A vulnerability in the handling of Inter-Access Point Protocol (IAPP) messages by Cisco Wireless LAN Controller (WLC) Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition. The vulnerability exist because the software improperly validates input on fields within IAPP messages. An attacker could exploit the vulnerability by sending malicious IAPP messages to an affected device. A successful exploit could allow the attacker to cause the Cisco WLC Software to reload, resulting in a DoS condition. Software versions prior to 8.2.170.0, 8.5.150.0, and 8.8.100.0 are affected.
A vulnerability in the Cisco Discovery Protocol or Link Layer Discovery Protocol (LLDP) implementation for the Cisco IP Phone 7800 and 8800 Series could allow an unauthenticated, adjacent attacker to cause an affected phone to reload unexpectedly, resulting in a temporary denial of service (DoS) condition. The vulnerability is due to missing length validation of certain Cisco Discovery Protocol or LLDP packet header fields. An attacker could exploit this vulnerability by sending a malicious Cisco Discovery Protocol or LLDP packet to the targeted phone. A successful exploit could allow the attacker to cause the affected phone to reload unexpectedly, resulting in a temporary DoS condition. Versions prior to 12.6(1)MN80 are affected.
A vulnerability in the Easy Virtual Switching System (VSS) of Cisco IOS XE Software on Catalyst 4500 Series Switches could allow an unauthenticated, adjacent attacker to cause the switches to reload. The vulnerability is due to incomplete error handling when processing Cisco Discovery Protocol (CDP) packets used with the Easy Virtual Switching System. An attacker could exploit this vulnerability by sending a specially crafted CDP packet. An exploit could allow the attacker to cause the device to reload, resulting in a denial of service (DoS) condition.
A vulnerability in the handling of Inter-Access Point Protocol (IAPP) messages by Cisco Wireless LAN Controller (WLC) Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition. The vulnerability exist because the software improperly validates input on fields within IAPP messages. An attacker could exploit the vulnerability by sending malicious IAPP messages to an affected device. A successful exploit could allow the attacker to cause the Cisco WLC Software to reload, resulting in a DoS condition. Software versions prior to 8.2.170.0, 8.5.150.0, and 8.8.100.0 are affected.
A vulnerability in the handling of Inter-Access Point Protocol (IAPP) messages by Cisco Wireless LAN Controller (WLC) Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition. The vulnerability exist because the software improperly validates input on fields within IAPP messages. An attacker could exploit the vulnerability by sending malicious IAPP messages to an affected device. A successful exploit could allow the attacker to cause the Cisco WLC Software to reload, resulting in a DoS condition. Software versions prior to 8.2.170.0, 8.5.150.0, and 8.8.100.0 are affected.
A vulnerability in the Link Layer Discovery Protocol (LLDP) implementation for the Cisco Video Surveillance 7000 Series IP Cameras firmware could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition. This vulnerability is due to improper management of memory resources, referred to as a double free. An attacker could exploit this vulnerability by sending crafted LLDP packets to an affected device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition. Note: LLDP is a Layer 2 protocol. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
A vulnerability in the Layer 2 punt code of Cisco IOS XR Software running on Cisco ASR 9000 Series Aggregation Services Routers could allow an unauthenticated, adjacent attacker to cause the affected line card to reboot. This vulnerability is due to incorrect handling of specific Ethernet frames that cause a spin loop that can make the network processors unresponsive. An attacker could exploit this vulnerability by sending specific types of Ethernet frames on the segment where the affected line cards are attached. A successful exploit could allow the attacker to cause the affected line card to reboot.
A vulnerability in the ingress traffic validation of Cisco IOS XE Software for Cisco Aggregation Services Router (ASR) 900 Route Switch Processor 3 (RSP3) could allow an unauthenticated, adjacent attacker to trigger a reload of an affected device, resulting in a denial of service (DoS) condition. The vulnerability exists because the software insufficiently validates ingress traffic on the ASIC used on the RSP3 platform. An attacker could exploit this vulnerability by sending a malformed OSPF version 2 (OSPFv2) message to an affected device. A successful exploit could allow the attacker to cause a reload of the iosd process, triggering a reload of the affected device and resulting in a DoS condition.
A vulnerability in IPv6 traffic processing of Cisco IOS XE Wireless Controller Software for Cisco Catalyst 9000 Family Wireless Controllers could allow an unauthenticated, adjacent attacker to cause a Layer 2 (L2) loop in a configured VLAN, resulting in a denial of service (DoS) condition for that VLAN. The vulnerability is due to a logic error when processing specific link-local IPv6 traffic. An attacker could exploit this vulnerability by sending a crafted IPv6 packet that would flow inbound through the wired interface of an affected device. A successful exploit could allow the attacker to cause traffic drops in the affected VLAN, thus triggering the DoS condition.
A vulnerability in the Unidirectional Link Detection (UDLD) feature of Cisco FXOS Software, Cisco IOS Software, Cisco IOS XE Software, Cisco IOS XR Software, and Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to cause an affected device to reload. This vulnerability is due to improper input validation of the UDLD packets. An attacker could exploit this vulnerability by sending specifically crafted UDLD packets to an affected device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a denial of service (DoS) condition. Note: The UDLD feature is disabled by default, and the conditions to exploit this vulnerability are strict. An attacker must have full control of a directly connected device. On Cisco IOS XR devices, the impact is limited to the reload of the UDLD process.
A vulnerability in the WLAN Control Protocol (WCP) implementation for Cisco Aironet Access Point (AP) software could allow an unauthenticated, adjacent attacker to cause a reload of an affected device, resulting in a denial of service (DoS) condition. This vulnerability is due to incorrect error handling when an affected device receives an unexpected 802.11 frame. An attacker could exploit this vulnerability by sending certain 802.11 frames over the wireless network to an interface on an affected AP. A successful exploit could allow the attacker to cause a packet buffer leak. This could eventually result in buffer allocation failures, which would trigger a reload of the affected device.
A vulnerability in the handling of specific Ethernet frames by Cisco IOS XR Software for various Cisco Network Convergence System (NCS) platforms could allow an unauthenticated, adjacent attacker to cause critical priority packets to be dropped, resulting in a denial of service (DoS) condition. This vulnerability is due to incorrect classification of certain types of Ethernet frames that are received on an interface. An attacker could exploit this vulnerability by sending specific types of Ethernet frames to or through the affected device. A successful exploit could allow the attacker to cause control plane protocol relationships to fail, resulting in a DoS condition. For more information, see the section of this advisory. Cisco has released software updates that address this vulnerability. There are no workarounds that address this vulnerability.
A vulnerability in the Intermediate System-to-Intermediate System (IS-IS) protocol of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to insufficient input validation when parsing an ingress IS-IS packet. An attacker could exploit this vulnerability by sending a crafted IS-IS packet to an affected device after forming an adjacency. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a denial of service (DoS) condition. Note: The IS-IS protocol is a routing protocol. To exploit this vulnerability, an attacker must be Layer 2-adjacent to the affected device and have formed an adjacency.
A vulnerability in the Layer 2 Ethernet services of Cisco IOS XR Software could allow an unauthenticated, adjacent attacker to cause the line card network processor to reset, resulting in a denial of service (DoS) condition. This vulnerability is due to the incorrect handling of specific Ethernet frames that are received on line cards that have the Layer 2 services feature enabled. An attacker could exploit this vulnerability by sending specific Ethernet frames through an affected device. A successful exploit could allow the attacker to cause the ingress interface network processor to reset, resulting in a loss of traffic over the interfaces that are supported by the network processor. Multiple resets of the network processor would cause the line card to reset, resulting in a DoS condition.
A vulnerability in the PPP over Ethernet (PPPoE) termination feature of Cisco IOS XR Software for Cisco ASR 9000 Series Aggregation Services Routers could allow an unauthenticated, adjacent attacker to crash the ppp_ma process, resulting in a denial of service (DoS) condition. This vulnerability is due to the improper handling of malformed PPPoE packets that are received on a router that is running Broadband Network Gateway (BNG) functionality with PPPoE termination on a Lightspeed-based or Lightspeed-Plus-based line card. An attacker could exploit this vulnerability by sending a crafted PPPoE packet to an affected line card interface that does not terminate PPPoE. A successful exploit could allow the attacker to crash the ppp_ma process, resulting in a DoS condition for PPPoE traffic across the router.
A vulnerability in the multicast DNS (mDNS) gateway feature of Cisco IOS XE Software for Wireless LAN Controllers (WLCs) could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition. This vulnerability is due to improper management of mDNS client entries. An attacker could exploit this vulnerability by connecting to the wireless network and sending a continuous stream of specific mDNS packets. A successful exploit could allow the attacker to cause the wireless controller to have high CPU utilization, which could lead to access points (APs) losing their connection to the controller and result in a DoS condition.
A vulnerability in the handling of encrypted wireless frames of Cisco Aironet Access Point (AP) Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on the affected device. This vulnerability is due to incomplete cleanup of resources when dropping certain malformed frames. An attacker could exploit this vulnerability by connecting as a wireless client to an affected AP and sending specific malformed frames over the wireless connection. A successful exploit could allow the attacker to cause degradation of service to other clients, which could potentially lead to a complete DoS condition.
Cisco IOS 12.1T, 12.2, 12.2T, 12.3 and 12.3T, with Multi Protocol Label Switching (MPLS) installed but disabled, allows remote attackers to cause a denial of service (device reload) via a crafted packet sent to the disabled interface.
A vulnerability in the OSPF version 2 (OSPFv2) feature of Cisco IOS XE Software could allow an unauthenticated, adjacent attacker to cause an affected device to reload unexpectedly, resulting in a denial of service (DoS) condition. This vulnerability is due to improper validation of OSPF updates that are processed by a device. An attacker could exploit this vulnerability by sending a malformed OSPF update to the device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition.
A vulnerability in Cisco IOS Software for Cisco Catalyst 6000 Series Switches could allow an unauthenticated, adjacent attacker to cause an affected device to reload unexpectedly. This vulnerability is due to improper handling of process-switched traffic. An attacker could exploit this vulnerability by sending crafted traffic to an affected device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a denial of service (DoS) condition.
The mDNS snooping functionality on Cisco Wireless LAN Controller (WLC) devices with software 7.4.1.54 and earlier does not properly manage buffers, which allows remote authenticated users to cause a denial of service (device reload) via crafted mDNS packets, aka Bug ID CSCue04153.
Cisco ASR 1000 devices with software before 3.8S, when BDI routing is enabled, allow remote attackers to cause a denial of service (device reload) via crafted (1) broadcast or (2) multicast ICMP packets with fragmentation, aka Bug ID CSCub55948.
The HTTP Profiler on the Cisco Aironet Access Point with software 15.2 and earlier does not properly manage buffers, which allows remote attackers to cause a denial of service (device reload) via crafted HTTP requests, aka Bug ID CSCuc62460.
A vulnerability in the Layer 2 punt code of Cisco IOS XE Software could allow an unauthenticated, adjacent attacker to cause a queue wedge on an interface that receives specific Layer 2 frames, resulting in a denial of service (DoS) condition. This vulnerability is due to improper handling of certain Layer 2 frames. An attacker could exploit this vulnerability by sending specific Layer 2 frames on the segment the router is connected to. A successful exploit could allow the attacker to cause a queue wedge on the interface, resulting in a DoS condition.
Multiple vulnerabilities exist in the Link Layer Discovery Protocol (LLDP) implementation for Cisco Small Business RV Series Routers. An unauthenticated, adjacent attacker could execute arbitrary code or cause an affected router to leak system memory or reload. A memory leak or device reload would cause a denial of service (DoS) condition on an affected device. For more information about these vulnerabilities, see the Details section of this advisory. Note: LLDP is a Layer 2 protocol. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
A vulnerability in the implementation of a protocol in Cisco Integrated Services Routers Generation 2 (ISR G2) Routers running Cisco IOS 15.0 through 15.6 could allow an unauthenticated, adjacent attacker to cause an affected device to reload, resulting in a denial of service (DoS) condition. The vulnerability is due to a misclassification of Ethernet frames. An attacker could exploit this vulnerability by sending a crafted Ethernet frame to an affected device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition. Cisco Bug IDs: CSCvc03809.
Multiple vulnerabilities in the Control and Provisioning of Wireless Access Points (CAPWAP) protocol processing of Cisco IOS XE Software for Cisco Catalyst 9800 Series Wireless Controllers could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition of an affected device. These vulnerabilities are due to insufficient validation of CAPWAP packets. An attacker could exploit these vulnerabilities by sending a malformed CAPWAP packet to an affected device. A successful exploit could allow the attacker to cause the affected device to crash and reload, resulting in a DoS condition on the affected device.
A vulnerability in Simple Network Management Protocol (SNMP) trap generation for wireless clients of the Cisco IOS XE Wireless Controller Software for the Cisco Catalyst 9000 Family could allow an unauthenticated, adjacent attacker to cause the device to unexpectedly reload, causing a denial of service (DoS) condition on an affected device. The vulnerability is due to the lack of input validation of the information used to generate an SNMP trap in relation to a wireless client connection. An attacker could exploit this vulnerability by sending an 802.1x packet with crafted parameters during the wireless authentication setup phase of a connection. A successful exploit could allow the attacker to cause the device to reload, causing a DoS condition.
Multiple vulnerabilities in the Control and Provisioning of Wireless Access Points (CAPWAP) protocol processing of Cisco IOS XE Software for Cisco Catalyst 9800 Series Wireless Controllers could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition of an affected device. These vulnerabilities are due to insufficient validation of CAPWAP packets. An attacker could exploit these vulnerabilities by sending a malformed CAPWAP packet to an affected device. A successful exploit could allow the attacker to cause the affected device to crash and reload, resulting in a DoS condition on the affected device.
A vulnerability in the Cisco Discovery Protocol implementation for Cisco FXOS Software, Cisco IOS XR Software, and Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to cause a reload of an affected device, resulting in a denial of service (DoS) condition. The vulnerability is due to a missing check when the affected software processes Cisco Discovery Protocol messages. An attacker could exploit this vulnerability by sending a malicious Cisco Discovery Protocol packet to an affected device. A successful exploit could allow the attacker to exhaust system memory, causing the device to reload. Cisco Discovery Protocol is a Layer 2 protocol. To exploit this vulnerability, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
A vulnerability in the Fibre Channel over Ethernet (FCoE) N-port Virtualization (NPV) protocol implementation in Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition. The vulnerability is due to an incorrect processing of FCoE packets when the fcoe-npv feature is uninstalled. An attacker could exploit this vulnerability by sending a stream of FCoE frames from an adjacent host to an affected device. An exploit could allow the attacker to cause packet amplification to occur, resulting in the saturation of interfaces and a DoS condition. Nexus 9000 Series Switches in Standalone NX-OS Mode are affected running software versions prior to 7.0(3)I7(5) and 9.2(2).
A vulnerability in the 802.1X implementation for Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to incomplete input validation of Extensible Authentication Protocol over LAN (EAPOL) frames. An attacker could exploit this vulnerability by sending a crafted EAPOL frame to an interface on the targeted device. A successful exploit could allow the attacker to cause the Layer 2 (L2) forwarding process to restart multiple times, leading to a system-level restart of the device and a DoS condition. Note: This vulnerability affects only NX-OS devices configured with 802.1X functionality. Cisco Nexus 1000V Switch for VMware vSphere devices are affected in versions prior to 5.2(1)SV3(1.4b). Nexus 3000 Series Switches are affected in versions prior to 7.0(3)I7(4). Nexus 3500 Platform Switches are affected in versions prior to 7.0(3)I7(4). Nexus 2000, 5500, 5600, and 6000 Series Switches are affected in versions prior to 7.3(5)N1(1) and 7.1(5)N1(1b). Nexus 7000 and 7700 Series Switches are affected in versions prior to 8.2(3). Nexus 9000 Series Fabric Switches in ACI Mode are affected in versions prior to 13.2(1l). Nexus 9000 Series Switches in Standalone NX-OS Mode are affected in versions prior to 7.0(3)I7(4).
The Network Processing Unit (NPU) in the Cisco Wireless LAN Controller (WLC) before 3.2.193.5, 4.0.x before 4.0.206.0, and 4.1.x allows remote attackers on a local wireless network to cause a denial of service (loss of packet forwarding) via (1) crafted SNAP packets, (2) malformed 802.11 traffic, or (3) packets with certain header length values, aka Bug ID CSCsg36361.
The Network Processing Unit (NPU) in the Cisco Wireless LAN Controller (WLC) before 3.2.171.5, 4.0.x before 4.0.206.0, and 4.1.x allows remote attackers on a local wireless network to cause a denial of service (loss of packet forwarding) via (1) crafted SNAP packets, (2) malformed 802.11 traffic, or (3) packets with certain header length values, aka Bug IDs CSCsg15901 and CSCsh10841.
A vulnerability in the Open Shortest Path First (OSPF) implementation of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, adjacent attacker to cause a reload of an affected device, resulting in a denial of service (DoS) condition. The vulnerability exists because the affected software improperly parses certain options in OSPF link-state advertisement (LSA) type 11 packets. An attacker could exploit this vulnerability by sending a crafted LSA type 11 OSPF packet to an affected device. A successful exploit could allow the attacker to cause a reload of the affected device, resulting in a DoS condition for client traffic that is traversing the device.
A vulnerability in the UDP broadcast forwarding function of Cisco IOS XR Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on the affected device. The vulnerability is due to improper handling of UDP broadcast packets that are forwarded to an IPv4 helper address. An attacker could exploit this vulnerability by sending multiple UDP broadcast packets to the affected device. An exploit could allow the attacker to cause a buffer leak on the affected device, eventually resulting in a DoS condition requiring manual intervention to recover. This vulnerability affects all Cisco IOS XR platforms running 6.3.1, 6.2.3, or earlier releases of Cisco IOS XR Software when at least one IPv4 helper address is configured on an interface of the device. Cisco Bug IDs: CSCvi35625.
Unspecified vulnerability in Cisco IOS 12.2SXA, SXB, SXD, and SXF; and the MSFC2, MSFC2a and MSFC3 running in Hybrid Mode on Cisco Catalyst 6000, 6500 and Cisco 7600 series systems; allows remote attackers on a local network segment to cause a denial of service (software reload) via a certain MPLS packet.
A vulnerability in the Pong tool of Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to cause a reload of an affected device, resulting in a denial of service (DoS) condition. The vulnerability exists because the affected software attempts to free the same area of memory twice. An attacker could exploit this vulnerability by sending a pong request to an affected device from a location on the network that causes the pong reply packet to egress both a FabricPath port and a non-FabricPath port. An exploit could allow the attacker to cause a dual or quad supervisor virtual port-channel (vPC) to reload. This vulnerability affects the following products when running Cisco NX-OS Software Release 7.2(1)D(1), 7.2(2)D1(1), or 7.2(2)D1(2) with both the Pong and FabricPath features enabled and the FabricPath port is actively monitored via a SPAN session: Cisco Nexus 7000 Series Switches and Cisco Nexus 7700 Series Switches. Cisco Bug IDs: CSCuv98660.
A vulnerability in the Cisco Discovery Protocol (formerly known as CDP) subsystem of devices running, or based on, Cisco NX-OS Software contain a vulnerability that could allow an unauthenticated, adjacent attacker to create a denial of service (DoS) condition. The vulnerability is due to a failure to properly validate certain fields within a Cisco Discovery Protocol message prior to processing it. An attacker with the ability to submit a Cisco Discovery Protocol message designed to trigger the issue could cause a DoS condition on an affected device while the device restarts. This vulnerability affects Firepower 4100 Series Next-Generation Firewall, Firepower 9300 Security Appliance, MDS 9000 Series Multilayer Director Switches, Nexus 1000V Series Switches, Nexus 1100 Series Cloud Services Platforms, Nexus 2000 Series Switches, Nexus 3000 Series Switches, Nexus 3500 Platform Switches, Nexus 3600 Platform Switches, Nexus 5500 Platform Switches, Nexus 5600 Platform Switches, Nexus 6000 Series Switches, Nexus 7000 Series Switches, Nexus 7700 Series Switches, Nexus 9000 Series Switches in NX-OS mode, Nexus 9500 R-Series Line Cards and Fabric Modules, UCS 6100 Series Fabric Interconnects, UCS 6200 Series Fabric Interconnects, UCS 6300 Series Fabric Interconnects. Cisco Bug IDs: CSCvc89242, CSCve40943, CSCve40953, CSCve40965, CSCve40970, CSCve40978, CSCve40992, CSCve41000, CSCve41007.
A vulnerability in the implementation of the cluster feature of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, adjacent attacker to trigger a denial of service (DoS) condition on an affected device. The vulnerability is due to improper input validation when handling Cluster Management Protocol (CMP) messages. An attacker could exploit this vulnerability by sending a malicious CMP message to an affected device. A successful exploit could allow the attacker to cause the switch to crash and reload or to hang, resulting in a DoS condition. If the switch hangs it will not reboot automatically, and it will need to be power cycled manually to recover.
A vulnerability in the Open Shortest Path First version 3 (OSPFv3) implementation in Cisco IOS and IOS XE Software could allow an unauthenticated, adjacent attacker to cause an affected device to reload. The vulnerability is due to incorrect handling of specific OSPFv3 packets. An attacker could exploit this vulnerability by sending crafted OSPFv3 Link-State Advertisements (LSA) to an affected device. An exploit could allow the attacker to cause an affected device to reload, leading to a denial of service (DoS) condition.
A vulnerability in the 802.11 frame validation functionality of the Cisco Wireless LAN Controller (WLC) could allow an unauthenticated, adjacent attacker to cause an affected device to reload unexpectedly, resulting in a denial of service (DoS) condition. The vulnerability is due to incomplete input validation of certain 802.11 management information element frames that an affected device receives from wireless clients. An attacker could exploit this vulnerability by sending a malformed 802.11 management frame to an affected device. A successful exploit could allow the attacker to cause the affected device to reload unexpectedly, resulting in a DoS condition. This vulnerability affects only Cisco Wireless LAN Controllers that are running Cisco Mobility Express Release 8.5.103.0. Cisco Bug IDs: CSCvg07024.
A vulnerability in the HTTP-based client profiling feature of Cisco IOS XE Software for Wireless LAN Controllers (WLCs) could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to insufficient input validation of received traffic. An attacker could exploit this vulnerability by sending crafted traffic through a wireless access point. A successful exploit could allow the attacker to cause CPU utilization to increase, which could result in a DoS condition on an affected device and could cause new wireless client associations to fail. Once the offending traffic stops, the affected system will return to an operational state and new client associations will succeed.
A vulnerability in the Autonomic Networking feature of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, adjacent attacker to cause autonomic nodes of an affected system to reload, resulting in a denial of service (DoS) condition. More Information: CSCvd88936. Known Affected Releases: Denali-16.2.1 Denali-16.3.1.
A vulnerability in Cisco ASR 903 or ASR 920 Series Devices running with an RSP2 card could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on a targeted system because of incorrect IPv6 Packet Processing. More Information: CSCuy94366. Known Affected Releases: 15.4(3)S3.15. Known Fixed Releases: 15.6(2)SP 15.6(1.31)SP.
The Neighbor Discovery (ND) protocol implementation in the IPv6 stack in Cisco IOS 15.3(3)S0.1 on ASR devices mishandles internal tables, which allows remote attackers to cause a denial of service (memory consumption or device crash) via a flood of crafted ND messages, aka Bug ID CSCup28217.
Cisco Adaptive Security Appliance (ASA) Software 9.3(2) allows remote attackers to cause a denial of service (system reload) by sending crafted OSPFv2 packets on the local network, aka Bug ID CSCut52679.
Buffer overflow in Cisco NX-OS on Nexus 1000V devices for VMware vSphere 7.3(0)ZN(0.81), Nexus 3000 devices 7.3(0)ZN(0.81), Nexus 4000 devices 4.1(2)E1(1c), Nexus 7000 devices 7.2(0)N1(0.1), and Nexus 9000 devices 7.3(0)ZN(0.81) allows remote attackers to cause a denial of service (IGMP process restart) via a malformed IGMPv3 packet that is mishandled during memory allocation, aka Bug IDs CSCuv69713, CSCuv69717, CSCuv69723, CSCuv69732, and CSCuv48908.
The PPPoE establishment implementation in Cisco IOS XE 3.5.0S on ASR 1000 devices allows remote attackers to cause a denial of service (device reload) by sending malformed PPPoE Active Discovery Request (PADR) packets on the local network, aka Bug ID CSCty94202.
Cisco Wireless LAN Controller (WLC) devices with software 7.5(102.0) and 7.6(1.62) allow remote attackers to cause a denial of service (device crash) by triggering an exception during attempted forwarding of unspecified IPv6 packets to a non-IPv6 device, aka Bug ID CSCuj01046.