack. The server fails to handle excessive characters appended to the end of multipart boundaries, regardless of the character used. This flaw can be exploited by sending malformed multipart requests with arbitrary characters at the end of the boundary, leading to excessive resource consumption and a complete denial of service for all users. The vulnerability is unauthenticated, meaning no user login or interaction is required for an attacker to exploit this issue.
A Denial of Service (DoS) vulnerability was discovered in the /api/v1/boards/{board_id} endpoint of invoke-ai/invokeai version v5.0.2. This vulnerability occurs when an excessively large payload is sent in the board_name field during a PATCH request. By sending a large payload, the UI becomes unresponsive, rendering it impossible for users to interact with or manage the affected board. Additionally, the option to delete the board becomes inaccessible, amplifying the severity of the issue.
A Denial of Service (DoS) vulnerability in the multipart request boundary processing mechanism of eosphoros-ai/db-gpt v0.6.0 allows unauthenticated attackers to cause excessive resource consumption. The server fails to handle excessive characters appended to the end of multipart boundaries, leading to an infinite loop and complete denial of service for all users. This vulnerability affects all endpoints processing multipart/form-data requests.
A Denial of Service (DoS) vulnerability in the multipart request boundary processing mechanism of the Invoke-AI server (version v5.0.1) allows unauthenticated attackers to cause excessive resource consumption. The server fails to handle excessive characters appended to the end of multipart boundaries, leading to an infinite loop and a complete denial of service for all users. The affected endpoint is `/api/v1/images/upload`.
A vulnerability in danny-avila/librechat version git a1647d7 allows an unauthenticated attacker to cause a denial of service by sending a crafted payload to the server. The middleware `checkBan` is not surrounded by a try-catch block, and an unhandled exception will cause the server to crash. This issue is fixed in version 0.7.6.
A vulnerability in haotian-liu/llava v1.2.0 allows an attacker to cause a Denial of Service (DoS) by appending a large number of characters to the end of a multipart boundary in a file upload request. This causes the server to continuously process each character, rendering the application inaccessible.
A vulnerability in BerriAI/litellm, as of commit 26c03c9, allows unauthenticated users to cause a Denial of Service (DoS) by exploiting the use of ast.literal_eval to parse user input. This function is not safe and is prone to DoS attacks, which can crash the litellm Python server.
mIRC before 6.35 allows attackers to cause a denial of service (crash) via a long nickname.
Any Juniper Networks SRX series device with one or more ALGs enabled may experience a flowd crash when traffic is processed by the Sun/MS-RPC ALGs. This vulnerability in the Sun/MS-RPC ALG services component of Junos OS allows an attacker to cause a repeated denial of service against the target. Repeated traffic in a cluster may cause repeated flip-flop failure operations or full failure to the flowd daemon halting traffic on all nodes. Only IPv6 traffic is affected by this issue. IPv4 traffic is unaffected. This issues is not seen with to-host traffic. This issue has no relation with HA services themselves, only the ALG service. No other Juniper Networks products or platforms are affected by this issue. Affected releases are Juniper Networks Junos OS 12.1X46 prior to 12.1X46-D55 on SRX; 12.1X47 prior to 12.1X47-D45 on SRX; 12.3X48 prior to 12.3X48-D32, 12.3X48-D35 on SRX; 15.1X49 prior to 15.1X49-D60 on SRX.
In Ruby before 2.2.10, 2.3.x before 2.3.7, 2.4.x before 2.4.4, 2.5.x before 2.5.1, and 2.6.0-preview1, an attacker can pass a large HTTP request with a crafted header to WEBrick server or a crafted body to WEBrick server/handler and cause a denial of service (memory consumption).
Denial of Service attack in airMAX < 8.3.2 , airMAX < 6.0.7 and EdgeMAX < 1.9.7 allow attackers to use the Discovery Protocol in amplification attacks.
kittoframework kitto version 0.5.1 is vulnerable to memory exhaustion in the router resulting in DoS
Philips Hue is vulnerable to a Denial of Service attack. Sending a SYN flood on port tcp/80 will freeze Philips Hue's hub and it will stop responding. The "hub" will stop operating and be frozen until the flood stops. During the flood, the user won't be able to turn on/off the lights, and all of the hub's functionality will be unresponsive. The cloud service also won't work with the hub.
Denial of Service attack when the switch rejects to receive packets from the controller. Component: This vulnerability affects OpenDaylight odl-l2switch-switch, which is the feature responsible for the OpenFlow communication. Version: OpenDaylight versions 3.3 (Lithium-SR3), 3.4 (Lithium-SR4), 4.0 (Beryllium), 4.1 (Beryllium-SR1), 4.2 (Beryllium-SR2), and 4.4 (Beryllium-SR4) are affected by this flaw. Java version is openjdk version 1.8.0_91.
Jool 3.5.0-3.5.1 is vulnerable to a kernel crashing packet resulting in a DOS.
Softing edgeConnector Siemens ConditionRefresh Resource Exhaustion Denial-of-Service Vulnerability. This vulnerability allows remote attackers to create a denial-of-service condition on affected installations of Softing edgeConnector Siemens. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of OPC UA ConditionRefresh requests. By sending a large number of requests, an attacker can consume all available resources on the server. An attacker can leverage this vulnerability to create a denial-of-service condition on the system. Was ZDI-CAN-20498.
OPC Foundation UA .NET Standard ConditionRefresh Resource Exhaustion Denial-of-Service Vulnerability. This vulnerability allows remote attackers to create a denial-of-service condition on affected installations of OPC Foundation UA .NET Standard. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of OPC UA ConditionRefresh requests. By sending a large number of requests, an attacker can consume all available resources on the server. An attacker can leverage this vulnerability to create a denial-of-service condition on the system. Was ZDI-CAN-20505.
Huawei AR1200 V200R006C10SPC300, AR160 V200R006C10SPC300, AR200 V200R006C10SPC300, AR2200 V200R006C10SPC300, AR3200 V200R006C10SPC300 devices have an improper resource management vulnerability. Due to the improper implementation of ACL mechanism, a remote attacker may send TCP messages to the management interface of the affected device to exploit this vulnerability. Successful exploit could exhaust the socket resource of management interface, leading to a DoS condition.
A CWE-400: Uncontrolled Resource Consumption vulnerability exists that could cause a denial of service on ports 80 (HTTP) and 502 (Modbus), when sending a large number of TCP RST or FIN packets to any open TCP port of the PLC. Affected Product: Modicon M340 CPUs: BMXP34 (All Versions)
An issue in the Proxygen handling of HTTP2 parsing of headers/trailers can lead to a denial-of-service attack. This affects Proxygen prior to v2018.12.31.00.
An issue was discovered in Schneider Electric Magelis HMI Magelis GTO Advanced Optimum Panels, all versions, Magelis GTU Universal Panel, all versions, Magelis STO5xx and STU Small panels, all versions, Magelis XBT GH Advanced Hand-held Panels, all versions, Magelis XBT GK Advanced Touchscreen Panels with Keyboard, all versions, Magelis XBT GT Advanced Touchscreen Panels, all versions, and Magelis XBT GTW Advanced Open Touchscreen Panels (Windows XPe). An attacker can open multiple connections to a targeted web server and keep connections open preventing new connections from being made, rendering the web server unavailable during an attack.
An error within the "parse_sinar_ia()" function (internal/dcraw_common.cpp) within LibRaw versions prior to 0.19.1 can be exploited to exhaust available CPU resources.
An issue was discovered in Moxa NPort 5110 versions prior to 2.6, NPort 5130/5150 Series versions prior to 3.6, NPort 5200 Series versions prior to 2.8, NPort 5400 Series versions prior to 3.11, NPort 5600 Series versions prior to 3.7, NPort 5100A Series & NPort P5150A versions prior to 1.3, NPort 5200A Series versions prior to 1.3, NPort 5150AI-M12 Series versions prior to 1.2, NPort 5250AI-M12 Series versions prior to 1.2, NPort 5450AI-M12 Series versions prior to 1.2, NPort 5600-8-DT Series versions prior to 2.4, NPort 5600-8-DTL Series versions prior to 2.4, NPort 6x50 Series versions prior to 1.13.11, NPort IA5450A versions prior to v1.4. The amount of resources requested by a malicious actor is not restricted, leading to a denial-of-service caused by resource exhaustion.
phpFreeChat 1.7 and earlier allows remote attackers to cause a denial of service by sending a large number of connect commands.
In Node.js including 6.x before 6.17.0, 8.x before 8.15.1, 10.x before 10.15.2, and 11.x before 11.10.1, an attacker can cause a Denial of Service (DoS) by establishing an HTTP or HTTPS connection in keep-alive mode and by sending headers very slowly. This keeps the connection and associated resources alive for a long period of time. Potential attacks are mitigated by the use of a load balancer or other proxy layer. This vulnerability is an extension of CVE-2018-12121, addressed in November and impacts all active Node.js release lines including 6.x before 6.17.0, 8.x before 8.15.1, 10.x before 10.15.2, and 11.x before 11.10.1.
The Symantec Encryption Management Server (SEMS) product, prior to version 3.4.2 MP1, may be susceptible to a denial of service (DoS) exploit. A DoS attack is a type of attack whereby the perpetrator attempts to make a particular machine or network resource unavailable to its intended users by temporarily or indefinitely disrupting services of a specific host within a network.
A denial of service flaw was found in OpenSSL 0.9.8, 1.0.1, 1.0.2 through 1.0.2h, and 1.1.0 in the way the TLS/SSL protocol defined processing of ALERT packets during a connection handshake. A remote attacker could use this flaw to make a TLS/SSL server consume an excessive amount of CPU and fail to accept connections from other clients.
Denial of Service in GitHub repository radareorg/radare2 prior to 5.8.6.
Improper Restriction of TCP Communication Channel in HTTP/S inbound traffic from WAN to DMZ bypassing security policy until TCP handshake potentially resulting in Denial of Service (DoS) attack if a target host is vulnerable.
An unauthenticated Denial of Service (DoS) vulnerability was identified in ChuanhuChatGPT version 20240918, which could be exploited by sending large data payloads using a multipart boundary. Although a patch was applied for CVE-2024-7807, the issue can still be exploited by sending data in groups with 10 characters in a line, with multiple lines. This can cause the system to continuously process these characters, resulting in prolonged unavailability of the service. The exploitation now requires low privilege if authentication is enabled due to a version upgrade in Gradio.
An issue has been found in PowerDNS Authoritative Server before 3.4.11 and 4.0.2 allowing a remote, unauthenticated attacker to cause a denial of service by opening a large number of TCP connections to the web server. If the web server runs out of file descriptors, it triggers an exception and terminates the whole PowerDNS process. While it's more complicated for an unauthorized attacker to make the web server run out of file descriptors since its connection will be closed just after being accepted, it might still be possible.
An issue has been found in PowerDNS before 3.4.11 and 4.0.2, and PowerDNS recursor before 3.7.4 and 4.0.4, allowing a remote, unauthenticated attacker to cause an abnormal CPU usage load on the PowerDNS server by sending crafted DNS queries, which might result in a partial denial of service if the system becomes overloaded. This issue is based on the fact that the PowerDNS server parses all records present in a query regardless of whether they are needed or even legitimate. A specially crafted query containing a large number of records can be used to take advantage of that behaviour.
The "process-execute" and "process-spawn" procedures did not free memory correctly when the execve() call failed, resulting in a memory leak. This could be abused by an attacker to cause resource exhaustion or a denial of service. This affects all releases of CHICKEN up to and including 4.11 (it will be fixed in 4.12 and 5.0, which are not yet released).
Knot DNS before 2.3.0 allows remote DNS servers to cause a denial of service (memory exhaustion and slave server crash) via a large zone transfer for (1) DDNS, (2) AXFR, or (3) IXFR.
A Denial of Service (DoS) vulnerability exists in the brycedrennan/imaginairy repository, version 15.0.0. The vulnerability is present in the `/api/stablestudio/generate` endpoint, which can be exploited by sending an invalid request. This causes the server process to terminate abruptly, outputting `KILLED` in the terminal, and results in the unavailability of the server. This issue disrupts the server's functionality, affecting all users.