The Linux kernel through 5.7.11 allows remote attackers to make observations that help to obtain sensitive information about the internal state of the network RNG, aka CID-f227e3ec3b5c. This is related to drivers/char/random.c and kernel/time/timer.c.
Use of an uninitialized value in Skia in Google Chrome prior to 60.0.3112.78 for Mac, Windows, Linux, and Android allowed a remote attacker to obtain potentially sensitive information from process memory via a crafted HTML page.
The ath9k_htc_set_bssid_mask function in drivers/net/wireless/ath/ath9k/htc_drv_main.c in the Linux kernel through 3.12 uses a BSSID masking approach to determine the set of MAC addresses on which a Wi-Fi device is listening, which allows remote attackers to discover the original MAC address after spoofing by sending a series of packets to MAC addresses with certain bit manipulations.
IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.0 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 158092.
Adobe Flash Player versions 24.0.0.186 and earlier have a security bypass vulnerability related to handling TCP connections.
Adobe Flash Player versions 24.0.0.221 and earlier have a vulnerability in the random number generator used for constant blinding. Successful exploitation could lead to information disclosure.
Adobe Flash Player versions 26.0.0.131 and earlier have an exploitable memory corruption vulnerability in the Action Script 2 BitmapData class. Successful exploitation could lead to memory address disclosure.
Adobe Flash Player versions 26.0.0.137 and earlier have a security bypass vulnerability that leads to information disclosure when performing URL redirect.
Adobe Flash Player versions 26.0.0.131 and earlier have a security bypass vulnerability related to the Flash API used by Internet Explorer. Successful exploitation could lead to information disclosure.
A directory traversal vulnerability in Trend Micro Deep Security and Cloud One - Workload Security Agent for Linux version 20 and below could allow an attacker to read arbitrary files from the file system. Please note: an attacker must first obtain compromised access to the target Deep Security Manager (DSM) or the target agent must be not yet activated or configured in order to exploit this vulnerability.
In Octopus Server after version 2022.1.1495 and before 2022.1.2647 if private spaces were enabled via the experimental feature flag all new users would have access to the Script Console within their private space.
Data leak in Canvas in Google Chrome prior to 99.0.4844.51 allowed a remote attacker who convinced a user to engage in screen sharing to potentially leak cross-origin data via a crafted HTML page.
IBM Tivoli Key Lifecycle Manager 3.0, 3.0.1, 4.0, and 4.1 could allow a remote attacker to obtain sensitive information, caused by the failure to properly enable HTTP Strict Transport Security. An attacker could exploit this vulnerability to obtain sensitive information using man in the middle techniques. IBM X-Force ID: 212783.
IBM Security Guardium 11.3 could allow a remote attacker to obtain sensitive information, caused by the failure to properly enable HTTP Strict Transport Security. An attacker could exploit this vulnerability to obtain sensitive information using man in the middle techniques. IBM X-Force ID: 215581.
IBM Tivoli Key Lifecycle Manager 3.0, 3.0.1, 4.0, and 4.1 does not set the secure attribute on authorization tokens or session cookies. Attackers may be able to get the cookie values by sending a http:// link to a user or by planting this link in a site the user goes to. The cookie will be sent to the insecure link and the attacker can then obtain the cookie value by snooping the traffic. IBM X-Force ID: 212782.
The hid_input_field function in drivers/hid/hid-core.c in the Linux kernel before 4.6 allows physically proximate attackers to obtain sensitive information from kernel memory or cause a denial of service (out-of-bounds read) by connecting a device, as demonstrated by a Logitech DJ receiver.
Adobe Flash Player before 18.0.0.366 and 19.x through 22.x before 22.0.0.209 on Windows and OS X and before 11.2.202.632 on Linux allows attackers to bypass intended access restrictions and obtain sensitive information via unspecified vectors.
Adobe Flash Player before 18.0.0.375 and 19.x through 23.x before 23.0.0.162 on Windows and OS X and before 11.2.202.635 on Linux allows attackers to bypass intended access restrictions and obtain sensitive information via unspecified vectors, a different vulnerability than CVE-2016-4277 and CVE-2016-4278, aka a "local-with-filesystem Flash sandbox bypass" issue.
Adobe Flash Player before 18.0.0.375 and 19.x through 23.x before 23.0.0.162 on Windows and OS X and before 11.2.202.635 on Linux allows attackers to bypass intended access restrictions and obtain sensitive information via unspecified vectors, a different vulnerability than CVE-2016-4271 and CVE-2016-4277.
Flash Player Desktop Runtime versions 32.0.0.114 and earlier, Flash Player for Google Chrome versions 32.0.0.114 and earlier, and Flash Player for Microsoft Edge and Internet Explorer 11 versions 32.0.0.114 and earlier have an out-of-bounds read vulnerability. Successful exploitation could lead to information disclosure.
Adobe Flash Player before 18.0.0.375 and 19.x through 23.x before 23.0.0.162 on Windows and OS X and before 11.2.202.635 on Linux allows attackers to bypass intended access restrictions and obtain sensitive information via unspecified vectors, a different vulnerability than CVE-2016-4271 and CVE-2016-4278.
IBM QRadar 7.3.0 to 7.3.3 Patch 2 could allow a remote attacker to obtain sensitive information, caused by the failure to properly enable HTTP Strict Transport Security. An attacker could exploit this vulnerability to obtain sensitive information using man in the middle techniques. IBM X-ForceID: 167810.
evolution-data-server3 3.0.3 through 3.2.1 used insecure (non-SSL) connection when attempting to store sent email messages into the Sent folder, when the Sent folder was located on the remote server. An attacker could use this flaw to obtain login credentials of the victim.
IBM Security SOAR V42 and V43could allow a remote attacker to obtain sensitive information, caused by the failure to properly enable HTTP Strict Transport Security. An attacker could exploit this vulnerability to obtain sensitive information using man in the middle techniques. IBM X-Force ID: 203169.
IBM i2 Analyst's Notebook Premium 9.2.0, 9.2.1, and 9.2.2 does not invalidate session after logout which could allow an an attacker to obtain sensitive information from the system. IBM X-Force ID: 196342.
Adobe Campaign Classic before 20.2 have an out-of-bounds read vulnerability. Successful exploitation could lead to information disclosure.
Signal Desktop before 6.2.0 on Windows, Linux, and macOS allows an attacker to obtain potentially sensitive attachments sent in messages from the attachments.noindex directory. Cached attachments are not effectively cleared. In some cases, even after a self-initiated file deletion, an attacker can still recover the file if it was previously replied to in a conversation. (Local filesystem access is needed by the attacker.) NOTE: the vendor disputes the relevance of this finding because the product is not intended to protect against adversaries with this degree of local access.
An issue was discovered in the Linux kernel through 4.19. An information leak in cdrom_ioctl_select_disc in drivers/cdrom/cdrom.c could be used by local attackers to read kernel memory because a cast from unsigned long to int interferes with bounds checking. This is similar to CVE-2018-10940 and CVE-2018-16658.
ICMP information such as (1) netmask and (2) timestamp is allowed from arbitrary hosts.
IBM QRadar SIEM 7.4 and 7.5copies certificate key files used for SSL/TLS in the QRadar web user interface to managed hosts in the deployment that do not require that key. IBM X-Force ID: 244356.
The llc_cmsg_rcv function in net/llc/af_llc.c in the Linux kernel before 4.5.5 does not initialize a certain data structure, which allows attackers to obtain sensitive information from kernel stack memory by reading a message.
The llc_ui_getname function in net/llc/af_llc.c in the Linux kernel 2.6.31-rc7 and earlier does not initialize a certain data structure, which allows local users to read the contents of some kernel memory locations by calling getsockname on an AF_LLC socket.
The Linux kernel before 2.6.31-rc7 does not initialize certain data structures within getname functions, which allows local users to read the contents of some kernel memory locations by calling getsockname on (1) an AF_APPLETALK socket, related to the atalk_getname function in net/appletalk/ddp.c; (2) an AF_IRDA socket, related to the irda_getname function in net/irda/af_irda.c; (3) an AF_ECONET socket, related to the econet_getname function in net/econet/af_econet.c; (4) an AF_NETROM socket, related to the nr_getname function in net/netrom/af_netrom.c; (5) an AF_ROSE socket, related to the rose_getname function in net/rose/af_rose.c; or (6) a raw CAN socket, related to the raw_getname function in net/can/raw.c.
arch/x86/ia32/ia32entry.S in the Linux kernel before 2.6.31.4 on the x86_64 platform does not clear certain kernel registers before a return to user mode, which allows local users to read register values from an earlier process by switching an ia32 process to 64-bit mode.
Untrusted search path vulnerability in Adobe Flash Player 9.x before 9.0.159.0 and 10.x before 10.0.22.87 on Linux allows local users to obtain sensitive information or gain privileges via a crafted library in a directory contained in the RPATH.
The sctp_getsockopt_hmac_ident function in net/sctp/socket.c in the Stream Control Transmission Protocol (sctp) implementation in the Linux kernel before 2.6.26.4, when the SCTP-AUTH extension is enabled, relies on an untrusted length value to limit copying of data from kernel memory, which allows local users to obtain sensitive information via a crafted SCTP_HMAC_IDENT IOCTL request involving the sctp_getsockopt function.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix refcnt handling in __inet_hash_connect(). syzbot reported a warning in sk_nulls_del_node_init_rcu(). The commit 66b60b0c8c4a ("dccp/tcp: Unhash sk from ehash for tb2 alloc failure after check_estalblished().") tried to fix an issue that an unconnected socket occupies an ehash entry when bhash2 allocation fails. In such a case, we need to revert changes done by check_established(), which does not hold refcnt when inserting socket into ehash. So, to revert the change, we need to __sk_nulls_add_node_rcu() instead of sk_nulls_add_node_rcu(). Otherwise, sock_put() will cause refcnt underflow and leak the socket. [0]: WARNING: CPU: 0 PID: 23948 at include/net/sock.h:799 sk_nulls_del_node_init_rcu+0x166/0x1a0 include/net/sock.h:799 Modules linked in: CPU: 0 PID: 23948 Comm: syz-executor.2 Not tainted 6.8.0-rc6-syzkaller-00159-gc055fc00c07b #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 RIP: 0010:sk_nulls_del_node_init_rcu+0x166/0x1a0 include/net/sock.h:799 Code: e8 7f 71 c6 f7 83 fb 02 7c 25 e8 35 6d c6 f7 4d 85 f6 0f 95 c0 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc e8 1b 6d c6 f7 90 <0f> 0b 90 eb b2 e8 10 6d c6 f7 4c 89 e7 be 04 00 00 00 e8 63 e7 d2 RSP: 0018:ffffc900032d7848 EFLAGS: 00010246 RAX: ffffffff89cd0035 RBX: 0000000000000001 RCX: 0000000000040000 RDX: ffffc90004de1000 RSI: 000000000003ffff RDI: 0000000000040000 RBP: 1ffff1100439ac26 R08: ffffffff89ccffe3 R09: 1ffff1100439ac28 R10: dffffc0000000000 R11: ffffed100439ac29 R12: ffff888021cd6140 R13: dffffc0000000000 R14: ffff88802a9bf5c0 R15: ffff888021cd6130 FS: 00007f3b823f16c0(0000) GS:ffff8880b9400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f3b823f0ff8 CR3: 000000004674a000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> __inet_hash_connect+0x140f/0x20b0 net/ipv4/inet_hashtables.c:1139 dccp_v6_connect+0xcb9/0x1480 net/dccp/ipv6.c:956 __inet_stream_connect+0x262/0xf30 net/ipv4/af_inet.c:678 inet_stream_connect+0x65/0xa0 net/ipv4/af_inet.c:749 __sys_connect_file net/socket.c:2048 [inline] __sys_connect+0x2df/0x310 net/socket.c:2065 __do_sys_connect net/socket.c:2075 [inline] __se_sys_connect net/socket.c:2072 [inline] __x64_sys_connect+0x7a/0x90 net/socket.c:2072 do_syscall_64+0xf9/0x240 entry_SYSCALL_64_after_hwframe+0x6f/0x77 RIP: 0033:0x7f3b8167dda9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f3b823f10c8 EFLAGS: 00000246 ORIG_RAX: 000000000000002a RAX: ffffffffffffffda RBX: 00007f3b817abf80 RCX: 00007f3b8167dda9 RDX: 000000000000001c RSI: 0000000020000040 RDI: 0000000000000003 RBP: 00007f3b823f1120 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000001 R13: 000000000000000b R14: 00007f3b817abf80 R15: 00007ffd3beb57b8 </TASK>
A flaw was found in the Linux Kernel. The tls_is_tx_ready() incorrectly checks for list emptiness, potentially accessing a type confused entry to the list_head, leaking the last byte of the confused field that overlaps with rec->tx_ready.
The ipc subsystem in the Linux kernel before 2.6.37-rc1 does not initialize certain structures, which allows local users to obtain potentially sensitive information from kernel stack memory via vectors related to the (1) compat_sys_semctl, (2) compat_sys_msgctl, and (3) compat_sys_shmctl functions in ipc/compat.c; and the (4) compat_sys_mq_open and (5) compat_sys_mq_getsetattr functions in ipc/compat_mq.c.
An issue was discovered in the fd_locked_ioctl function in drivers/block/floppy.c in the Linux kernel through 4.15.7. The floppy driver will copy a kernel pointer to user memory in response to the FDGETPRM ioctl. An attacker can send the FDGETPRM ioctl and use the obtained kernel pointer to discover the location of kernel code and data and bypass kernel security protections such as KASLR.
The atl2_probe function in drivers/net/ethernet/atheros/atlx/atl2.c in the Linux kernel through 4.5.2 incorrectly enables scatter/gather I/O, which allows remote attackers to obtain sensitive information from kernel memory by reading packet data.
The Linux kernel, as used in Ubuntu 18.04 LTS and Ubuntu 18.10, allows local users to obtain names of files in which they would not normally be able to access via an overlayfs mount inside of a user namespace.
Edger8r tool in the Intel SGX SDK before version 2.1.2 (Linux) and 1.9.6 (Windows) may generate code that is susceptible to a side channel potentially allowing a local user to access unauthorized information.
A vulnerability in Hitachi Command Suite 7.x and 8.x before 8.6.5-00 allows an unauthenticated remote user to read internal information.
An issue was discovered in the Linux kernel before 4.18.11. The ipddp_ioctl function in drivers/net/appletalk/ipddp.c allows local users to obtain sensitive kernel address information by leveraging CAP_NET_ADMIN to read the ipddp_route dev and next fields via an SIOCFINDIPDDPRT ioctl call.
Software suspend 2 2-2.2.1, when used with the Linux kernel 2.6.16, stores pre-boot authentication passwords in the BIOS Keyboard buffer and does not clear this buffer after use, which allows local users to obtain sensitive information by reading the physical memory locations associated with this buffer.
The sctp_auth_ep_set_hmacs function in net/sctp/auth.c in the Stream Control Transmission Protocol (sctp) implementation in the Linux kernel before 2.6.26.4, when the SCTP-AUTH extension is enabled, does not verify that the identifier index is within the bounds established by SCTP_AUTH_HMAC_ID_MAX, which allows local users to obtain sensitive information via a crafted SCTP_HMAC_IDENT IOCTL request involving the sctp_getsockopt function, a different vulnerability than CVE-2008-4113.
In the function sbusfb_ioctl_helper() in drivers/video/fbdev/sbuslib.c in the Linux kernel through 4.15, an integer signedness error allows arbitrary information leakage for the FBIOPUTCMAP_SPARC and FBIOGETCMAP_SPARC commands.
The acpi_smbus_hc_add function in drivers/acpi/sbshc.c in the Linux kernel through 4.14.15 allows local users to obtain sensitive address information by reading dmesg data from an SBS HC printk call.
Memory leak in racoon/proposal.c in the racoon daemon in ipsec-tools before 0.7.1 allows remote authenticated users to cause a denial of service (memory consumption) via invalid proposals.