Insufficient restrictions on what can be done with Apple Events in Google Chrome on macOS prior to 72.0.3626.81 allowed a local attacker to execute JavaScript via Apple Events.
In Android releases from CAF using the linux kernel (Android for MSM, Firefox OS for MSM, QRD Android) before security patch level 2018-06-05, while processing a StrHwPlatform with length smaller than EFICHIPINFO_MAX_ID_LENGTH, an array out of bounds access may occur.
In Android for MSM, Firefox OS for MSM, QRD Android, with all Android releases from CAF using the Linux kernel, improper input validation for p2p_noa_info in wma_send_bcn_buf_ll() which is received from firmware leads to potential buffer overflow.
In Android for MSM, Firefox OS for MSM, QRD Android, with all Android releases from CAF using the Linux kernel, improper input validation for num_vdev_mac_entries in wma_pdev_hw_mode_transition_evt_handler(), which is received from firmware, leads to potential buffer overflow.
In Android for MSM, Firefox OS for MSM, QRD Android, with all Android releases from CAF using the Linux kernel, improper input validation for wmi_event->num_vdev_mac_entries in wma_pdev_set_hw_mode_resp_evt_handler(), which is received from firmware, leads to potential buffer overflow.
In Android for MSM, Firefox OS for MSM, QRD Android, with all Android releases from CAF using the Linux kernel, improper input validation for nlo_event in wma_nlo_match_evt_handler(), which is received from firmware, leads to potential out of bound memory access.
In Android for MSM, Firefox OS for MSM, QRD Android, with all Android releases from CAF using the Linux kernel, improper input validation for vdev_id in wma_unified_bcntx_status_event_handler() which is received from firmware leads to potential out of bounds memory read.
In Android for MSM, Firefox OS for MSM, QRD Android, with all Android releases from CAF using the Linux kernel, an invalid input of firmware size (negative value) from user space can potentially lead to the memory leak or buffer overflow during the WLAN cal data store operation.
In Settings, there is a possible way to make the user enable WiFi due to improper input validation. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-12LAndroid ID: A-199176115
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.FractionalAvgPoolGrad` can be tricked into accessing data outside of bounds of heap allocated buffers. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/fractional_avg_pool_op.cc#L205) does not validate that the input tensor is non-empty. Thus, code constructs an empty `EigenDoubleMatrixMap` and then accesses this buffer with indices that are outside of the empty area. We have patched the issue in GitHub commit 0f931751fb20f565c4e94aa6df58d54a003cdb30. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a read from outside of bounds of heap allocated data by sending invalid arguments to `tf.raw_ops.ResourceScatterUpdate`. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L919-L923) has an incomplete validation of the relationship between the shapes of `indices` and `updates`: instead of checking that the shape of `indices` is a prefix of the shape of `updates` (so that broadcasting can happen), code only checks that the number of elements in these two tensors are in a divisibility relationship. We have patched the issue in GitHub commit 01cff3f986259d661103412a20745928c727326f. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
In the function msm_pcm_hw_params() in Android for MSM, Firefox OS for MSM, and QRD Android before 2017-09-19, the return value of q6asm_open_shared_io() is not checked properly potentially leading to a possible dangling pointer access.
NVIDIA Tegra kernel driver contains a vulnerability in NVIDIA NVDEC, where a user with high privileges might be able to read from or write to a memory location that is outside the intended boundary of the buffer, which may lead to denial of service, Information disclosure, loss of Integrity, or possible escalation of privileges.
Improper validation check vulnerability in PackageManager prior to SMR July-2021 Release 1 allows untrusted applications to get dangerous level permission without user confirmation in limited circumstances.
Improper input validation vulnerability in AR Emoji Editor prior to version 4.4.03.5 in Android Q(10.0) and above allows untrusted applications to access arbitrary files with an escalated privilege.
An improper validation vulnerability in FilterProvider prior to SMR Dec-2021 Release 1 allows local arbitrary code execution.
In kisd, there is a possible out of bounds read due to improper input validation. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Product: Android; Versions: Android-11; Patch ID: ALPS05449968.
NVIDIA SHIELD TV, all versions prior to 8.2.2, contains a vulnerability in the NVDEC component, in which an attacker can read from or write to a memory location that is outside the intended boundary of the buffer, which may lead to denial of service or escalation of privileges.
In all android releases(Android for MSM, Firefox OS for MSM, QRD Android) from CAF using the linux kernel, while processing the boot image header, an out of bounds read can occur in boot.
In Parcel.writeMapInternal of Parcel.java, there is a possible parcel serialization/deserialization mismatch due to improper input validation. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation. Product: Android. Versions: Android-7.0 Android-7.1.1 Android-7.1.2 Android-8.0 Android-8.1 Android-9. Android ID: A-112859604
TensorFlow is an end-to-end open source platform for machine learning. In affected versions it is possible to nest a `tf.map_fn` within another `tf.map_fn` call. However, if the input tensor is a `RaggedTensor` and there is no function signature provided, code assumes the output is a fully specified tensor and fills output buffer with uninitialized contents from the heap. The `t` and `z` outputs should be identical, however this is not the case. The last row of `t` contains data from the heap which can be used to leak other memory information. The bug lies in the conversion from a `Variant` tensor to a `RaggedTensor`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/ragged_tensor_from_variant_op.cc#L177-L190) does not check that all inner shapes match and this results in the additional dimensions. The same implementation can result in data loss, if input tensor is tweaked. We have patched the issue in GitHub commit 4e2565483d0ffcadc719bd44893fb7f609bb5f12. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Insufficiently sanitized distributed objects in Updater in Google Chrome on macOS prior to 66.0.3359.117 allowed a local attacker to execute arbitrary code via an executable file.
While processing the system path, an out of bounds access can occur in Android releases from CAF using the linux kernel (Android for MSM, Firefox OS for MSM, QRD Android) before security patch level 2018-06-05.
Insufficient file type enforcement in Extensions API in Google Chrome prior to 68.0.3440.75 allowed a remote attacker who had compromised the renderer process to perform privilege escalation via a crafted Chrome Extension.
A buffer over-read can occur during a fast initial link setup (FILS) connection in Android releases from CAF using the linux kernel (Android for MSM, Firefox OS for MSM, QRD Android) before security patch level 2018-06-05.
In the ADSP RPC driver in Android releases from CAF using the linux kernel (Android for MSM, Firefox OS for MSM, QRD Android) before security patch level 2018-06-05, an arbitrary kernel write can occur.
In nci_proc_rf_management_ntf of nci_hrcv.cc, there is a possible out of bounds read due to a missing bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-11Android ID: A-164440989
services/audioflinger/Effects.cpp in mediaserver in Android 4.x before 4.4.4, 5.0.x before 5.0.2, 5.1.x before 5.1.1, and 6.x before 2016-08-01 does not validate the reply size for an AudioFlinger effect command, which allows attackers to gain privileges via a crafted application, aka internal bug 29251553.
Improper validation vulnerability in CACertificateInfo prior to SMR Jul-2022 Release 1 allows attackers to launch certain activities.
Improper validation vulnerability in ucmRetParcelable of KnoxSDK prior to SMR Jul-2022 Release 1 allows attackers to launch certain activities.
In all android releases(Android for MSM, Firefox OS for MSM, QRD Android) from CAF using the linux kernel, Buffer overread may occur due to non-null terminated strings while processing vsprintf in camera jpeg driver.
In all android releases (Android for MSM, Firefox OS for MSM, QRD Android) from CAF using the linux kernel, while processing start bss request from upper layer, out of bounds read occurs if ssid length is greater than maximum.
In all android releases (Android for MSM, Firefox OS for MSM, QRD Android) from CAF using the linux kernel, while processing diag event after associating to a network out of bounds read occurs if ssid of the network joined is greater than max limit.
In all android releases (Android for MSM, Firefox OS for MSM, QRD Android) from CAF using the linux kernel, lack of check of input received from userspace before copying into buffer can lead to potential array overflow in WLAN.
Unprotected component vulnerability in DeviceSearchTrampoline in SecSettingsIntelligence prior to SMR Jun-2022 Release 1 allows local attackers to launch activities of SecSettingsIntelligence.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions due to incomplete validation in MKL implementation of requantization, an attacker can trigger undefined behavior via binding a reference to a null pointer or can access data outside the bounds of heap allocated arrays. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/mkl/mkl_requantization_range_per_channel_op.cc) does not validate the dimensions of the `input` tensor. A similar issue occurs in `MklRequantizePerChannelOp`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/mkl/mkl_requantize_per_channel_op.cc) does not perform full validation for all the input arguments. We have patched the issue in GitHub commit 9e62869465573cb2d9b5053f1fa02a81fce21d69 and in the Github commit 203214568f5bc237603dbab6e1fd389f1572f5c9. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
In phNxpNciHal_send_ext_cmd of phNxpNciHal_ext.cc, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege in the NFC server with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-11Android ID: A-153731369
TensorFlow is an end-to-end open source platform for machine learning. When restoring tensors via raw APIs, if the tensor name is not provided, TensorFlow can be tricked into dereferencing a null pointer. Alternatively, attackers can read memory outside the bounds of heap allocated data by providing some tensor names but not enough for a successful restoration. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/kernels/save_restore_tensor.cc#L158-L159) retrieves the tensor list corresponding to the `tensor_name` user controlled input and immediately retrieves the tensor at the restoration index (controlled via `preferred_shard` argument). This occurs without validating that the provided list has enough values. If the list is empty this results in dereferencing a null pointer (undefined behavior). If, however, the list has some elements, if the restoration index is outside the bounds this results in heap OOB read. We have patched the issue in GitHub commit 9e82dce6e6bd1f36a57e08fa85af213e2b2f2622. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
NVIDIA Tegra Gralloc module contains a vulnerability in driver in which it does not validate input parameter of the registerbuffer API, which may lead to arbitrary code execution, denial of service, or escalation of privileges. Android ID: A-62540032 Severity Rating: High Version: N/A.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all binary cwise operations that don't require broadcasting (e.g., gradients of binary cwise operations). The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/cwise_ops_common.h#L264) assumes that the two inputs have exactly the same number of elements but does not check that. Hence, when the eigen functor executes it triggers heap OOB reads and undefined behavior due to binding to nullptr. We have patched the issue in GitHub commit 93f428fd1768df147171ed674fee1fc5ab8309ec. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions due to incomplete validation in `tf.raw_ops.QuantizeV2`, an attacker can trigger undefined behavior via binding a reference to a null pointer or can access data outside the bounds of heap allocated arrays. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/quantize_op.cc#L59) has some validation but does not check that `min_range` and `max_range` both have the same non-zero number of elements. If `axis` is provided (i.e., not `-1`), then validation should check that it is a value in range for the rank of `input` tensor and then the lengths of `min_range` and `max_range` inputs match the `axis` dimension of the `input` tensor. We have patched the issue in GitHub commit 6da6620efad397c85493b8f8667b821403516708. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
NVIDIA Tegra TLK Widevine Trust Application contains a vulnerability in which missing the input parameter checking of video metadata count may lead to Arbitrary Code Execution, Denial of Service or Escalation of Privileges. Android ID: A-72315075. Severity Rating: High. Version: N/A.
While processing the USB StrSerialDescriptor array, an array index out of bounds can occur in Android releases from CAF using the linux kernel (Android for MSM, Firefox OS for MSM, QRD Android) before security patch level 2018-06-05.
An issue was discovered on Samsung mobile devices with P(9.0) (Exynos chipsets) software. Kernel Wi-Fi drivers allow out-of-bounds Read or Write operations (e.g., a buffer overflow). The Samsung IDs are SVE-2019-16125, SVE-2019-16134, SVE-2019-16158, SVE-2019-16159, SVE-2019-16319, SVE-2019-16320, SVE-2019-16337, SVE-2019-16464, SVE-2019-16465, SVE-2019-16467 (March 2020).
Buffer overflow can occur due to improper input validation in multiple WMA event handler functions in all Android releases from CAF (Android for MSM, Firefox OS for MSM, QRD Android) using the Linux Kernel.
Improper input validation in DSP driver prior to SMR Apr-2022 Release 1 allows out-of-bounds write by integer overflow.
In the Android kernel in the mnh driver there is a possible out of bounds write due to improper input validation. This could lead to escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.
In the Android kernel in the FingerTipS touchscreen driver there is a possible out of bounds write due to improper input validation. This could lead to a local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.
In nfa_hciu_send_msg of nfa_hci_utils.cc, there is a possible out of bounds write due to improper input validation. This could lead to local escalation of privilege in the NFC server with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-10Android ID: A-124521372
In screencap, there is a possible command injection due to improper input validation. This could lead to local escalation of privilege in a system process with User execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-11Android ID: A-123230379