OSRAM SYLVANIA Osram Lightify Pro before 2016-07-26 uses only 8 hex digits for a PSK.
An issue was discovered in certain Apple products. iOS before 10.2 is affected. macOS before 10.12.2 is affected. watchOS before 3.1.3 is affected. The issue involves the "Security" component, which makes it easier for attackers to bypass cryptographic protection mechanisms by leveraging use of the 3DES cipher.
Exposure of information intended to be encrypted by some Zoom clients may lead to disclosure of sensitive information.
Shenzen Tenda Technology IP Camera CP3 V11.10.00.2211041355 was discovered to contain a hard-coded default password for root which is stored using weak encryption. This vulnerability allows attackers to connect to the TELNET service (or UART) by using the exposed credentials.
Joomla! core 1.7.1 allows information disclosure due to weak encryption
IBM Sterling Connect:Direct Web Services 1.0 and 6.0 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 209508.
JavaEZ is a library that adds new functions to make Java easier. A weakness in JavaEZ 1.6 allows force decryption of locked text by unauthorized actors. The issue is NOT critical for non-secure applications, however may be critical in a situation where the highest levels of security are required. This issue ONLY affects v1.6 and does not affect anything pre-1.6. The vulnerability has been patched in release 1.7. Currently, there is no way to fix the issue without upgrading.
The Web server in 1C:Enterprise 8 before 8.3.17.1851 sends base64 encoded credentials in the creds URL parameter.
IBM API Connect 2018.1 and 2018.4.1.2 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 155078.
A vulnerability has been identified in APOGEE PXC Series (BACnet) (All versions), APOGEE PXC Series (P2 Ethernet) (All versions), TALON TC Series (BACnet) (All versions). Affected devices contain a weak encryption mechanism based on a hard-coded key. This could allow an attacker to guess or decrypt the password from the cyphertext.
IBM Security Access Manager Appliance 9.0.1.0, 9.0.2.0, 9.0.3.0, 9.0.4.0, and 9.0.5.0 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 150018.
comforte SWAP 1049 through 1069 and 20.0.0 through 21.5.3 (as used in SSLOBJ on HPE NonStop SSL T0910, and in the comforte SecurCS, SecurFTP, SecurLib/SSL-AT, and SecurTN products), after executing the RELOAD CERTIFICATES command, does not ensure that clients use a strong TLS cipher suite, which makes it easier for remote attackers to defeat intended cryptographic protection mechanisms by sniffing the network. This is fixed in 21.6.0.
IBM Rational Engineering Lifecycle Manager 6.0 through 6.0.6 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 143798.
IBM Tivoli Storage Manager (IBM Spectrum Protect 7.1 and 8.1) uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 142649.
Rockwell Automation ThinManager product allows the use of medium strength ciphers. If the client requests an insecure cipher, a malicious actor could potentially decrypt traffic sent between the client and server API.
LibreOffice supports the storage of passwords for web connections in the user’s configuration database. The stored passwords are encrypted with a single master key provided by the user. A flaw in LibreOffice existed where the required initialization vector for encryption was always the same which weakens the security of the encryption making them vulnerable if an attacker has access to the user's configuration data. This issue affects: The Document Foundation LibreOffice 7.2 versions prior to 7.2.7; 7.3 versions prior to 7.3.1.
The Config-files of Horner Automation’s RCC 972 with firmware version 15.40 are encrypted with weak XOR encryption vulnerable to reverse engineering. This could allow an attacker to obtain credentials to run services such as File Transfer Protocol (FTP) and Hypertext Transfer Protocol (HTTP).
A CWE-326: Inadequate Encryption Strength vulnerability exists that could cause non-encrypted communication with the server when outdated versions of the ViewX client are used. Affected Product: ClearSCADA (All Versions), EcoStruxure Geo SCADA Expert 2019 (All Versions), EcoStruxure Geo SCADA Expert 2020 (All Versions)
IBM Security Verify Identity Manager 10.0 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 224919.
IBM Spectrum Scale 5.1.0 through 5.1.3.0 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 221012.
IBM Security Access Manager Appliance 10.0.0.0, 10.0.1.0, 10.0.2.0, and 10.0.3.0 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 225081.
An issue was discovered on MOXA EDS-G512E 5.1 build 16072215 devices. The password encryption method can be retrieved from the firmware. This encryption method is based on a chall value that is sent in cleartext as a POST parameter. An attacker could reverse the password encryption algorithm to retrieve it.
IBM DataPower Gateway 7.6.0.0 through 7.6.0.10, 7.5.2.0 through 7.5.2.17, 7.5.1.0 through 7.5.1.17, 7.5.0.0 through 7.5.0.18, and 7.7.0.0 through 7.7.1.3 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 144891.
IBM Tivoli Key Lifecycle Manager 3.0, 3.0.1, 4.0, and 4.1 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 212793.
IBM Data Risk Manager (iDNA) 2.0.6 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 207980.
EnroCrypt is a Python module for encryption and hashing. Prior to version 1.1.4, EnroCrypt used the MD5 hashing algorithm in the hashing file. Beginners who are unfamiliar with hashes can face problems as MD5 is considered an insecure hashing algorithm. The vulnerability is patched in v1.1.4 of the product. As a workaround, users can remove the `MD5` hashing function from the file `hashing.py`.
IBM Sterling B2B Integrator Standard Edition 5.2.0. 0 through 6.1.1.0 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 210171.
IBM Spectrum Copy Data Management 2.2.13 and earlier uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 211242.
IBM Tivoli Key Lifecycle Manager 3.0, 3.0.1, 4.0, and 4.1 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 212792.
An attacker could decipher the encryption and gain access to MDT AutoSave versions prior to v6.02.06.
Weak web transport security (Weak TLS): An attacker may be able to decrypt the data using attacks
In JetBrains Ktor before 1.5.0, a birthday attack on SessionStorage key was possible.
Dozzle is a realtime log viewer for docker containers. Before version 8.5.3, the app uses sha-256 as the hash for passwords, which leaves users susceptible to rainbow table attacks. The app switches to bcrypt, a more appropriate hash for passwords, in version 8.5.3.
An issue in DrayTek Vigor310 devices through 4.3.2.6 allows an attacker to obtain sensitive information because the httpd server of the Vigor management UI uses a static string for seeding the PRNG of OpenSSL.
Untangle Firewall NG before 16.0 uses MD5 for passwords.
A vulnerability has been found in multiple revisions of Emerson Rosemount X-STREAM Gas Analyzer. The affected products utilize a weak encryption algorithm for storage of sensitive data, which may allow an attacker to more easily obtain credentials used for access.
An issue was discovered on TP-Link TL-WR1043ND V2 devices. The credentials can be easily decoded and cracked by brute-force, WordList, or Rainbow Table attacks. Specifically, credentials in the "Authorization" cookie are encoded with URL encoding and base64, leading to easy decoding. Also, the username is cleartext, and the password is hashed with the MD5 algorithm (after decoding of the URL encoded string with base64).