Use-after-free vulnerability in Apple Safari 4.0.5 on Windows allows remote attackers to execute arbitrary code by using window.open to create a popup window for a crafted HTML document, and then calling the parent window's close method, which triggers improper handling of a deleted window object.
Buffer overflow in QuickTime Player plugin 4.1.2 (Japanese) allows remote attackers to execute arbitrary commands via a long HREF parameter in an EMBED tag.
The nonet and nointernet sandbox profiles in Apple Mac OS X 10.5.x do not propagate restrictions to all created processes, which allows remote attackers to access network resources via a crafted application, as demonstrated by use of launchctl to trigger the launchd daemon's execution of a script file, a related issue to CVE-2011-1516.
Use-after-free vulnerability in the Runin box functionality in the Cascading Style Sheets (CSS) 2.1 Visual Formatting Model implementation in WebKit, as used in Apple iTunes before 10.2 on Windows and Apple Safari, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
Mac OS X 10.3.9 and earlier allows users to install, create, and execute setuid/setgid scripts, contrary to the intended design, which may allow attackers to conduct unauthorized activities with escalated privileges via vulnerable scripts.
Unspecified vulnerability in Apple QuickTime MPEG-2 Playback Component before 7.60.92.0 on Windows allows remote attackers to cause a denial of service (application crash) or execute arbitrary code via a crafted MPEG-2 movie.
The MCX Application Restrictions component in Apple OS X before 10.11.1, when Managed Configuration is enabled, mishandles provisioning profiles, which allows attackers to bypass intended entitlement restrictions and gain privileges via a crafted developer-signed app.
The System Integrity Protection feature in Apple OS X before 10.11.2 mishandles union mounts, which allows attackers to execute arbitrary code in a privileged context via a crafted app with root privileges.
Race condition in Login Window in Apple Mac OS X 10.5 through 10.5.4, when a blank-password account is enabled, allows attackers to bypass password authentication and login to any account via multiple attempts to login to the blank-password account, followed by selection of an arbitrary account from the user list.
Heap-based buffer overflow in libmpdemux/aviheader.c in MPlayer 1.0rc1 and earlier allows remote attackers to cause a denial of service (application crash) or possibly execute arbitrary code via a .avi file with certain large "indx truck size" and nEntriesInuse values, and a certain wLongsPerEntry value.
Stack-based buffer overflow in Apple QuickTime before 7.3 allows remote attackers to execute arbitrary code via an invalid UncompressedQuickTimeData opcode length in a PICT image.
Apple QuickTime Java extensions (QTJava.dll), as used in Safari and other browsers, and when Java is enabled, allows remote attackers to execute arbitrary code via parameters to the toQTPointer method in quicktime.util.QTHandleRef, which can be used to modify arbitrary memory when creating QTPointerRef objects, as demonstrated during the "PWN 2 0WN" contest at CanSecWest 2007.
WebKit, as used in Apple iTunes before 10.6, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2012-03-07-1.
WebKit, as used in Apple iTunes before 10.6, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2012-03-07-1.
Use-after-free vulnerability in Apple Safari 5.1.2, when a plug-in with a blocking function is installed, allows user-assisted remote attackers to execute arbitrary code via a crafted web page that is accessed during user interaction with the plug-in, leading to improper coordination between an API call and the plug-in unloading functionality, as demonstrated by the Adobe Flash and RealPlayer plug-ins.
The File Systems component in Apple Mac OS X before 10.7.2 does not properly track the specific X.509 certificate that a user manually accepted for an initial https WebDAV connection, which allows man-in-the-middle attackers to hijack WebDAV communication by presenting an arbitrary certificate for a subsequent connection.
WebKit, as used in Apple iTunes before 10.5, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-10-11-1.
WebKit, as used in Apple iTunes before 10.5, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-10-11-1.
WebKit, as used in Apple iTunes before 10.5, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-10-11-1.
WebKit, as used in Apple iTunes before 10.5, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-10-11-1.
WebKit, as used in Apple iTunes before 10.5, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-10-11-1.
WebKit, as used in Apple iTunes before 10.5, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-10-11-1.
WebKit, as used in Apple iTunes before 10.5, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-10-11-1.
WebKit, as used in Apple iTunes before 10.5, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-10-11-1.
WebKit, as used in Apple iTunes before 10.6, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2012-03-07-1.
WebKit, as used in Apple iTunes before 10.5, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-10-11-1.
WebKit, as used in Apple iTunes before 10.5, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-10-11-1.
WebKit, as used in Apple iTunes before 10.5, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-10-11-1.
WebKit, as used in Apple iTunes before 10.5, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-10-11-1.
WebKit, as used in Apple iTunes before 10.5, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-10-11-1.
WebKit, as used in Apple iTunes before 10.5, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-10-11-1.
WebKit, as used in Apple iTunes before 10.5, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-10-11-1.
A race condition was addressed with additional validation. This issue is fixed in iPadOS 17.7.3, watchOS 11.2, visionOS 2.2, tvOS 18.2, macOS Sequoia 15.2, iOS 18.2 and iPadOS 18.2, macOS Ventura 13.7.2, macOS Sonoma 14.7.2. An attacker may be able to create a read-only memory mapping that can be written to.
Multiple race conditions in the Phone app in Apple iOS before 7.0.3 allow physically proximate attackers to bypass the locked state, and dial the telephone numbers in arbitrary Contacts entries, by visiting the Contacts pane.
Incorrect handling of picture ID in WebRTC in Google Chrome prior to 58.0.3029.96 for Mac, Windows, and Linux allowed a remote attacker to trigger a race condition via a crafted HTML page.
Passcode Lock in Apple iOS before 7 does not properly manage the lock state, which allows physically proximate attackers to bypass an intended passcode requirement by leveraging a race condition involving phone calls and ejection of a SIM card.
Incorrect security UI in popup blocker in Google Chrome on iOS prior to 75.0.3770.80 allowed a remote attacker to bypass navigation restrictions via a crafted HTML page.
Race condition in Google Chrome before 25.0.1364.97 on Windows and Linux, and before 25.0.1364.99 on Mac OS X, allows remote attackers to cause a denial of service or possibly have unspecified other impact via vectors related to media.
A race condition was addressed with additional validation. This issue is fixed in tvOS 11.2, iOS 11.2, macOS High Sierra 10.13.2, Security Update 2017-002 Sierra, and Security Update 2017-005 El Capitan, watchOS 4.2. An application may be able to gain elevated privileges.
A race condition was addressed with additional validation. This issue is fixed in macOS Ventura 13.6.8, iOS 17.6 and iPadOS 17.6, watchOS 10.6, tvOS 17.6, macOS Sonoma 14.6. A malicious attacker with arbitrary read and write capability may be able to bypass Pointer Authentication.
Race condition in LoginUIFramework in Apple Mac OS X 10.7.x before 10.7.4, when the Guest account is enabled, allows physically proximate attackers to login to arbitrary accounts by entering the account name and no password.
A race condition was addressed with improved state handling. This issue is fixed in iOS 14.6 and iPadOS 14.6. An application may be able to cause unexpected system termination or write kernel memory.
A race condition was addressed with improved state handling. This issue is fixed in iOS 14.7, macOS Big Sur 11.5. Opening a maliciously crafted PDF file may lead to an unexpected application termination or arbitrary code execution.
Race condition in Google Chrome before 11.0.696.57 on Linux and Mac OS X allows remote attackers to cause a denial of service or possibly have unspecified other impact via vectors related to linked lists and a database.
Race condition in Apple iOS 4.0 through 4.1 for iPhone 3G and later allows physically proximate attackers to bypass the passcode lock by making a call from the Emergency Call screen, then quickly pressing the Sleep/Wake button.
Race condition in the mounting process in vmware-mount in VMware Workstation 7.x before 7.1.2 build 301548 on Linux, VMware Player 3.1.x before 3.1.2 build 301548 on Linux, VMware Server 2.0.2 on Linux, and VMware Fusion 3.1.x before 3.1.2 build 332101 allows host OS users to gain privileges via vectors involving temporary files.
A race condition was addressed with improved locking. This issue is fixed in macOS Sonoma 14.5, iOS 16.7.8 and iPadOS 16.7.8, macOS Ventura 13.6.7, watchOS 10.5, visionOS 1.3, tvOS 17.5, iOS 17.5 and iPadOS 17.5, macOS Monterey 12.7.5. An attacker in a privileged network position may be able to spoof network packets.
A race condition was addressed with improved locking. This issue is fixed in macOS Ventura 13.7, iOS 17.7 and iPadOS 17.7, visionOS 2, iOS 18 and iPadOS 18, macOS Sonoma 14.7, macOS Sequoia 15. Unpacking a maliciously crafted archive may allow an attacker to write arbitrary files.
Race condition in Passcode Lock in Apple iOS before 4 on the iPhone and iPod touch allows physically proximate attackers to bypass intended passcode requirements, and pair a locked device with a computer and access arbitrary data, via vectors involving the initial boot.
A race condition was addressed with improved state handling. This issue is fixed in tvOS 17.4, iOS 17.4 and iPadOS 17.4, macOS Sonoma 14.4, watchOS 10.4. An app may be able to leak sensitive user information.