Recently it was discovered as a part of the research on IoT devices in the most recent firmware for Shekar Endoscope that the desktop application used to connect to the device suffers from a stack overflow if more than 26 characters are passed to it as the Wi-Fi password. This application is installed on the device and an attacker who can provide the right payload can execute code on the user's system directly. Any breach of this system can allow an attacker to get access to all the data that the user has access too. The application uses a dynamic link library(DLL) called "avilib.dll" which is used by the application to send binary packets to the device that allow to control the device. One such action that the DLL provides is change password in the function "sendchangepass" which allows a user to change the Wi-Fi password on the device. This function calls a sub function "sub_75876EA0" at address 0x7587857C. The function determines which action to execute based on the parameters sent to it. The "sendchangepass" passes the datastring as the second argument which is the password we enter in the textbox and integer 2 as first argument. The rest of the 3 arguments are set to 0. The function "sub_75876EA0" at address 0x75876F19 uses the first argument received and to determine which block to jump to. Since the argument passed is 2, it jumps to 0x7587718C and proceeds from there to address 0x758771C2 which calculates the length of the data string passed as the first parameter.This length and the first argument are then passed to the address 0x7587726F which calls a memmove function which uses a stack address as the destination where the password typed by us is passed as the source and length calculated above is passed as the number of bytes to copy which leads to a stack overflow.
Recently it was discovered as a part of the research on IoT devices in the most recent firmware for Shekar Endoscope that an attacker connected to the device Wi-Fi SSID can exploit a memory corruption issue and execute remote code on the device. This device acts as an Endoscope camera that allows its users to use it in various industrial systems and settings, car garages, and also in some cases in the medical clinics to get access to areas that are difficult for a human being to reach. Any breach of this system can allow an attacker to get access to video feed and pictures viewed by that user and might allow them to get a foot hold in air gapped networks especially in case of nation critical infrastructure/industries. The firmware contains binary uvc_stream that is the UDP daemon which is responsible for handling all the UDP requests that the device receives. The client application sends a UDP request to change the Wi-Fi name which contains the following format: "SETCMD0001+0002+[2 byte length of wifipassword]+[Wifipassword]. This request is handled by "control_Dev_thread" function which at address "0x00409AE4" compares the incoming request and determines if the 10th byte is 02 and if it is then it redirects to 0x0040A7D8, which calls the function "setwifipassword". The function "setwifipassword" uses a memcpy function but uses the length of the payload obtained by using strlen function as the third parameter which is the number of bytes to copy and this allows an attacker to overflow the function and control the $PC value.
Recently it was discovered as a part of the research on IoT devices in the most recent firmware for Shekar Endoscope that an attacker connected to the device Wi-Fi SSID can exploit a memory corruption issue and execute remote code on the device. This device acts as an Endoscope camera that allows its users to use it in various industrial systems and settings, car garages, and also in some cases in the medical clinics to get access to areas that are difficult for a human being to reach. Any breach of this system can allow an attacker to get access to video feed and pictures viewed by that user and might allow them to get a foot hold in air gapped networks especially in case of nation critical infrastructure/industries. The firmware contains binary uvc_stream that is the UDP daemon which is responsible for handling all the UDP requests that the device receives. The client application sends a UDP request to change the Wi-Fi name which contains the following format: "SETCMD0001+0001+[2 byte length of wifiname]+[Wifiname]. This request is handled by "control_Dev_thread" function which at address "0x00409AE0" compares the incoming request and determines if the 10th byte is 01 and if it is then it redirects to 0x0040A74C which calls the function "setwifiname". The function "setwifiname" uses a memcpy function but uses the length of the payload obtained by using strlen function as the third parameter which is the number of bytes to copy and this allows an attacker to overflow the function and control the $PC value.
Improper Restriction of Operations within the Bounds of a Memory Buffer vulnerability exists that could cause denial of service or unauthorized access to system information when interacting directly with a driver installed by Vijeo Designer or EcoStruxure Machine Expert
In the Linux kernel before 2.6.37, an out of bounds array access happened in drivers/net/mlx4/port.c. When searching for a free entry in either mlx4_register_vlan() or mlx4_register_mac(), and there is no free entry, the loop terminates without updating the local variable free thus causing out of array bounds access.
IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 is vulnerable to a buffer overflow, which could allow an authenticated local attacker to execute arbitrary code on the system as root. IBM X-ForceID: 154078.
IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 is vulnerable to a buffer overflow, which could allow an authenticated local attacker to execute arbitrary code on the system as root. IBM X-ForceID: 154069.
Yubico libu2f-host 1.1.6 contains unchecked buffers in devs.c, which could enable a malicious token to exploit a buffer overflow. An attacker could use this to attempt to execute malicious code using a crafted USB device masquerading as a security token on a computer where the affected library is currently in use. It is not possible to perform this attack with a genuine YubiKey.
Buffer overflow in the fuse_do_ioctl function in fs/fuse/file.c in the Linux kernel before 2.6.37 allows local users to cause a denial of service or possibly have unspecified other impact by leveraging the ability to operate a CUSE server.
An issue was discovered in Linux: KVM through Improper handling of VM_IO|VM_PFNMAP vmas in KVM can bypass RO checks and can lead to pages being freed while still accessible by the VMM and guest. This allows users with the ability to start and control a VM to read/write random pages of memory and can result in local privilege escalation.
Stack-based buffer overflow in decoder/impeg2d_vld.c in mediaserver in Android 6.x before 2016-04-01 allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted media file, aka internal bug 25812590.
The server in LiteSpeed OpenLiteSpeed before 1.5.0 RC6 allows local users to cause a denial of service (buffer overflow) or possibly have unspecified other impact by creating a symlink through which the openlitespeed program can be invoked with a long command name (involving ../ characters), which is mishandled in the LshttpdMain::getServerRootFromExecutablePath function.
otools in Apple Xcode before 7.2 allows local users to gain privileges or cause a denial of service (memory corruption) via a crafted mach-o file, a different vulnerability than CVE-2015-7057.
otools in Apple Xcode before 7.2 allows local users to gain privileges or cause a denial of service (memory corruption) via a crafted mach-o file, a different vulnerability than CVE-2015-7049.
Uninitialized use in USB in Google Chrome prior to 88.0.4324.96 allowed a local attacker to potentially perform out of bounds memory access via via a USB device.
IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 10.1, 10.5, and 11.1 tool db2licm is affected by buffer overflow vulnerability that can potentially result in arbitrary code execution. IBM X-Force ID: 146364.
M2SOFT Report Designer Viewer 5.0 allows a Buffer Overflow with Extended Instruction Pointer (EIP) control via a crafted MRD file.
Stack-based buffer overflow in IBM V5R4, and IBM i Access for Windows 6.1 and 7.1.
IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 is affected by buffer overflow vulnerability that can potentially result in arbitrary code execution. IBM X-Force ID: 152858.
IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 is affected by buffer overflow vulnerability that can potentially result in arbitrary code execution. IBM X-Force ID: 152859.
IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 could allow a local user to overflow a buffer which may result in a privilege escalation to the DB2 instance owner. IBM X-Force ID: 143022.
Several buffer overflows when handling responses from a Gemsafe V1 Smartcard in gemsafe_get_cert_len in libopensc/pkcs15-gemsafeV1.c in OpenSC before 0.19.0-rc1 could be used by attackers able to supply crafted smartcards to cause a denial of service (application crash) or possibly have unspecified other impact.
CA Common Services, as used in CA Client Automation r12.5 SP01, r12.8, and r12.9; CA Network and Systems Management r11.0, r11.1, and r11.2; CA NSM Job Management Option r11.0, r11.1, and r11.2; CA Universal Job Management Agent; CA Virtual Assurance for Infrastructure Managers (aka SystemEDGE) 12.6, 12.7, 12.8, and 12.9; and CA Workload Automation AE r11, r11.3, r11.3.5, and r11.3.6 on UNIX, does not properly perform bounds checking, which allows local users to gain privileges via unspecified vectors.
Several buffer overflows when handling responses from a Cryptoflex card in read_public_key in tools/cryptoflex-tool.c in OpenSC before 0.19.0-rc1 could be used by attackers able to supply crafted smartcards to cause a denial of service (application crash) or possibly have unspecified other impact.
Heap-based buffer overflow in textbox.c in newt 0.51.5, 0.51.6, and 0.52.2 allows local users to cause a denial of service (application crash) or possibly execute arbitrary code via a request to display a crafted text dialog box.
DENX U-Boot through 2018.09-rc1 has a locally exploitable buffer overflow via a crafted kernel image because filesystem loading is mishandled.
IBM Domino 9.0 and 9.0.1 could allow an attacker to execute commands on the system by triggering a buffer overflow in the parsing of command line arguments passed to nsd.exe. IBM X-force ID: 148687.
An issue was discovered in mgetty before 1.2.1. In fax_notify_mail() in faxrec.c, the mail_to parameter is not sanitized. It could allow a buffer overflow if long untrusted input can reach it.
Several buffer overflows when handling responses from an ePass 2003 Card in decrypt_response in libopensc/card-epass2003.c in OpenSC before 0.19.0-rc1 could be used by attackers able to supply crafted smartcards to cause a denial of service (application crash) or possibly have unspecified other impact.
Several buffer overflows when handling responses from a Muscle Card in muscle_list_files in libopensc/card-muscle.c in OpenSC before 0.19.0-rc1 could be used by attackers able to supply crafted smartcards to cause a denial of service (application crash) or possibly have unspecified other impact.
Several buffer overflows when handling responses from a CAC Card in cac_get_serial_nr_from_CUID in libopensc/card-cac.c in OpenSC before 0.19.0-rc1 could be used by attackers able to supply crafted smartcards to cause a denial of service (application crash) or possibly have unspecified other impact.
A buffer overflow when handling string concatenation in util_acl_to_str in tools/util.c in OpenSC before 0.19.0-rc1 could be used by attackers able to supply crafted smartcards to cause a denial of service (application crash) or possibly have unspecified other impact.
A single byte buffer overflow when handling responses from an esteid Card in sc_pkcs15emu_esteid_init in libopensc/pkcs15-esteid.c in OpenSC before 0.19.0-rc1 could be used by attackers able to supply crafted smartcards to cause a denial of service (application crash) or possibly have unspecified other impact.
Several buffer overflows when handling responses from a TCOS Card in tcos_select_file in libopensc/card-tcos.c in OpenSC before 0.19.0-rc1 could be used by attackers able to supply crafted smartcards to cause a denial of service (application crash) or possibly have unspecified other impact.
Heap-based buffer overflow in Panda Security Kernel Memory Access Driver 1.0.0.13 allows attackers to execute arbitrary code with kernel privileges via a crafted size input for allocated kernel paged pool and allocated non-paged pool buffers.
Buffer overflow in subsystem in Intel(R) DAL before version 12.0.35 may allow a privileged user to potentially enable escalation of privilege via local access.
Heap-based buffer overflow in closefs.c in the libext2fs library in e2fsprogs before 1.42.12 allows local users to execute arbitrary code by causing a crafted block group descriptor to be marked as dirty. NOTE: this vulnerability exists because of an incomplete fix for CVE-2015-0247.
In Philips PageWriter TC10, TC20, TC30, TC50, TC70 Cardiographs, all versions prior to May 2018, the PageWriter device does not sanitize data entered by user. This can lead to buffer overflow or format string vulnerabilities.
IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 could allow a local user to overflow a buffer which may result in a privilege escalation to the DB2 instance owner. IBM X-Force ID: 142648.
IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 10.5 and 11.1 is vulnerable to a buffer overflow, which could allow an authenticated local attacker to execute arbitrary code on the system as root. IBM X-Force ID: 140973.
kernel could return a received message length higher than expected, which leads to buffer overflow in a subsequent operation and stops normal operation in Snapdragon Auto, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Wearables, in MDM9150, MDM9206, MDM9607, MDM9650, MSM8909W, QCS605, Qualcomm 215, SD 425, SD 439 / SD 429, SD 450, SD 625, SD 632, SD 675, SD 712 / SD 710 / SD 670, SD 820A, SD 835, SD 845 / SD 850, SD 855, SDM439, SDX24, SM7150
In all android releases(Android for MSM, Firefox OS for MSM, QRD Android) from CAF using the linux kernel, Out of bound mask range access caused by using possible old value of msg mask table count while copying masks to userspace.
There is potential for memory corruption in the RIL daemon due to de reference of memory outside the allocated array length in RIL in Snapdragon Auto, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Wearables in versions MDM9206, MDM9607, MDM9635M, MDM9650, MSM8909W, SD 210/SD 212/SD 205, SD 425, SD 427, SD 430, SD 435, SD 439 / SD 429, SD 450, SD 625, SD 636, SD 650/52, SD 675, SD 712 / SD 710 / SD 670, SD 820A, SD 835, SD 845 / SD 850, SD 855, SDM439, SDM630, SDM660, ZZ_QCS605.
In all android releases (Android for MSM, Firefox OS for MSM, QRD Android) from CAF using the linux kernel, a potential buffer over flow could occur while processing the ndp event due to lack of check on the message length.
Lack of check on length parameter may cause buffer overflow while processing WMI commands in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wired Infrastructure and Networking in IPQ8074, MDM9206, MDM9607, MDM9640, MDM9650, MSM8996AU, QCA6174A, QCA6564, QCA6574, QCA6574AU, QCA6584, QCA6584AU, QCA8081, QCA9377, QCA9379, QCA9886, QCS605, SD 210/SD 212/SD 205, SD 425, SD 600, SD 625, SD 636, SD 675, SD 712 / SD 710 / SD 670, SD 820, SD 820A, SD 835, SD 845 / SD 850, SD 855, SD 8CX, SDA660, SDM630, SDM660, SDX20, SDX24, SM7150, SXR1130
When the buffer length passed is very large in WLAN, bounds check could be bypassed leading to potential buffer overwrite in Snapdragon Mobile in version SD 835, SD 845, SD 850, SDA660.
Escalation of privilege in Installer for Intel Extreme Tuning Utility before 6.4.1.21 may allow an authenticated user to potentially execute code or disclose information as administrator via local access.
In all android releases(Android for MSM, Firefox OS for MSM, QRD Android) from CAF using the linux kernel, Possible buffer overflow in TX and RX FIFOs of microcontroller in camera subsystem used to exchange commands and messages between Micro FW and CPP driver.
In all android releases (Android for MSM, Firefox OS for MSM, QRD Android) from CAF using the linux kernel, when requesting rssi timeout, access invalid memory may occur since local variable 'context' stack data of wlan function is free.
Buffer overflow can happen in WLAN module due to lack of validation of the input length in Snapdragon Mobile in version SD 845, SD 850, SDA660.