Buffer overflow in hw/scsi-disk.c in the SCSI subsystem in QEMU before 0.15.2, as used by Xen, might allow local guest users with permission to access the CD-ROM to cause a denial of service (guest crash) via a crafted SAI READ CAPACITY SCSI command. NOTE: this is only a vulnerability when root has manually modified certain permissions or ACLs.
Xen 3.2.x through 4.4.x does not properly clean memory pages recovered from guests, which allows local guest OS users to obtain sensitive information via unspecified vectors.
Arm provides multiple helpers to clean & invalidate the cache for a given region. This is, for instance, used when allocating guest memory to ensure any writes (such as the ones during scrubbing) have reached memory before handing over the page to a guest. Unfortunately, the arithmetics in the helpers can overflow and would then result to skip the cache cleaning/invalidation. Therefore there is no guarantee when all the writes will reach the memory.
An issue was discovered in Xen through 4.9.x. Grant copying code made an implication that any grant pin would be accompanied by a suitable page reference. Other portions of code, however, did not match up with that assumption. When such a grant copy operation is being done on a grant of a dying domain, the assumption turns out wrong. A malicious guest administrator can cause hypervisor memory corruption, most likely resulting in host crash and a Denial of Service. Privilege escalation and information leaks cannot be ruled out.
The grant-table feature in Xen through 4.8.x does not ensure sufficient type counts for a GNTMAP_device_map and GNTMAP_host_map mapping, which allows guest OS users to cause a denial of service (count mismanagement and memory corruption) or obtain privileged host OS access, aka XSA-224 bug 2.
An issue was discovered in Xen through 4.12.x allowing 32-bit Arm guest OS users to cause a denial of service (out-of-bounds access) because certain bit iteration is mishandled. In a number of places bitmaps are being used by the hypervisor to track certain state. Iteration over all bits involves functions which may misbehave in certain corner cases: On 32-bit Arm accesses to bitmaps with bit a count which is a multiple of 32, an out of bounds access may occur. A malicious guest may cause a hypervisor crash or hang, resulting in a Denial of Service (DoS). All versions of Xen are vulnerable. 32-bit Arm systems are vulnerable. 64-bit Arm systems are not vulnerable.
The Ocaml xenstored implementation (oxenstored) in Xen 4.1.x, 4.2.x, and 4.3.x allows local guest domains to cause a denial of service (domain shutdown) via a large message reply.
Buffer overflow in Xen 4.7.x and earlier allows local x86 HVM guest OS administrators on guests running with shadow paging to cause a denial of service via a pagetable update.
The x86-64 kernel system-call functionality in Xen 4.1.2 and earlier, as used in Citrix XenServer 6.0.2 and earlier and other products; Oracle Solaris 11 and earlier; illumos before r13724; Joyent SmartOS before 20120614T184600Z; FreeBSD before 9.0-RELEASE-p3; NetBSD 6.0 Beta and earlier; Microsoft Windows Server 2008 R2 and R2 SP1 and Windows 7 Gold and SP1; and possibly other operating systems, when running on an Intel processor, incorrectly uses the sysret path in cases where a certain address is not a canonical address, which allows local users to gain privileges via a crafted application. NOTE: because this issue is due to incorrect use of the Intel specification, it should have been split into separate identifiers; however, there was some value in preserving the original mapping of the multi-codebase coordinated-disclosure effort to a single identifier.
Buffer overflow in hw/pt-msi.c in Xen 4.6.x and earlier, when using the qemu-xen-traditional (aka qemu-dm) device model, allows local x86 HVM guest administrators to gain privileges by leveraging a system with access to a passed-through MSI-X capable physical PCI device and MSI-X table entries, related to a "write path."
Race condition in the relinquish_memory function in arch/arm/domain.c in Xen 4.6.x and earlier allows local domains with partial management control to cause a denial of service (host crash) via vectors involving the destruction of a domain and using XENMEM_decrease_reservation to reduce the memory of the domain.
In Xen 4.10, new infrastructure was introduced as part of an overhaul to how MSR emulation happens for guests. Unfortunately, one tracking structure isn't freed when a vcpu is destroyed. This allows guest OS administrators to cause a denial of service (host OS memory consumption) by rebooting many times.
The Floppy Disk Controller (FDC) in QEMU, as used in Xen 4.5.x and earlier and KVM, allows local guest users to cause a denial of service (out-of-bounds write and guest crash) or possibly execute arbitrary code via the (1) FD_CMD_READ_ID, (2) FD_CMD_DRIVE_SPECIFICATION_COMMAND, or other unspecified commands, aka VENOM.
The IBM Power 9 OP910, OP920, and FW910 boot firmware's bootloader is responsible for loading and validating the initial boot firmware image that drives the rest of the system's hardware initialization. The bootloader firmware contains a buffer overflow vulnerability such that, if an attacker were able to replace the initial boot firmware image with a very carefully crafted and sufficiently large, malicious replacement, it could cause the bootloader, during the load of that image, to overwrite its own instruction memory and circumvent secure boot protections, install trojans, etc. IBM X-Force ID: 154345.
Array index error in the apply_rcs_change function in rcs.c in CVS 1.11.23 allows local users to gain privileges via an RCS file containing crafted delta fragment changes that trigger a heap-based buffer overflow.
The rt_setgate function in the kernel in Apple iOS before 8 and Apple TV before 7 allows local users to gain privileges or cause a denial of service (out-of-bounds read and device crash) via a crafted call.
The Disk Images component in Apple OS X before 10.11.2 and tvOS before 9.1 allows local users to gain privileges or cause a denial of service (memory corruption) via a crafted disk image.
In the HDF5 1.8.16 library's failure to check if the number of dimensions for an array read from the file is within the bounds of the space allocated for it, a heap-based buffer overflow will occur, potentially leading to arbitrary code execution.
Stack-based buffer overflow in SafeNet SoftRemote 10.8.5 (Build 2) and 10.3.5 (Build 6), and possibly other versions before 10.8.9, allows local users to execute arbitrary code via a long string in a (1) TREENAME or (2) GROUPNAME Policy file (spd).
Heap-based buffer overflow in the logi_dj_ll_raw_request function in drivers/hid/hid-logitech-dj.c in the Linux kernel before 3.16.2 allows physically proximate attackers to cause a denial of service (system crash) or possibly execute arbitrary code via a crafted device that specifies a large report size for an LED report.
Race condition in the worker_update_monitors_config function in SPICE 0.12.4 allows a remote authenticated guest user to cause a denial of service (heap-based memory corruption and QEMU-KVM crash) or possibly execute arbitrary code on the host via unspecified vectors.
Array index error in the logi_dj_raw_event function in drivers/hid/hid-logitech-dj.c in the Linux kernel before 3.16.2 allows physically proximate attackers to execute arbitrary code or cause a denial of service (invalid kfree) via a crafted device that provides a malformed REPORT_TYPE_NOTIF_DEVICE_UNPAIRED value.
Multiple stack-based buffer overflows in the magicmouse_raw_event function in drivers/hid/hid-magicmouse.c in the Magic Mouse HID driver in the Linux kernel through 3.16.3 allow physically proximate attackers to cause a denial of service (system crash) or possibly execute arbitrary code via a crafted device that provides a large amount of (1) EHCI or (2) XHCI data associated with an event.
Buffer overflow in the picolcd_raw_event function in devices/hid/hid-picolcd_core.c in the PicoLCD HID device driver in the Linux kernel through 3.16.3, as used in Android on Nexus 7 devices, allows physically proximate attackers to cause a denial of service (system crash) or possibly execute arbitrary code via a crafted device that sends a large report.
The (1) CimView and (2) CimEdit components in GE Proficy HMI/SCADA-CIMPLICITY 8.2 and earlier allow remote attackers to gain privileges via a crafted CIMPLICITY screen (aka .CIM) file.
The tun_chr_poll function in drivers/net/tun.c in the tun subsystem in the Linux kernel 2.6.30 and 2.6.30.1, when the -fno-delete-null-pointer-checks gcc option is omitted, allows local users to gain privileges via vectors involving a NULL pointer dereference and an mmap of /dev/net/tun, a different vulnerability than CVE-2009-1894.
Buffer overflow in multiscan.exe in Check Point ZoneAlarm Security Suite 7.0.483.000 and 8.0.020.000 allows local users to execute arbitrary code via a file or directory with a long path. NOTE: some of these details are obtained from third party information.
The Windows Kernel-Mode Drivers component on Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, Windows 10 Gold, 1511, 1607, and 1703, and Windows Server 2016 allows an elevation of privilege vulnerability when the Win32k component fails to properly handle objects in memory, aka "Win32k Elevation of Privilege Vulnerability".. This CVE ID is unique from CVE-2017-8720.
Multiple stack-based buffer overflows in an unspecified DLL file in Advantech WebAccess before 8.0_20150816 allow remote attackers to execute arbitrary code via a crafted file that triggers long string arguments to functions.
Stack-based buffer overflow in Microsoft Device IO Control in iphlpapi.dll in Microsoft Windows Vista Gold and SP1 allows local users in the Network Configuration Operator group to gain privileges or cause a denial of service (system crash) via a large invalid PrefixLength to the CreateIpForwardEntry2 method, as demonstrated by a "route add" command. NOTE: this issue might not cross privilege boundaries.
Heap-based buffer overflow in drivers/net/macsec.c in the MACsec module in the Linux kernel through 4.10.12 allows attackers to cause a denial of service or possibly have unspecified other impact by leveraging the use of a MAX_SKB_FRAGS+1 size in conjunction with the NETIF_F_FRAGLIST feature, leading to an error in the skb_to_sgvec function.
VMware Workstation (12.x prior to 12.5.3) and Horizon View Client (4.x prior to 4.4.0) contain multiple heap buffer-overflow vulnerabilities in JPEG2000 parser in the TPView.dll. On Workstation, this may allow a guest to execute code or perform a Denial of Service on the Windows OS that runs Workstation. In the case of a Horizon View Client, this may allow a View desktop to execute code or perform a Denial of Service on the Windows OS that runs the Horizon View Client. Exploitation is only possible if virtual printing has been enabled. This feature is not enabled by default on Workstation but it is enabled by default on Horizon View.
Buffer overflow in ndp in IBM AIX 6.1.0 through 6.1.2, when the netcd daemon is running, allows local users to gain privileges via unspecified vectors.
Multiple stack-based buffer overflows in Command EXEC in Cisco IOS allow local users to gain privileges via unspecified vectors, aka (1) PSIRT-0474975756 and (2) PSIRT-0388256465. NOTE: as of 20071016, the only disclosure is a vague pre-advisory with no actionable information. However, since it is from a well-known researcher, it is being assigned a CVE identifier for tracking purposes.
The uio_mmap_physical function in drivers/uio/uio.c in the Linux kernel before 3.12 does not validate the size of a memory block, which allows local users to cause a denial of service (memory corruption) or possibly gain privileges via crafted mmap operations, a different vulnerability than CVE-2013-4511.
Stack-based buffer overflow in udisks before 1.0.5 and 2.x before 2.1.3 allows local users to cause a denial of service (crash) and possibly execute arbitrary code via a long mount point.
Stack-based buffer overflow in op before Changeset 563, when xauth support is enabled, allows local users to gain privileges via a long XAUTHORITY environment variable.
The futex_wait function in kernel/futex.c in the Linux kernel before 2.6.37 does not properly maintain a certain reference count during requeue operations, which allows local users to cause a denial of service (use-after-free and system crash) or possibly gain privileges via a crafted application that triggers a zero count.
Stack-based buffer overflow in sys/kern/vfs_mount.c in the kernel in FreeBSD 7.0 and 7.1, when vfs.usermount is enabled, allows local users to gain privileges via a crafted (1) mount or (2) nmount system call, related to copying of "user defined data" in "certain error conditions."
The EPATHOBJ::pprFlattenRec function in win32k.sys in the kernel-mode drivers in Microsoft Windows XP SP2 and SP3, Windows Server 2003 SP2, Windows Vista SP2, Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8, and Windows Server 2012 does not properly initialize a pointer for the next object in a certain list, which allows local users to obtain write access to the PATHRECORD chain, and consequently gain privileges, by triggering excessive consumption of paged memory and then making many FlattenPath function calls, aka "Win32k Read AV Vulnerability."
Buffer overflow in the qeth_snmp_command function in drivers/s390/net/qeth_core_main.c in the Linux kernel through 3.12.1 allows local users to cause a denial of service or possibly have unspecified other impact via an SNMP ioctl call with a length value that is incompatible with the command-buffer size.
Multiple stack-based buffer overflows in net/netfilter/ipvs/ip_vs_ctl.c in the Linux kernel before 2.6.33, when CONFIG_IP_VS is used, allow local users to gain privileges by leveraging the CAP_NET_ADMIN capability for (1) a getsockopt system call, related to the do_ip_vs_get_ctl function, or (2) a setsockopt system call, related to the do_ip_vs_set_ctl function.
Stack-based buffer overflow in the LRPC client in Microsoft Windows XP SP2 and SP3 and Server 2003 SP2 allows local users to gain privileges by operating an LRPC server that sends a crafted LPC port message, aka "LRPC Client Buffer Overrun Vulnerability."
Unspecified vulnerability in VMCI in VMware Workstation 6 before 6.0.4 build 93057, VMware Player 2 before 2.0.4 build 93057, and VMware ACE 2 before 2.0.2 build 93057 on Windows allows guest OS users to execute arbitrary code on the host OS via unspecified vectors.
Heap-based buffer overflow in the VMware Host Guest File System (HGFS) in VMware Workstation 6 before 6.0.4 build 93057, VMware Player 2 before 2.0.4 build 93057, VMware ACE 2 before 2.0.2 build 93057, and VMware Fusion before 1.1.2 build 87978, when folder sharing is used, allows guest OS users to execute arbitrary code on the host OS via unspecified vectors.
A flaw was found in the Linux Kernel in versions after 4.5-rc1 in the way mremap handled DAX Huge Pages. This flaw allows a local attacker with access to a DAX enabled storage to escalate their privileges on the system.
Multiple stack-based buffer overflows in Symark PowerBroker 2.8 through 5.0.1 allow local users to gain privileges via a long argv[0] string when executing (1) pbrun, (2) pbsh, or (3) pbksh. NOTE: the product is often installed in environments with trust relationships that facilitate subsequent remote compromises.
Memory Corruption Privilege Escalation vulnerabilities in Trend Micro OfficeScan 11.0 and XG allows local attackers to execute arbitrary code and escalate privileges to resources normally reserved for the kernel on vulnerable installations by exploiting tmwfp.sys. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit the vulnerability.
VMware Workstation (12.x prior to 12.5.3) and Horizon View Client (4.x prior to 4.4.0) contain a heap buffer-overflow vulnerability in TrueType Font (TTF) parser in the TPView.dll. On Workstation, this may allow a guest to execute code or perform a Denial of Service on the Windows OS that runs Workstation. In the case of a Horizon View Client, this may allow a View desktop to execute code or perform a Denial of Service on the Windows OS that runs the Horizon View Client. Exploitation is only possible if virtual printing has been enabled. This feature is not enabled by default on Workstation but it is enabled by default on Horizon View.
Buffer overflow in the readfile function in CPE17 Autorun Killer 1.7.1 and earlier allows physically proximate attackers to execute arbitrary code via a crafted inf file.