A prototype pollution attack in cached-path-relative versions <=1.0.1 allows an attacker to inject properties on Object.prototype which are then inherited by all the JS objects through the prototype chain causing a DoS attack.
The kernel in Apple iOS before 7 allows remote attackers to cause a denial of service (assertion failure and device restart) via an invalid packet fragment.
Matrix Synapse before 0.28.1 is prone to a denial of service flaw where malicious events injected with depth = 2^63 - 1 render rooms unusable, related to federation/federation_base.py and handlers/message.py, as exploited in the wild in April 2018.
The Huawei Access Router (AR) before V200R002SPC003 allows remote attackers to cause a denial of service (device reset) via a crafted field in a DHCP request, as demonstrated by a request from an IP phone.
An input validation flaw exists in ttembed. With a crafted input file, an attacker may be able to trigger a denial of service condition due to ttembed trusting attacker controlled values.
A vulnerability has been identified in SIMATIC S7-400 CPU 412-1 DP V7 (All versions), SIMATIC S7-400 CPU 412-2 DP V7 (All versions), SIMATIC S7-400 CPU 414-2 DP V7 (All versions), SIMATIC S7-400 CPU 414-3 DP V7 (All versions), SIMATIC S7-400 CPU 414-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 414F-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 416-2 DP V7 (All versions), SIMATIC S7-400 CPU 416-3 DP V7 (All versions), SIMATIC S7-400 CPU 416-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 416F-2 DP V7 (All versions), SIMATIC S7-400 CPU 416F-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 417-4 DP V7 (All versions), SIMATIC S7-400 CPU 412-2 PN V7 (All versions < V7.0.3), SIMATIC S7-400 H V4.5 and below CPU family (incl. SIPLUS variants) (All versions), SIMATIC S7-400 H V6 CPU family (incl. SIPLUS variants) (All versions < V6.0.9), SIMATIC S7-400 PN/DP V6 and below CPU family (incl. SIPLUS variants) (All versions), SIMATIC S7-410 CPU family (incl. SIPLUS variants) (All versions < V8.2.1), SIPLUS S7-400 CPU 414-3 PN/DP V7 (All versions < V7.0.3), SIPLUS S7-400 CPU 416-3 PN/DP V7 (All versions < V7.0.3), SIPLUS S7-400 CPU 416-3 V7 (All versions), SIPLUS S7-400 CPU 417-4 V7 (All versions). Specially crafted packets sent to port 102/tcp via Ethernet interface, via PROFIBUS, or via Multi Point Interfaces (MPI) could cause the affected devices to go into defect mode. Manual reboot is required to resume normal operation. Successful exploitation requires an attacker to be able to send specially crafted packets to port 102/tcp via Ethernet interface, via PROFIBUS or Multi Point Interfaces (MPI). No user interaction and no user privileges are required to exploit the security vulnerability. The vulnerability could allow causing a denial of service condition of the core functionality of the CPU, compromising the availability of the system.
python before versions 2.7.15, 3.4.9, 3.5.6rc1, 3.6.5rc1 and 3.7.0 is vulnerable to catastrophic backtracking in the difflib.IS_LINE_JUNK method. An attacker could use this flaw to cause denial of service.
In atomic-openshift before version 3.10.9 a malicious network-policy configuration can cause Openshift Routing to crash when using ovs-networkpolicy plugin. An attacker can use this flaw to cause a Denial of Service (DoS) attack on an Openshift 3.9, or 3.7 Cluster.
An issue was discovered on KONE Group Controller (KGC) devices before 4.6.5. Denial of Service can occur through the open HTTP interface, aka KONE-04.
Multiple Yokogawa products that contain Vnet/IP Open Communication Driver (CENTUM CS 3000(R3.05.00 - R3.09.50), CENTUM CS 3000 Entry Class(R3.05.00 - R3.09.50), CENTUM VP(R4.01.00 - R6.03.10), CENTUM VP Entry Class(R4.01.00 - R6.03.10), Exaopc(R3.10.00 - R3.75.00), PRM(R2.06.00 - R3.31.00), ProSafe-RS(R1.02.00 - R4.02.00), FAST/TOOLS(R9.02.00 - R10.02.00), B/M9000 VP(R6.03.01 - R8.01.90)) allows remote attackers to cause a denial of service attack that may result in stopping Vnet/IP Open Communication Driver's communication via unspecified vectors.
A vulnerability has been identified in SIMATIC S7-1500 CPU (All versions >= V2.0 and < V2.5), SIMATIC S7-1500 CPU (All versions <= V1.8.5). Specially crafted network packets sent to port 80/tcp or 443/tcp could allow an unauthenticated remote attacker to cause a Denial-of-Service condition of the device. The security vulnerability could be exploited by an attacker with network access to the affected systems on port 80/tcp or 443/tcp. Successful exploitation requires no system privileges and no user interaction. An attacker could use the vulnerability to compromise availability of the device. At the time of advisory publication no public exploitation of this security vulnerability was known.
In Wireshark 2.6.0, the IEEE 1905.1a dissector could crash. This was addressed in epan/dissectors/packet-ieee1905.c by making a certain correction to string handling.
On BIG-IP 14.0.0-14.0.0.2, 13.0.0-13.1.1.1, or 12.1.0-12.1.3.6, malicious requests made to virtual servers with an HTTP profile can cause the TMM to restart. The issue is exposed with the non-default "normalize URI" configuration options used in iRules and/or BIG-IP LTM policies.
An issue was discovered on Barco ClickShare CSE-200 and CS-100 Base Units with firmware before 1.6.0.3. Sending an arbitrary unexpected string to TCP port 7100 respecting a certain frequency timing disconnects all clients and results in a crash of the Unit.
Cisco TelePresence TC Software before 6.1 and TE Software before 4.1.3 allow remote attackers to cause a denial of service (temporary device hang) via crafted SIP packets, aka Bug ID CSCuf89557.
A flaw in the java.math component in IBM SDK, Java Technology Edition 6.0, 7.0, and 8.0 may allow an attacker to inflict a denial-of-service attack with specially crafted String data. IBM X-Force ID: 141681.
Dell EMC Isilon OneFS versions 7.1.1.x, 7.2.1.x, 8.0.0.x, 8.0.1.x, 8.1.0.x and 8.1.x prior to 8.1.2 and Dell EMC IsilonSD Edge versions 8.0.0.x, 8.0.1.x, 8.1.0.x and 8.1.x prior to 8.1.2 contain a remote process crash vulnerability. An unauthenticated remote attacker may potentially exploit this vulnerability to crash the isi_drive_d process by sending specially crafted input data to the affected system. This process will then be restarted.
An issue was discovered in EOS.IO DAWN 4.2. plugins/net_plugin/net_plugin.cpp does not limit the number of P2P connections from the same source IP address.
Microsoft .NET Framework 2.0 SP2, 3.5, 3.5 SP1, 3.5.1, 4, and 4.5 does not properly parse a DTD during XML digital-signature validation, which allows remote attackers to cause a denial of service (application crash or hang) via a crafted signed XML document, aka "Entity Expansion Vulnerability."
The Next-Generation Firewall (aka NGFW, formerly CX Context-Aware Security) module 9.x before 9.1.1.9 and 9.1.2.x before 9.1.2.12 for Cisco Adaptive Security Appliances (ASA) devices allows remote attackers to cause a denial of service (device reload or traffic-processing outage) via fragmented (1) IPv4 or (2) IPv6 traffic, aka Bug ID CSCue88387.
Microsoft .NET Framework 2.0 SP2, 3.5, 3.5 SP1, 3.5.1, 4, and 4.5 allows remote attackers to cause a denial of service (application crash or hang) via crafted character sequences in JSON data, aka "JSON Parsing Vulnerability."
In Wireshark 2.6.0, 2.4.0 to 2.4.6, and 2.2.0 to 2.2.14, the LTP dissector and other dissectors could consume excessive memory. This was addressed in epan/tvbuff.c by rejecting negative lengths.
A vulnerability was discovered in 389-ds-base through versions 1.3.7.10, 1.3.8.8 and 1.4.0.16. The lock controlling the error log was not correctly used when re-opening the log file in log__error_emergency(). An attacker could send a flood of modifications to a very large DN, which would cause slapd to crash.
The Cisco Unified IP Phone 8945 with software 9.3(2) allows remote attackers to cause a denial of service (device hang) via a malformed PNG file, aka Bug ID CSCud04270.
An issue was discovered in XListExtensions in ListExt.c in libX11 through 1.6.5. A malicious server can send a reply in which the first string overflows, causing a variable to be set to NULL that will be freed later on, leading to DoS (segmentation fault).
The web management interface on Zyxel P660 devices allows remote attackers to cause a denial of service (reboot) via a flood of TCP SYN packets.
The master-station DNP3 driver before driver19.exe, and Beta2041.exe, in IOServer allows remote attackers to cause a denial of service (infinite loop) via crafted DNP3 packets to TCP port 20000.
Atlassian Floodlight Atlassian Floodlight Controller version 1.2 and earlier versions contains a Denial of Service vulnerability in Forwarding module that can result in Improper type cast in Forwarding module allows remote attackers to cause a DoS(thread crash).. This attack appear to be exploitable via network connectivity (Remote attack).
A vulnerability has been identified in SICAM A8000 CP-8000 (All versions < V14), SICAM A8000 CP-802X (All versions < V14), SICAM A8000 CP-8050 (All versions < V2.00). Specially crafted network packets sent to port 80/TCP or 443/TCP could allow an unauthenticated remote attacker to cause a Denial-of-Service condition of the web server. The security vulnerability could be exploited by an attacker with network access to the affected systems on port 80/TCP or 443/TCP. Successful exploitation requires no system privileges and no user interaction. An attacker could use the vulnerability to compromise availability of the web server. A system reboot is required to recover the web service of the device. At the time of advisory update, exploit code for this security vulnerability is public.
Alstom e-terracontrol 3.5, 3.6, and 3.7 allows remote attackers to cause a denial of service (infinite loop) via crafted DNP3 packets.
In Eclipse Mosquitto versions 1.5 to 1.5.2 inclusive, if a message is published to Mosquitto that has a topic starting with $, but that is not $SYS, e.g. $test/test, then an assert is triggered that should otherwise not be reachable and Mosquitto will exit.
Cisco TelePresence Supervisor MSE 8050 before 2.3(1.31) allows remote attackers to cause a denial of service (CPU consumption or device reload) by establishing TCP connections at a high rate, aka Bug IDs CSCuf76076 and CSCuf79763.
Ajenti version version 2 contains a Input Validation vulnerability in ID string on Get-values POST request that can result in Server Crashing. This attack appear to be exploitable via An attacker can freeze te server by sending a giant string to the ID parameter ..
The management API in the XML API management service in the Manager component in Cisco Unified Computing System (UCS) 1.x before 1.2(1b) allows remote attackers to cause a denial of service (service outage) via a malformed request, aka Bug ID CSCtg48206.
Cisco IOS XE 2.x and 3.x before 3.4.5S, and 3.5 through 3.7 before 3.7.1S, on 1000 series Aggregation Services Routers (ASR) allows remote attackers to cause a denial of service (card reload) by sending many crafted L2TP packets, aka Bug ID CSCtz23293.
Cisco NX-OS on Nexus 5500 devices 4.x and 5.x before 5.0(3)N2(2), Nexus 3000 devices 5.x before 5.0(3)U3(2), and Unified Computing System (UCS) 6200 devices before 2.0(1w) allows remote attackers to cause a denial of service (device reload) by sending a jumbo packet to the management interface, aka Bug IDs CSCtx17544, CSCts10593, and CSCtx95389.
IPSSH (aka the SSH server) in Wind River VxWorks 6.5 through 6.9 allows remote attackers to cause a denial of service (daemon outage) via a crafted authentication request.
Receipt of a specially crafted IPv6 exception packet may be able to trigger a kernel crash (vmcore), causing the device to reboot. The issue is specific to the processing of Broadband Edge (BBE) client route processing on MX Series subscriber management platforms, introduced by the Tomcat (Next Generation Subscriber Management) functionality in Junos OS 15.1. This issue affects no other platforms or configurations. Affected releases are Juniper Networks Junos OS: 15.1 versions prior to 15.1R7-S2, 15.1R8 on MX Series; 16.1 versions prior to 16.1R4-S11, 16.1R7-S2, 16.1R8 on MX Series; 16.2 versions prior to 16.2R3 on MX Series; 17.1 versions prior to 17.1R2-S9, 17.1R3 on MX Series; 17.2 versions prior to 17.2R2-S6, 17.2R3 on MX Series; 17.3 versions prior to 17.3R2-S4, 17.3R3-S2, 17.3R4 on MX Series; 17.4 versions prior to 17.4R2 on MX Series; 18.1 versions prior to 18.1R2-S3, 18.1R3 on MX Series; 18.2 versions prior to 18.2R1-S1, 18.2R2 on MX Series.
A vulnerability in the Local Packet Transport Services (LPTS) feature set of Cisco ASR 9000 Series Aggregation Services Router Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to a lack of input and validation checking on certain Precision Time Protocol (PTP) ingress traffic to an affected device. An attacker could exploit this vulnerability by injecting malformed traffic into an affected device. A successful exploit could allow the attacker to cause services on the device to become unresponsive, resulting in a DoS condition. Cisco Bug IDs: CSCvj22858.
A vulnerability in the Cisco IOS Software and Cisco IOS XE Software function that restores encapsulated option 82 information in DHCP Version 4 (DHCPv4) packets could allow an unauthenticated, remote attacker to cause an affected device to reload, resulting in a Relay Reply denial of service (DoS) condition. The vulnerability exists because the affected software performs incomplete input validation of encapsulated option 82 information that it receives in DHCPOFFER messages from DHCPv4 servers. An attacker could exploit this vulnerability by sending a crafted DHCPv4 packet to an affected device, which the device would then forward to a DHCPv4 server. When the affected software processes the option 82 information that is encapsulated in the response from the server, an error could occur. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition. Cisco Bug IDs: CSCvg62754.
A vulnerability has been identified in Firmware variant IEC 61850 for EN100 Ethernet module (All versions < V4.33), Firmware variant PROFINET IO for EN100 Ethernet module (All versions), Firmware variant Modbus TCP for EN100 Ethernet module (All versions), Firmware variant DNP3 TCP for EN100 Ethernet module (All versions), Firmware variant IEC104 for EN100 Ethernet module (All versions < V1.22). Specially crafted packets to port 102/tcp could cause a denial-of-service condition in the EN100 communication module if oscillographs are running. A manual restart is required to recover the EN100 module functionality. Successful exploitation requires an attacker with network access to send multiple packets to the EN100 module. As a precondition the IEC 61850-MMS communication needs to be activated on the affected EN100 modules. No user interaction or privileges are required to exploit the security vulnerability. The vulnerability could allow causing a Denial-of-Service condition of the network functionality of the device, compromising the availability of the system. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability in the Real-Time Transport Protocol (RTP) bitstream processing of the Cisco Meeting Server could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition. The vulnerability is due to insufficient input validation of incoming RTP bitstreams. An attacker could exploit this vulnerability by sending a crafted RTP bitstream to an affected Cisco Meeting Server. A successful exploit could allow the attacker to deny audio and video services by causing media process crashes resulting in a DoS condition on the affected product. This vulnerability affects Cisco Meeting Server deployments that are running Cisco Meeting Server Software Releases 2.0, 2.1, 2.2, and 2.3. Cisco Bug IDs: CSCve79693, CSCvf91393, CSCvg64656, CSCvh30725, CSCvi86363.
routing before version 3.10 is vulnerable to an improper input validation of the Openshift Routing configuration which can cause an entire shard to be brought down. A malicious user can use this vulnerability to cause a Denial of Service attack for other users of the router shard.
TeamSpeak Client 3.0.19 allows remote attackers to cause a denial of service (application crash) via the ᗪ Unicode character followed by the ༿ Unicode character.
A vulnerability in the IPv6 subsystem of Cisco IOS XR Software Release 5.3.4 for the Cisco Aggregation Services Router (ASR) 9000 Series could allow an unauthenticated, remote attacker to trigger a reload of one or more Trident-based line cards, resulting in a denial of service (DoS) condition. The vulnerability is due to incorrect handling of IPv6 packets with a fragment header extension. An attacker could exploit this vulnerability by sending IPv6 packets designed to trigger the issue either to or through the Trident-based line card. A successful exploit could allow the attacker to trigger a reload of Trident-based line cards, resulting in a DoS during the period of time the line card takes to restart. This vulnerability affects Cisco Aggregation Services Router (ASR) 9000 Series when the following conditions are met: The router is running Cisco IOS XR Software Release 5.3.4, and the router has installed Trident-based line cards that have IPv6 configured. A software maintenance upgrade (SMU) has been made available that addresses this vulnerability. The fix has also been incorporated into service pack 7 for Cisco IOS XR Software Release 5.3.4. Cisco Bug IDs: CSCvg46800.
The WCF Replace function in the Open Data (aka OData) protocol implementation in Microsoft .NET Framework 3.5, 3.5 SP1, 3.5.1, and 4, and the Management OData IIS Extension on Windows Server 2012, allows remote attackers to cause a denial of service (resource consumption and daemon restart) via crafted values in HTTP requests, aka "Replace Denial of Service Vulnerability."
Cisco Unified Communications Manager (CUCM) 8.6 before 8.6(2a)su2, 8.6 BE3k before 8.6(4) BE3k, and 9.x before 9.0(1) allows remote attackers to cause a denial of service (CPU consumption and GUI and voice outages) via malformed packets to unused UDP ports, aka Bug ID CSCtx43337.
A vulnerability in management interface access control list (ACL) configuration of Cisco NX-OS System Software could allow an unauthenticated, remote attacker to bypass configured ACLs on the management interface. This could allow traffic to be forwarded to the NX-OS CPU for processing, leading to high CPU utilization and a denial of service (DoS) condition. The vulnerability is due to a bad code fix in the 7.3.2 code train that could allow traffic to the management interface to be misclassified and not match the proper configured ACLs. An attacker could exploit this vulnerability by sending crafted traffic to the management interface. An exploit could allow the attacker to bypass the configured management interface ACLs and impact the CPU of the targeted device, resulting in a DoS condition. This vulnerability affects the following Cisco products running Cisco NX-OS System Software: Multilayer Director Switches, Nexus 2000 Series Switches, Nexus 3000 Series Switches, Nexus 5500 Platform Switches, Nexus 5600 Platform Switches, Nexus 6000 Series Switches, Nexus 7000 Series Switches, Nexus 7700 Series Switches, Nexus 9000 Series Switches in standalone NX-OS mode. Cisco Bug IDs: CSCvf31132.
A vulnerability in the Session Initiation Protocol (SIP) call-handling functionality of Cisco IP Phone 7800 Series phones and Cisco IP Phone 8800 Series phones could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected phone. The vulnerability is due to incomplete input validation of SIP Session Description Protocol (SDP) parameters by the SDP parser of an affected phone. An attacker could exploit this vulnerability by sending a malformed SIP packet to an affected phone. A successful exploit could allow the attacker to cause all active phone calls on the affected phone to be dropped while the SIP process on the phone unexpectedly restarts, resulting in a DoS condition. Cisco Bug IDs: CSCvf40066.
Receipt of a crafted or malformed RSVP PATH message may cause the routing protocol daemon (RPD) to hang or crash. When RPD is unavailable, routing updates cannot be processed which can lead to an extended network outage. If RSVP is not enabled on an interface, then the issue cannot be triggered via that interface. This issue only affects Juniper Networks Junos OS 16.1 versions prior to 16.1R3. This issue does not affect Junos releases prior to 16.1R1.