In writeThrowable of AndroidFuture.java, there is a possible parcel serialization/deserialization mismatch due to improper input validation. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-11Android ID: A-197228210
cPanel before 62.0.17 allows arbitrary code execution during account modification (SEC-220).
win32k.sys in the kernel-mode drivers in Microsoft Windows XP SP2 and SP3, Windows Server 2003 SP2, Windows Vista SP2, Windows Server 2008 SP2, R2, and R2 SP1, and Windows 7 Gold and SP1 does not properly handle user-mode input passed to kernel mode for driver objects, which allows local users to gain privileges via a crafted application, aka "Clipboard Format Atom Name Handling Vulnerability."
cPanel before 62.0.17 allows code execution in the context of the root account via a long DocumentRoot path (SEC-225).
In Android for MSM, Firefox OS for MSM, QRD Android, with all Android releases from CAF using the Linux kernel, improper input validation for p2p_noa_info in wma_send_bcn_buf_ll() which is received from firmware leads to potential buffer overflow.
cPanel before 64.0.21 allows code execution in the context of the root account via a SET_VHOST_LANG_PACKAGE multilang adminbin call (SEC-237).
In Android for MSM, Firefox OS for MSM, QRD Android, with all Android releases from CAF using the Linux kernel, improper input validation for nlo_event in wma_nlo_match_evt_handler(), which is received from firmware, leads to potential out of bound memory access.
QSEE unload attempt on a 3rd party TEE without previously loading results in a data abort in snapdragon automobile and snapdragon mobile in versions MSM8996AU, SD 410/12, SD 425, SD 427, SD 430, SD 435, SD 439 / SD 429, SD 450, SD 615/16/SD 415, SD 625, SD 632, SD 636, SD 650/52, SD 712 / SD 710 / SD 670, SD 810, SD 820, SD 820A, SD 835, SDA660, SDM439, SDM630, SDM660, SDX24, Snapdragon_High_Med_2016, SXR1130.
On Samsung mobile devices with L(5.x), M(6.x), and N(7.x) software and Exynos chipsets, attackers can execute arbitrary code in the bootloader because S Boot omits a size check during a copy of ramfs data to memory. The Samsung ID is SVE-2017-10598.
A potential vulnerability in the SMI function to access EEPROM in some ThinkPad models may allow an attacker with local access and elevated privileges to execute arbitrary code.
An issue was discovered in net/ipv6/ip6mr.c in the Linux kernel before 4.11. By setting a specific socket option, an attacker can control a pointer in kernel land and cause an inet_csk_listen_stop general protection fault, or potentially execute arbitrary code under certain circumstances. The issue can be triggered as root (e.g., inside a default LXC container or with the CAP_NET_ADMIN capability) or after namespace unsharing. This occurs because sk_type and protocol are not checked in the appropriate part of the ip6_mroute_* functions. NOTE: this affects Linux distributions that use 4.9.x longterm kernels before 4.9.187.
Dell BIOS contains an improper input validation vulnerability. A local authenticated malicious user may potentially exploit this vulnerability by using an SMI to gain arbitrary code execution in SMRAM.
A potential vulnerability in the SMI callback function that saves and restore boot script tables used for resuming from sleep state in some ThinkCentre and ThinkStation models may allow an attacker with local access and elevated privileges to execute arbitrary code.
The sock_alloc_send_pskb function in net/core/sock.c in the Linux kernel before 3.4.5 does not properly validate a certain length value, which allows local users to cause a denial of service (heap-based buffer overflow and system crash) or possibly gain privileges by leveraging access to a TUN/TAP device.
Dell BIOS contains an improper input validation vulnerability. A local authenticated malicious user may potentially exploit this vulnerability by using an SMI to gain arbitrary code execution in SMRAM.
Dell BIOS contains an improper input validation vulnerability. A local authenticated malicious user may potentially exploit this vulnerability by using an SMI to gain arbitrary code execution in SMRAM.
Dell BIOS contains an improper input validation vulnerability. A local authenticated malicious user may potentially exploit this vulnerability by using an SMI to gain arbitrary code execution in SMRAM.
Dell BIOS contains an improper input validation vulnerability. A local authenticated malicious user may potentially exploit this vulnerability by using an SMI to gain arbitrary code execution in SMRAM.
In TG Soft Vir.IT eXplorer Lite 8.5.65, the driver file (VIRAGTLT.SYS) allows local users to cause a denial of service (BSOD) or possibly have unspecified other impact because of not validating input values from IOCtl 0x8273E080.
In TG Soft Vir.IT eXplorer Lite 8.5.65, the driver file (VIRAGTLT.SYS) allows local users to cause a denial of service (BSOD) or possibly have unspecified other impact because of not validating input values from IOCtl 0x827300A4.
In IKARUS anti.virus 2.16.20, the driver file (ntguard.SYS) allows local users to cause a denial of service (BSOD) or possibly have unspecified other impact because of not validating input values from IOCtl 0x83000084.
In IKARUS anti.virus 2.16.20, the driver file (ntguard.SYS) allows local users to cause a denial of service (BSOD) or possibly have unspecified other impact because of not validating input values from IOCtl 0x83000088.
Dell BIOS contains an improper input validation vulnerability. A local authenticated malicious user may potentially exploit this vulnerability by using an SMI to gain arbitrary code execution in SMRAM.
In IKARUS anti.virus 2.16.20, the driver file (ntguard.SYS) allows local users to cause a denial of service (BSOD) or possibly have unspecified other impact because of not validating input values from IOCtl 0x83000058.
In TG Soft Vir.IT eXplorer Lite 8.5.65, the driver file (VIRAGTLT.SYS) allows local users to cause a denial of service (BSOD) or possibly have unspecified other impact because of not validating input values from IOCtl 0x82730068.
The eBPF ALU32 bounds tracking for bitwise ops (AND, OR and XOR) in the Linux kernel did not properly update 32-bit bounds, which could be turned into out of bounds reads and writes in the Linux kernel and therefore, arbitrary code execution. This issue was fixed via commit 049c4e13714e ("bpf: Fix alu32 const subreg bound tracking on bitwise operations") (v5.13-rc4) and backported to the stable kernels in v5.12.4, v5.11.21, and v5.10.37. The AND/OR issues were introduced by commit 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking") (5.7-rc1) and the XOR variant was introduced by 2921c90d4718 ("bpf:Fix a verifier failure with xor") ( 5.10-rc1).
win32k.sys in the kernel-mode drivers in Microsoft Windows XP SP2 and SP3, Windows Server 2003 SP2, Windows Vista SP2, Windows Server 2008 SP2, R2, and R2 SP1, and Windows 7 Gold and SP1 does not properly handle user-mode input passed to kernel mode for driver objects, which allows local users to gain privileges via a crafted application, aka "String Atom Class Name Handling Vulnerability," a different vulnerability than CVE-2012-1865.
A potential vulnerability in the SMI callback function used to access flash device in some ThinkPad models may allow an attacker with local access and elevated privileges to execute arbitrary code.
win32k.sys in the kernel-mode drivers in Microsoft Windows XP SP2 and SP3, Windows Server 2003 SP2, Windows Vista SP2, Windows Server 2008 SP2, R2, and R2 SP1, Windows 7 Gold and SP1, and Windows 8 Consumer Preview does not properly handle user-mode input passed to kernel mode, which allows local users to gain privileges via a crafted application, aka "Scrollbar Calculation Vulnerability."
The bnep_add_connection function in net/bluetooth/bnep/core.c in the Linux kernel before 3.19 does not ensure that an l2cap socket is available, which allows local users to gain privileges via a crafted application.
Improper Input Validation vulnerability in a particular configuration setting field of Hitachi Energy TXpert Hub CoreTec 4 product, allows an attacker with access to an authorized user with ADMIN or ENGINEER role rights to inject an OS command that is executed by the system. This issue affects: Hitachi Energy TXpert Hub CoreTec 4 version 2.0.0; 2.0.1; 2.1.0; 2.1.1; 2.1.2; 2.1.3; 2.2.0; 2.2.1.
An out-of-bounds memory write flaw was found in the Linux kernel's joystick devices subsystem in versions before 5.9-rc1, in the way the user calls ioctl JSIOCSBTNMAP. This flaw allows a local user to crash the system or possibly escalate their privileges on the system. The highest threat from this vulnerability is to confidentiality, integrity, as well as system availability.
drivers/media/usb/dvb-usb-v2/lmedm04.c in the Linux kernel through 4.13.11 allows local users to cause a denial of service (general protection fault and system crash) or possibly have unspecified other impact via a crafted USB device, related to a missing warm-start check and incorrect attach timing (dm04_lme2510_frontend_attach versus dm04_lme2510_tuner).
PRTG Network Monitor 17.3.33.2830 allows remote authenticated administrators to execute arbitrary code by uploading a .exe file and then proceeding in spite of the error message.
The KEYS subsystem in the Linux kernel before 4.13.10 does not correctly synchronize the actions of updating versus finding a key in the "negative" state to avoid a race condition, which allows local users to cause a denial of service or possibly have unspecified other impact via crafted system calls.
In IKARUS anti.virus before 2.16.18, the ntguard.sys driver contains an Arbitrary Write vulnerability because of not validating input values from IOCtl 0x830000c0.
In IKARUS anti.virus before 2.16.18, the ntguard.sys driver contains an Arbitrary Write vulnerability because of not validating input values from IOCtl 0x830000cc.
This vulnerability allows local attackers to escalate privileges on Jungo WinDriver 12.4.0 and earlier. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability. The specific flaw exists within the processing of IOCTL 0x95382673 by the windrvr1240 kernel driver. The issue lies in the failure to properly validate user-supplied data which can result in a kernel pool overflow. An attacker can leverage this vulnerability to execute arbitrary code under the context of kernel.
Multiple vulnerabilities in the CLI of Cisco Firepower Threat Defense (FTD) Software could allow an authenticated, local attacker to execute arbitrary commands with root privileges. For more information about these vulnerabilities, see the Details section of this advisory.
In IKARUS anti.virus before 2.16.18, the ntguard.sys driver contains an Arbitrary Write vulnerability because of not validating input values from IOCtl 0x830000c4, a related issue to CVE-2017-17113.
Multiple vulnerabilities in the CLI of Cisco Firepower Threat Defense (FTD) Software could allow an authenticated, local attacker to execute arbitrary commands with root privileges. For more information about these vulnerabilities, see the Details section of this advisory.
In IKARUS anti.virus before 2.16.18, the ntguard.sys driver contains an Arbitrary Write vulnerability because of not validating input values from IOCtl 0x83000080.
In IKARUS anti.virus before 2.16.18, the ntguard.sys driver contains an Arbitrary Write vulnerability because of not validating input values from IOCtl 0x8300005c.
HiveManager Classic through 8.1r1 allows arbitrary JSP code execution by modifying a backup archive before a restore, because the restore feature does not validate pathnames within the archive. An authenticated, local attacker - even restricted as a tenant - can add a jsp at HiveManager/tomcat/webapps/hm/domains/$yourtenant/maps (it will be exposed at the web interface).
Insufficient input validation in the Marvin Minsky 1967 implementation of the Universal Turing Machine allows program users to execute arbitrary code via crafted data. For example, a tape head may have an unexpected location after the processing of input composed of As and Bs (instead of 0s and 1s). NOTE: the discoverer states "this vulnerability has no real-world implications."
afd.sys in the Ancillary Function Driver in Microsoft Windows Server 2003 SP2 does not properly validate user-mode input passed to kernel mode, which allows local users to gain privileges via a crafted application, aka "Ancillary Function Driver Elevation of Privilege Vulnerability."
A vulnerability in the Python scripting subsystem of Cisco NX-OS Software could allow an authenticated, local attacker to escape the Python parser and gain unauthorized access to the underlying operating system of the device. The vulnerability exists due to insufficient sanitization of user-supplied parameters that are passed to certain Python functions within the scripting sandbox of the affected device. An attacker could exploit this vulnerability to escape the scripting sandbox and execute arbitrary commands on the underlying operating system with the privileges of the authenticated user. To exploit this vulnerability, an attacker must have local access and be authenticated to the targeted device with administrative or Python execution privileges. These requirements could limit the possibility of a successful exploit. This vulnerability affects the following Cisco products if they are running Cisco NX-OS Software: Multilayer Director Switches, Nexus 2000 Series Fabric Extenders, Nexus 3000 Series Switches, Nexus 3500 Platform Switches, Nexus 5000 Series Switches, Nexus 5500 Platform Switches, Nexus 5600 Platform Switches, Nexus 6000 Series Switches, Nexus 7000 Series Switches, Nexus 7700 Series Switches, Nexus 9000 Series Switches - Standalone, NX-OS mode, Nexus 9500 R-Series Line Cards and Fabric Modules. Cisco Bug IDs: CSCvb86832, CSCvd86474, CSCvd86479, CSCvd86484, CSCvd86490, CSCve97102, CSCvf12757, CSCvf12804, CSCvf12815, CSCvf15198.
An untrusted search path (aka DLL Preloading) vulnerability in the Cisco Immunet antimalware installer could allow an authenticated, local attacker to execute arbitrary code via DLL hijacking if a local user with administrative privileges executes the installer in the current working directory where a crafted DLL has been placed by an attacker. The vulnerability is due to incomplete input validation of path and file names of a DLL file before it is loaded. An attacker could exploit this vulnerability by creating a malicious DLL file and installing it in a specific system directory. A successful exploit could allow the attacker to execute commands on the underlying Microsoft Windows host with privileges equivalent to the SYSTEM account. An attacker would need valid user credentials to exploit this vulnerability. Cisco Bug IDs: CSCvf23928.
A vulnerability in the CLI of Cisco NX-OS System Software could allow an authenticated, local attacker to perform a command injection attack. An attacker would need valid administrator credentials to perform this exploit. The vulnerability is due to insufficient input validation of command arguments. An attacker could exploit this vulnerability by injecting crafted command arguments into a vulnerable CLI command. An exploit could allow the attacker to execute arbitrary commands as root. This vulnerability affects the following products running Cisco NX-OS System Software: Multilayer Director Switches, Nexus 2000 Series Fabric Extenders, Nexus 3000 Series Switches, Nexus 3500 Platform Switches, Nexus 5000 Series Switches, Nexus 5500 Platform Switches, Nexus 5600 Platform Switches, Nexus 6000 Series Switches, Nexus 7000 Series Switches, Nexus 7700 Series Switches, Nexus 9000 Series Switches in standalone NX-OS mode, Nexus 9500 R-Series Line Cards and Fabric Modules, Unified Computing System Manager. Cisco Bug IDs: CSCvf15113, CSCvf15122, CSCvf15125, CSCvf15131, CSCvf15143, CSCvg04088.
An untrusted search path (aka DLL Preload) vulnerability in the Cisco Network Academy Packet Tracer software could allow an authenticated, local attacker to execute arbitrary code via DLL hijacking if a local user with administrative privileges executes the installer in the current working directory where a crafted DLL has been placed by an attacker. The vulnerability is due to incomplete input validation of path and file names of a DLL file before it is loaded. An attacker could exploit this vulnerability by creating a malicious DLL file and installing it in a specific system directory. A successful exploit could allow the attacker to execute commands on the underlying Microsoft Windows host with privileges equivalent to the SYSTEM account. An attacker would need valid user credentials to exploit this vulnerability.