In a Linux KVM guest that has PV TLB enabled, a process in the guest kernel may be able to read memory locations from another process in the same guest. This problem is limit to the host running linux kernel 4.10 with a guest running linux kernel 4.16 or later. The problem mainly affects AMD processors but Intel CPUs cannot be ruled out.
The Sec Consult Security Lab reported an information disclosure vulnerability in MF910S product to ZTE PSIRT in October 2019. Through the analysis of related product team, the information disclosure vulnerability is confirmed. The MF910S product's one-click upgrade tool can obtain the Telnet remote login password in the reverse way. If Telnet is opened, the attacker can remotely log in to the device through the cracked password, resulting in information leakage. The MF910S was end of service on October 23, 2019, ZTE recommends users to choose new products for the purpose of better security.
The Linux kernel before 5.4.1 on powerpc allows Information Exposure because the Spectre-RSB mitigation is not in place for all applicable CPUs, aka CID-39e72bf96f58. This is related to arch/powerpc/kernel/entry_64.S and arch/powerpc/kernel/security.c.
The drm_ioctl function in drivers/gpu/drm/drm_drv.c in the Direct Rendering Manager (DRM) subsystem in the Linux kernel before 2.6.27.53, 2.6.32.x before 2.6.32.21, 2.6.34.x before 2.6.34.6, and 2.6.35.x before 2.6.35.4 allows local users to obtain potentially sensitive information from kernel memory by requesting a large memory-allocation amount.
cPanel before 68.0.27 allows attackers to read root's crontab file during a short time interval upon configuring crontab (SEC-351).
PerfServlet in the PMI/Performance Tools component in IBM WebSphere Application Server (WAS) 6.0.x before 6.0.2.31, 6.1.x before 6.1.0.21, and 7.0.x before 7.0.0.1, when Performance Monitoring Infrastructure (PMI) is enabled, allows local users to obtain sensitive information by reading the (1) systemout.log and (2) ffdc files. NOTE: this is probably a duplicate of CVE-2008-5413.
An information disclosure vulnerability exists when the Windows Graphics component improperly handles objects in memory, aka "Microsoft Graphics Component Information Disclosure Vulnerability." This affects Windows 7, Windows Server 2012 R2, Windows RT 8.1, Windows Server 2008, Windows Server 2012, Windows 8.1, Windows Server 2016, Windows Server 2008 R2, Windows 10, Windows 10 Servers.
An information disclosure vulnerability exists when the Windows GDI component improperly discloses the contents of its memory, aka "Windows GDI Information Disclosure Vulnerability." This affects Windows Server 2008, Windows 7, Windows Server 2008 R2. This CVE ID is unique from CVE-2018-8394, CVE-2018-8398.
An information disclosure vulnerability exists when the Windows kernel improperly handles objects in memory, aka "Windows Kernel Information Disclosure Vulnerability." This affects Windows 7, Windows Server 2012 R2, Windows RT 8.1, Windows Server 2008, Windows Server 2012, Windows 8.1, Windows Server 2016, Windows Server 2008 R2, Windows 10, Windows 10 Servers. This CVE ID is unique from CVE-2018-8341.
An information disclosure vulnerability exists when the Windows kernel improperly handles objects in memory, aka "Windows Kernel Information Disclosure Vulnerability." This affects Windows 7, Windows Server 2012 R2, Windows RT 8.1, Windows Server 2012, Windows 8.1, Windows Server 2016, Windows Server 2008 R2, Windows 10, Windows 10 Servers. This CVE ID is unique from CVE-2018-8348.
An information disclosure vulnerability exists when the Windows kernel improperly handles objects in memory, aka "Windows Kernel Information Disclosure Vulnerability." This affects Windows 10, Windows 10 Servers. This CVE ID is unique from CVE-2018-8127.
NVIDIA GeForce Experience prior to 3.15 contains a vulnerability when GameStream is enabled where limited sensitive user information may be available to users with system access, which may lead to information disclosure.
Simultaneous Multi-threading (SMT) in processors can enable local users to exploit software vulnerable to timing attacks via a side-channel timing attack on 'port contention'.
Edger8r tool in the Intel SGX SDK before version 2.1.2 (Linux) and 1.9.6 (Windows) may generate code that is susceptible to a side channel potentially allowing a local user to access unauthorized information.
cPanel before 68.0.27 allows attackers to read root's crontab file during a short time interval upon a post-update task (SEC-352).
The Identity and Access Management (IAM) services (IBM Cloud Private 3.1.0) do not use a secure channel, such as SSL, to exchange information only when accessed internally from within the cluster. It could be possible for an attacker with access to network traffic to sniff packets from the connection and uncover data. IBM X-Force ID: 150903
IBM Sterling B2B Integrator Standard Edition 5.2.6.0 and 6.2.6.1 could allow a local user to obtain highly sensitive information during a short time period when installation is occurring. IBM X-Force ID: 149607.
keepalived 2.0.8 didn't check for existing plain files when writing data to a temporary file upon a call to PrintData or PrintStats. If a local attacker had previously created a file with the expected name (e.g., /tmp/keepalived.data or /tmp/keepalived.stats), with read access for the attacker and write access for the keepalived process, then this potentially leaked sensitive information.
The ASUS ZenFone 3 Max Android device with a build fingerprint of asus/US_Phone/ASUS_X008_1:7.0/NRD90M/US_Phone-14.14.1711.92-20171208:user/release-keys contains a pre-installed app with a package name of com.asus.loguploader (versionCode=1570000275, versionName=7.0.0.55_170515). This app contains an exported service app component named com.asus.loguploader.LogUploaderService that, when accessed with a particular action string, will write a bugreport (kernel log, logcat log, and the state of system services including the text of active notifications), Wi-Fi Passwords, and other system data to external storage (sdcard). Any app with the READ_EXTERNAL_STORAGE permission on this device can read this data from the sdcard after it has been dumped there by the com.asus.loguploader. Third-party apps are not allowed to directly create a bugreport or access the user's stored wireless network credentials.
BoringSSL through 2018-06-14 allows a memory-cache side-channel attack on DSA signatures, aka the Return Of the Hidden Number Problem or ROHNP. To discover a DSA key, the attacker needs access to either the local machine or a different virtual machine on the same physical host.
A vulnerability in the UPC bar code of the Avanti Markets MarketCard could allow an unauthenticated, local attacker to access funds within the customer's MarketCard balance, and also could lead to Customer Information Disclosure. The vulnerability is due to lack of proper validation of the UPC bar code present on the MarketCard. An attacker could exploit this vulnerability by generating a copy of a customer's bar code. An exploit could allow the attacker to access all funds located within the MarketCard or allow unauthenticated disclosure of information.
LibTomCrypt through 1.18.1 allows a memory-cache side-channel attack on ECDSA signatures, aka the Return Of the Hidden Number Problem or ROHNP. To discover an ECDSA key, the attacker needs access to either the local machine or a different virtual machine on the same physical host.
The liblnk_location_information_read_data function in liblnk_location_information.c in liblnk through 2018-04-19 allows remote attackers to cause an information disclosure (heap-based buffer over-read) via a crafted lnk file. NOTE: the vendor has disputed this as described in libyal/liblnk issue 33 on GitHub
The libfsntfs_reparse_point_values_read_data function in libfsntfs_reparse_point_values.c in libfsntfs through 2018-04-20 allows remote attackers to cause an information disclosure (heap-based buffer over-read) via a crafted ntfs file. NOTE: the vendor has disputed this as described in libyal/libfsntfs issue 8 on GitHub
MatrixSSL through 3.9.5 Open allows a memory-cache side-channel attack on ECDSA signatures, aka the Return Of the Hidden Number Problem or ROHNP. To discover an ECDSA key, the attacker needs access to either the local machine or a different virtual machine on the same physical host.
The libfsntfs_mft_entry_read_header function in libfsntfs_mft_entry.c in libfsntfs through 2018-04-20 allows remote attackers to cause an information disclosure (heap-based buffer over-read) via a crafted ntfs file. NOTE: the vendor has disputed this as described in libyal/libfsntfs issue 8 on GitHub
The Elliptic Curve Cryptography library (aka sunec or libsunec) allows a memory-cache side-channel attack on ECDSA signatures, aka the Return Of the Hidden Number Problem or ROHNP. To discover an ECDSA key, the attacker needs access to either the local machine or a different virtual machine on the same physical host.
LibreSSL before 2.6.5 and 2.7.x before 2.7.4 allows a memory-cache side-channel attack on DSA and ECDSA signatures, aka the Return Of the Hidden Number Problem or ROHNP. To discover a key, the attacker needs access to either the local machine or a different virtual machine on the same physical host.
wolfcrypt/src/ecc.c in wolfSSL before 3.15.1.patch allows a memory-cache side-channel attack on ECDSA signatures, aka the Return Of the Hidden Number Problem or ROHNP. To discover an ECDSA key, the attacker needs access to either the local machine or a different virtual machine on the same physical host.
The libfsntfs_mft_entry_read_attributes function in libfsntfs_mft_entry.c in libfsntfs through 2018-04-20 allows remote attackers to cause an information disclosure (heap-based buffer over-read) via a crafted ntfs file. NOTE: the vendor has disputed this as described in libyal/libfsntfs issue 8 on GitHub
Botan 2.5.0 through 2.6.0 before 2.7.0 allows a memory-cache side-channel attack on ECDSA signatures, aka the Return Of the Hidden Number Problem or ROHNP, related to dsa/dsa.cpp, ec_group/ec_group.cpp, and ecdsa/ecdsa.cpp. To discover an ECDSA key, the attacker needs access to either the local machine or a different virtual machine on the same physical host.
The use of a non-time-constant memory comparison operation can lead to timing/side channel attacks in Snapdragon Mobile in version SD 210/SD 212/SD 205, SD 845, SD 850
cryptlib through 3.4.4 allows a memory-cache side-channel attack on DSA and ECDSA signatures, aka the Return Of the Hidden Number Problem or ROHNP. To discover a key, the attacker needs access to either the local machine or a different virtual machine on the same physical host. NOTE: the vendor does not include side-channel attacks within its threat model
The liblnk_data_block_read function in liblnk_data_block.c in liblnk through 2018-04-19 allows remote attackers to cause an information disclosure (heap-based buffer over-read) via a crafted lnk file. NOTE: the vendor has disputed this as described in libyal/liblnk issue 33 on GitHub
The libfsntfs_attribute_read_from_mft function in libfsntfs_attribute.c in libfsntfs through 2018-04-20 allows remote attackers to cause an information disclosure (heap-based buffer over-read) via a crafted ntfs file. NOTE: the vendor has disputed this as described in libyal/libfsntfs issue 8 on GitHub
An issue was discovered in PHP before 5.6.35, 7.0.x before 7.0.29, 7.1.x before 7.1.16, and 7.2.x before 7.2.4. Dumpable FPM child processes allow bypassing opcache access controls because fpm_unix.c makes a PR_SET_DUMPABLE prctl call, allowing one user (in a multiuser environment) to obtain sensitive information from the process memory of a second user's PHP applications by running gcore on the PID of the PHP-FPM worker process.
An issue was discovered in Xen through 4.10.x allowing x86 HVM guest OS users (in certain configurations) to read arbitrary dom0 files via QMP live insertion of a CDROM, in conjunction with specifying the target file as the backing file of a snapshot.
The Windows kernel in Windows 7 SP1, Windows 8.1 and RT 8.1, Windows Server 2008 SP2 and R2 SP1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703 and 1709, Windows Server 2016 and Windows Server, version 1709 allows an information disclosure vulnerability due to how objects in memory are handled, aka "Windows Information Disclosure Vulnerability". This CVE is unique from CVE-2018-0829 and CVE-2018-0832.
The Windows kernel in Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1 and RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703, and 1709, Windows Server 2016 and Windows Server, version 1709 allows an information disclosure vulnerability due to the way memory addresses are handled, aka "Windows Kernel Information Disclosure Vulnerability". This CVE is unique from CVE-2018-0811, CVE-2018-0813, CVE-2018-0814, CVE-2018-0894, CVE-2018-0895, CVE-2018-0897, CVE-2018-0898, CVE-2018-0899, CVE-2018-0900, CVE-2018-0901 and CVE-2018-0926.
The Windows kernel in Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1 and RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703, and 1709, Windows Server 2016 and Windows Server, version 1709 allows an information disclosure vulnerability due to the way memory addresses are handled, aka "Windows Kernel Information Disclosure Vulnerability". This CVE is unique from CVE-2018-0811, CVE-2018-0813, CVE-2018-0814, CVE-2018-0894, CVE-2018-0895, CVE-2018-0896, CVE-2018-0897, CVE-2018-0898, CVE-2018-0900, CVE-2018-0901 and CVE-2018-0926.
The Windows kernel in Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1 and RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703, and 1709, Windows Server 2016 and Windows Server, version 1709 allows an information disclosure vulnerability due to the way memory addresses are handled, aka "Windows Kernel Information Disclosure Vulnerability". This CVE is unique from CVE-2018-0811, CVE-2018-0813, CVE-2018-0814, CVE-2018-0894, CVE-2018-0895, CVE-2018-0896, CVE-2018-0897, CVE-2018-0899, CVE-2018-0900, CVE-2018-0901 and CVE-2018-0926.
The Windows kernel in Windows 10 version 1709 and Windows Server, version 1709 allows an information disclosure vulnerability due to how objects in memory are handled, aka "Windows Kernel Information Disclosure Vulnerability". This CVE is unique from CVE-2018-0742, CVE-2018-0756, CVE-2018-0809 and CVE-2018-0820.
The Windows kernel in Microsoft Windows Server 2008 R2 SP1, Windows 7 SP1, Windows 8.1 and RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703, and 1709, Windows Server 2016 and Windows Server, version 1709 allows information disclosure vulnerability due to how memory addresses are handled, aka "Windows Kernel Information Disclosure Vulnerability".
The Windows kernel in Windows 7 SP1, Windows 8.1 and RT 8.1, Windows Server 2008 SP2 and R2 SP1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703 and 1709, Windows Server 2016 and Windows Server, version 1709 allows an information disclosure vulnerability due to how objects in memory are handled, aka "Windows Information Disclosure Vulnerability". This CVE is unique from CVE-2018-0830 and CVE-2018-0832.
The Windows kernel in Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1 and RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703, and 1709, Windows Server 2016 and Windows Server, version 1709 allows an information disclosure vulnerability due to the way memory addresses are handled, aka "Windows Kernel Information Disclosure Vulnerability". This CVE is unique from CVE-2018-0811, CVE-2018-0813, CVE-2018-0814, CVE-2018-0894, CVE-2018-0895, CVE-2018-0896, CVE-2018-0897, CVE-2018-0898, CVE-2018-0899, CVE-2018-0901 and CVE-2018-0926.
An information disclosure vulnerability exists in Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, and Windows Server 2016 when the Windows kernel improperly handles objects in memory, aka "GDI Information Disclosure Vulnerability".
The kernel in Microsoft Windows 7 SP1, Windows Server 2008 SP2 and R2 SP1, Windows 8.1 and Windows RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, and 1703, and Windows Server 2016 allows an authenticated attacker to obtain memory contents via a specially crafted application.
The Windows Hyper-V component on Microsoft Windows Windows 8.1, Windows Server 2012 Gold and R2, Windows 10 Gold, 1511, 1607, and 1703, and Windows Server 2016 allows an information disclosure vulnerability when it fails to properly validate input from an authenticated user on a guest operating system, aka "Hyper-V Information Disclosure Vulnerability". This CVE ID is unique from CVE-2017-8707, CVE-2017-8711, CVE-2017-8712, and CVE-2017-8706.
The Windows Hyper-V component on Microsoft Windows 10 1607, 1703, and Windows Server 2016 allows an information disclosure vulnerability when it fails to properly validate input from an authenticated user on a guest operating system, aka "Hyper-V Information Disclosure Vulnerability". This CVE ID is unique from CVE-2017-8707, CVE-2017-8711, CVE-2017-8706, and CVE-2017-8713.
The Windows kernel component on Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, Windows 10 Gold, 1511, 1607, and 1703, and Windows Server 2016 allows an information disclosure vulnerability when it improperly handles objects in memory, aka "Windows Kernel Information Disclosure Vulnerability". This CVE ID is unique from CVE-2017-8708, CVE-2017-8679, and CVE-2017-8719.