IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 10.5, 11.1, and 11.5 is vulnerable to a buffer overflow, caused by improper bounds checking which could allow a local attacker to execute arbitrary code on the system with root privileges.
IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, 11.1, and 11.5 is vulnerable to a buffer overflow, caused by improper bounds checking which could allow a local attacker to execute arbitrary code on the system with root privileges. IBM X-Force ID: 174960.
IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, 11.1, and 11.5 db2fm is vulnerable to a buffer overflow, caused by improper bounds checking which could allow a local attacker to execute arbitrary code on the system with root privileges. IBM X-Force ID: 193661.
IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, 11.1, and 11.5 is vulnerable to a buffer overflow, caused by improper bounds checking which could allow a local attacker to execute arbitrary code on the system with root privileges. IBM X-Force ID: 178960.
The packet_set_ring function in net/packet/af_packet.c in the Linux kernel through 4.10.6 does not properly validate certain block-size data, which allows local users to cause a denial of service (integer signedness error and out-of-bounds write), or gain privileges (if the CAP_NET_RAW capability is held), via crafted system calls.
kernel/bpf/verifier.c in the Linux kernel through 5.15.14 allows local users to gain privileges because of the availability of pointer arithmetic via certain *_OR_NULL pointer types.
VMware Workspace ONE Access, Identity Manager and vRealize Automation contain a privilege escalation vulnerability due to improper permissions in support scripts. A malicious actor with local access can escalate privileges to 'root'.
The vmw_surface_define_ioctl function in drivers/gpu/drm/vmwgfx/vmwgfx_surface.c in the Linux kernel through 4.10.6 does not validate addition of certain levels data, which allows local users to trigger an integer overflow and out-of-bounds write, and cause a denial of service (system hang or crash) or possibly gain privileges, via a crafted ioctl call for a /dev/dri/renderD* device.
The freelist-randomization feature in mm/slab.c in the Linux kernel 4.8.x and 4.9.x before 4.9.5 allows local users to cause a denial of service (duplicate freelist entries and system crash) or possibly have unspecified other impact in opportunistic circumstances by leveraging the selection of a large value for a random number.
mwifiex_cmd_802_11_ad_hoc_start in drivers/net/wireless/marvell/mwifiex/join.c in the Linux kernel through 5.10.4 might allow remote attackers to execute arbitrary code via a long SSID value, aka CID-5c455c5ab332.
NVIDIA GPU Display Driver contains a vulnerability in the kernel mode layer handler where a NULL pointer dereference may lead to denial of service or potential escalation of privileges
A flaw out of bounds memory write in the Linux kernel UDF file system functionality was found in the way user triggers some file operation which triggers udf_write_fi(). A local user could use this flaw to crash the system or potentially
An integer overflow flaw was found in the Linux kernel’s virtio device driver code in the way a user triggers the vhost_vdpa_config_validate function. This flaw allows a local user to crash or potentially escalate their privileges on the system.
An out-of-bounds (OOB) memory write flaw was found in the Linux kernel’s watch_queue event notification subsystem. This flaw can overwrite parts of the kernel state, potentially allowing a local user to gain privileged access or cause a denial of service on the system.
The dccp_rcv_state_process function in net/dccp/input.c in the Linux kernel through 4.9.11 mishandles DCCP_PKT_REQUEST packet data structures in the LISTEN state, which allows local users to obtain root privileges or cause a denial of service (double free) via an application that makes an IPV6_RECVPKTINFO setsockopt system call.
In Qt 5.9.x through 5.15.x before 5.15.9 and 6.x before 6.2.4 on Linux and UNIX, QProcess could execute a binary from the current working directory when not found in the PATH.
A NULL pointer dereference flaw in Linux kernel versions prior to 5.11 may be seen if sco_sock_getsockopt function in net/bluetooth/sco.c do not have a sanity check for a socket connection, when using BT_SNDMTU/BT_RCVMTU for SCO sockets. This could allow a local attacker with a special user privilege to crash the system (DOS) or leak kernel internal information.
VMware Workstation Pro/Player contains an insecure library loading vulnerability via ALSA sound driver configuration files. Successful exploitation of this issue may allow unprivileged host users to escalate their privileges to root in a Linux host machine.
An issue was discovered in the Linux kernel before 5.9.3. io_uring takes a non-refcounted reference to the files_struct of the process that submitted a request, causing execve() to incorrectly optimize unshare_fd(), aka CID-0f2122045b94.
The KEYS subsystem in the Linux kernel before 3.18 allows local users to gain privileges or cause a denial of service (NULL pointer dereference and system crash) via vectors involving a NULL value for a certain match field, related to the keyring_search_iterator function in keyring.c.
VMware Horizon Agent for Linux (prior to 22.x) contains a local privilege escalation as a user is able to change the default shared folder location due to a vulnerable symbolic link. Successful exploitation can result in linking to a root owned file.
An issue was discovered in net/ipv6/ip6mr.c in the Linux kernel before 4.11. By setting a specific socket option, an attacker can control a pointer in kernel land and cause an inet_csk_listen_stop general protection fault, or potentially execute arbitrary code under certain circumstances. The issue can be triggered as root (e.g., inside a default LXC container or with the CAP_NET_ADMIN capability) or after namespace unsharing. This occurs because sk_type and protocol are not checked in the appropriate part of the ip6_mroute_* functions. NOTE: this affects Linux distributions that use 4.9.x longterm kernels before 4.9.187.
VMware Workspace ONE Access and Identity Manager contain a privilege escalation vulnerability. A malicious actor with local access can escalate privileges to 'root'.
A flaw was found in the way RTAS handled memory accesses in userspace to kernel communication. On a locked down (usually due to Secure Boot) guest system running on top of PowerVM or KVM hypervisors (pseries platform) a root like local user could use this flaw to further increase their privileges to that of a running kernel.
drivers/input/serio/i8042.c in the Linux kernel before 4.12.4 allows attackers to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact because the port->exists value can change after it is validated.
VMware Horizon Agent for Linux (prior to 22.x) contains a local privilege escalation that allows a user to escalate to root due to a vulnerable configuration file.
An issue was discovered in the Linux kernel before 4.14.11. A double free may be caused by the function allocate_trace_buffer in the file kernel/trace/trace.c.
The xfrm_replay_verify_len function in net/xfrm/xfrm_user.c in the Linux kernel through 4.10.6 does not validate certain size data after an XFRM_MSG_NEWAE update, which allows local users to obtain root privileges or cause a denial of service (heap-based out-of-bounds access) by leveraging the CAP_NET_ADMIN capability, as demonstrated during a Pwn2Own competition at CanSecWest 2017 for the Ubuntu 16.10 linux-image-* package 4.8.0.41.52.
IBM InfoSphere Information Server 11.7 could allow a locally authenticated attacker to execute arbitrary commands on the system by sending a specially crafted request.
crypto/pcrypt.c in the Linux kernel before 4.14.13 mishandles freeing instances, allowing a local user able to access the AF_ALG-based AEAD interface (CONFIG_CRYPTO_USER_API_AEAD) and pcrypt (CONFIG_CRYPTO_PCRYPT) to cause a denial of service (kfree of an incorrect pointer) or possibly have unspecified other impact by executing a crafted sequence of system calls.
kernel/bpf/verifier.c in the Linux kernel through 4.14.8 allows local users to cause a denial of service (memory corruption) or possibly have unspecified other impact by leveraging mishandling of 32-bit ALU ops.
kernel/bpf/verifier.c in the Linux kernel through 4.14.8 allows local users to cause a denial of service (memory corruption) or possibly have unspecified other impact by leveraging incorrect BPF_RSH signed bounds calculations.
The HMAC implementation (crypto/hmac.c) in the Linux kernel before 4.14.8 does not validate that the underlying cryptographic hash algorithm is unkeyed, allowing a local attacker able to use the AF_ALG-based hash interface (CONFIG_CRYPTO_USER_API_HASH) and the SHA-3 hash algorithm (CONFIG_CRYPTO_SHA3) to cause a kernel stack buffer overflow by executing a crafted sequence of system calls that encounter a missing SHA-3 initialization.
The Salsa20 encryption algorithm in the Linux kernel before 4.14.8 does not correctly handle zero-length inputs, allowing a local attacker able to use the AF_ALG-based skcipher interface (CONFIG_CRYPTO_USER_API_SKCIPHER) to cause a denial of service (uninitialized-memory free and kernel crash) or have unspecified other impact by executing a crafted sequence of system calls that use the blkcipher_walk API. Both the generic implementation (crypto/salsa20_generic.c) and x86 implementation (arch/x86/crypto/salsa20_glue.c) of Salsa20 were vulnerable.
kernel/bpf/verifier.c in the Linux kernel through 4.14.8 allows local users to cause a denial of service (memory corruption) or possibly have unspecified other impact by leveraging improper use of pointers in place of scalars.
kernel/bpf/verifier.c in the Linux kernel 4.9.x through 4.9.71 does not check the relationship between pointer values and the BPF stack, which allows local users to cause a denial of service (integer overflow or invalid memory access) or possibly have unspecified other impact.
kernel/bpf/verifier.c in the Linux kernel through 4.14.8 allows local users to cause a denial of service (integer overflow and memory corruption) or possibly have unspecified other impact by leveraging unrestricted integer values for pointer arithmetic.
kernel/bpf/verifier.c in the Linux kernel through 4.14.8 allows local users to cause a denial of service (memory corruption) or possibly have unspecified other impact by leveraging the lack of stack-pointer alignment enforcement.
The check_stack_boundary function in kernel/bpf/verifier.c in the Linux kernel through 4.14.8 allows local users to cause a denial of service (memory corruption) or possibly have unspecified other impact by leveraging mishandling of invalid variable stack read operations.
The usb_destroy_configuration function in drivers/usb/core/config.c in the USB core subsystem in the Linux kernel through 4.14.5 does not consider the maximum number of configurations and interfaces before attempting to release resources, which allows local users to cause a denial of service (out-of-bounds write access) or possibly have unspecified other impact via a crafted USB device.
kernel/trace/trace_syscalls.c in the Linux kernel through 3.17.2 does not properly handle private syscall numbers during use of the ftrace subsystem, which allows local users to gain privileges or cause a denial of service (invalid pointer dereference) via a crafted application.
A flaw was found in unrestricted eBPF usage by the BPF_BTF_LOAD, leading to a possible out-of-bounds memory write in the Linux kernel’s BPF subsystem due to the way a user loads BTF. This flaw allows a local user to crash or escalate their privileges on the system.
Unspecified vulnerability in DB2LICD in IBM DB2 UDB 9.1 before Fixpak 4 has unknown impact and attack vectors, related to creation of an "insecure directory."
A flaw was found in the way the "flags" member of the new pipe buffer structure was lacking proper initialization in copy_page_to_iter_pipe and push_pipe functions in the Linux kernel and could thus contain stale values. An unprivileged local user could use this flaw to write to pages in the page cache backed by read only files and as such escalate their privileges on the system.
Integer Overflow or Wraparound vulnerability in io_uring of Linux Kernel allows local attacker to cause memory corruption and escalate privileges to root. This issue affects: Linux Kernel versions prior to 5.4.189; version 5.4.24 and later versions.
An issue was discovered in drivers/acpi/acpi_configfs.c in the Linux kernel before 5.7.7. Injection of malicious ACPI tables via configfs could be used by attackers to bypass lockdown and secure boot restrictions, aka CID-75b0cea7bf30.
The cifs_iovec_write function in fs/cifs/file.c in the Linux kernel through 3.13.5 does not properly handle uncached write operations that copy fewer than the requested number of bytes, which allows local users to obtain sensitive information from kernel memory, cause a denial of service (memory corruption and system crash), or possibly gain privileges via a writev system call with a crafted pointer.
A heap-based buffer overflow flaw was found in the way the legacy_parse_param function in the Filesystem Context functionality of the Linux kernel verified the supplied parameters length. An unprivileged (in case of unprivileged user namespaces enabled, otherwise needs namespaced CAP_SYS_ADMIN privilege) local user able to open a filesystem that does not support the Filesystem Context API (and thus fallbacks to legacy handling) could use this flaw to escalate their privileges on the system.
The (1) get_user and (2) put_user API functions in the Linux kernel before 3.5.5 on the v6k and v7 ARM platforms do not validate certain addresses, which allows attackers to read or modify the contents of arbitrary kernel memory locations via a crafted application, as exploited in the wild against Android devices in October and November 2013.
Insecure permissions in Nakivo Backup & Replication Director version 9.4.0.r43656 on Linux allow local users to access the Nakivo Director web interface and gain root privileges. This occurs because the database containing the users of the web application and the password-recovery secret value is readable.