An information disclosure vulnerability exists when the Human Interface Devices (HID) component improperly handles objects in memory, aka 'HID Information Disclosure Vulnerability'. This CVE ID is unique from CVE-2019-0600.
An information disclosure vulnerability exists when the Windows kernel improperly handles objects in memory, aka 'Windows Kernel Information Disclosure Vulnerability'. This CVE ID is unique from CVE-2019-0702, CVE-2019-0755, CVE-2019-0767, CVE-2019-0782.
An information disclosure vulnerability exists when the Human Interface Devices (HID) component improperly handles objects in memory, aka 'HID Information Disclosure Vulnerability'. This CVE ID is unique from CVE-2019-0601.
An Information Disclosure vulnerability exists in the way that Microsoft Windows Codecs Library handles objects in memory, aka "Microsoft Windows Codecs Library Information Disclosure Vulnerability." This affects Windows 10 Servers, Windows 10, Windows Server 2019.
An information disclosure vulnerability exists when the Windows kernel improperly initializes objects in memory, aka "Windows Kernel Information Disclosure Vulnerability." This affects Windows 10 Servers, Windows 10. This CVE ID is unique from CVE-2018-8207.
An information exposure through log file vulnerability exists in the Palo Alto Networks GlobalProtect app on Windows that logs the cleartext credentials of the connecting GlobalProtect user when authenticating using Connect Before Logon feature. This issue impacts GlobalProtect App 5.2 versions earlier than 5.2.9 on Windows. This issue does not affect the GlobalProtect app on other platforms.
An information disclosure vulnerability exists when Windows Hyper-V on a host operating system fails to properly validate input from an authenticated user on a guest operating system, aka "Hyper-V Information Disclosure Vulnerability." This affects Windows Server 2012 R2, Windows RT 8.1, Windows Server 2016, Windows 8.1, Windows 10, Windows 10 Servers. This CVE ID is unique from CVE-2018-0964.
The Windows kernel in Windows 8.1 and RT 8.1, Windows Server 2012 R2, Windows 10 Gold, 1511, 1607, 1703 and 1709, Windows Server 2016 and Windows Server, version 1709 allows an information disclosure vulnerability due to how objects in memory are handled, aka "Windows Information Disclosure Vulnerability". This CVE is unique from CVE-2018-0829 and CVE-2018-0830.
The Windows kernel in Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1 and RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703, and 1709, Windows Server 2016 and Windows Server, version 1709 allows an information disclosure vulnerability due to the way memory addresses are handled, aka "Windows Kernel Information Disclosure Vulnerability". This CVE is unique from CVE-2018-0811, CVE-2018-0813, CVE-2018-0814, CVE-2018-0894, CVE-2018-0895, CVE-2018-0896, CVE-2018-0897, CVE-2018-0898, CVE-2018-0899, CVE-2018-0900, and CVE-2018-0926.
An information disclosure vulnerability exists when Windows Hyper-V on a host operating system fails to properly validate input from an authenticated user on a guest operating system, aka "Hyper-V Information Disclosure Vulnerability." This affects Windows 10, Windows 10 Servers. This CVE ID is unique from CVE-2018-0957.
The Windows kernel in Windows 7 SP1, Windows Server 2008 SP2 and R2, and Windows Server 2012 allows an information disclosure vulnerability due to the way memory is initialized, aka "Windows Kernel Information Disclosure Vulnerability". This CVE is unique from CVE-2018-0757.
The Windows kernel in Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1 and RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703, and 1709, Windows Server 2016 and Windows Server, version 1709 allows an information disclosure vulnerability due to the way memory addresses are handled, aka "Windows Kernel Information Disclosure Vulnerability". This CVE is unique from CVE-2018-0811, CVE-2018-0813, CVE-2018-0814, CVE-2018-0895, CVE-2018-0896, CVE-2018-0897, CVE-2018-0898, CVE-2018-0899, CVE-2018-0900, CVE-2018-0901 and CVE-2018-0926.
The Windows kernel in Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1 and RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703, and 1709, Windows Server 2016 and Windows Server, version 1709 allows an information disclosure vulnerability due to the way memory addresses are handled, aka "Windows Kernel Information Disclosure Vulnerability". This CVE is unique from CVE-2018-0811, CVE-2018-0813, CVE-2018-0814, CVE-2018-0894, CVE-2018-0895, CVE-2018-0896, CVE-2018-0898, CVE-2018-0899, CVE-2018-0900, CVE-2018-0901 and CVE-2018-0926.
The Windows kernel in Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1 and RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703, and 1709, Windows Server 2016 and Windows Server, version 1709 allows an information disclosure vulnerability due to the way memory addresses are handled, aka "Windows Kernel Information Disclosure Vulnerability". This CVE is unique from CVE-2018-0811, CVE-2018-0813, CVE-2018-0814, CVE-2018-0894, CVE-2018-0896, CVE-2018-0897, CVE-2018-0898, CVE-2018-0899, CVE-2018-0900, CVE-2018-0901 and CVE-2018-0926.
The Windows kernel in Windows 8.1 and RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703 and 1709, Windows Server 2016 and Windows Server, version 1709 allows an information disclosure vulnerability due to the way memory addresses are handled, aka "Windows Information Disclosure Vulnerability". This CVE ID is unique from CVE-2018-0745 and CVE-2018-0747.
The Windows kernel in Windows 7 SP1, Windows 8.1 and RT 8.1, Windows Server 2008 SP2 and R2 SP1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703 and 1709, Windows Server 2016 and Windows Server, version 1709 allows an information disclosure vulnerability due to the way memory addresses are handled, aka "Windows Information Disclosure Vulnerability". This CVE ID is unique from CVE-2018-0745 and CVE-2018-0746.
The Windows kernel in Windows 7 SP1, Windows 8.1 and RT 8.1, Windows Server 2008 SP2 and R2 SP1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703 and 1709, Windows Server 2016 and Windows Server, version 1709 allows an information disclosure vulnerability due to the way objects are handled in memory, aka "Windows Kernel Information Disclosure Vulnerability". This CVE is unique from CVE-2018-0810.
The Windows kernel in Windows 10 version 1703. Windows 10 version 1709, and Windows Server, version 1709 allows an information disclosure vulnerability due to the way objects are handled in memory, aka "Windows Information Disclosure Vulnerability". This CVE ID is unique from CVE-2018-0746 and CVE-2018-0747.
NVIDIA GPU and Tegra hardware contain a vulnerability in the internal microcontroller, which may allow a user with elevated privileges to access protected information by identifying, exploiting, and loading vulnerable microcode. Such an attack may lead to information disclosure.
Azure RTOS Information Disclosure Vulnerability
The XML Editor in Microsoft InfoPath 2007 SP2 and 2010; SQL Server 2005 SP3 and SP4 and 2008 SP1, SP2, and R2; SQL Server Management Studio Express (SSMSE) 2005; and Visual Studio 2005 SP1, 2008 SP1, and 2010 does not properly handle external entities, which allows remote attackers to read arbitrary files via a crafted .disco (Web Service Discovery) file, aka "XML External Entities Resolution Vulnerability."
Microsoft msxml.dll, as used in Internet Explorer 8 on Windows 7, allows remote attackers to obtain potentially sensitive information about heap memory addresses via an XML document containing a call to the XSLT generate-id XPath function. NOTE: this might overlap CVE-2011-1202.
Windows Remote Desktop Gateway (RD Gateway) Information Disclosure Vulnerability
Microsoft Internet Explorer 6 and 7 does not properly restrict script access to content from a (1) different domain or (2) different zone, which allows remote attackers to obtain sensitive information via a crafted web site, aka "Javascript Information Disclosure Vulnerability."
Microsoft Internet Explorer 8 does not properly handle content settings in HTTP responses, which allows remote web servers to obtain sensitive information from a different (1) domain or (2) zone via a crafted response, aka "MIME Sniffing Information Disclosure Vulnerability."
HP Discovery & Dependency Mapping Inventory (DDMI) 7.50, 7.51, 7.60, 7.61, 7.70, and 9.30 launches the Windows SNMP service with its default configuration, which allows remote attackers to obtain potentially sensitive information or have unspecified other impact by leveraging the public read community.
The (1) JScript 5.8 and (2) VBScript 5.8 scripting engines in Microsoft Windows Server 2008 R2 and Windows 7 do not properly load decoded scripts obtained from web pages, which allows remote attackers to trigger memory corruption and consequently obtain sensitive information via a crafted web site, aka "Scripting Engines Information Disclosure Vulnerability."
Microsoft Office Spoofing Vulnerability
Windows Themes Spoofing Vulnerability
Windows Kernel Information Disclosure Vulnerability
Adobe Flash Player versions 30.0.0.154 and earlier have a privilege escalation vulnerability. Successful exploitation could lead to information disclosure.
WebKit in Apple Safari before 5.0.6 allows user-assisted remote attackers to read arbitrary files via vectors related to improper canonicalization of URLs within RSS feeds.
Apple Safari before 5.0.6 provides AutoFill information to scripts that execute before HTML form submission, which allows remote attackers to obtain Address Book information via a crafted form, as demonstrated by a form that includes non-visible fields.
Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to obtain sensitive information via unspecified vectors.
Azure Science Virtual Machine (DSVM) Elevation of Privilege Vulnerability
The CTimeoutEventList::InsertIntoTimeoutList function in Microsoft mshtml.dll uses a certain pointer value as part of producing Timer ID values for the setTimeout and setInterval methods in VBScript and JScript, which allows remote attackers to obtain sensitive information about the heap memory addresses used by an application, as demonstrated by the Internet Explorer 8 application.
Microsoft Dynamics 365 (On-Premises) Information Disclosure Vulnerability
Microsoft Internet Explorer 6 through 8 does not properly restrict script access to content from a different (1) domain or (2) zone, which allows remote attackers to obtain sensitive information via a crafted web site, aka "Cross-Domain Information Disclosure Vulnerability."
The implementation of HTML content creation in Microsoft Internet Explorer 6 through 8 does not remove the Anchor element during pasting and editing, which might allow remote attackers to obtain sensitive deleted information by visiting a web page, aka "Anchor Element Information Disclosure Vulnerability."
Exposure of sensitive information to an unauthorized actor in some Intel(R) Aptio* V UEFI Firmware Integrator Tools may allow an authenticated user to potentially enable information disclosure via local access.
Microsoft Internet Explorer 6 through 8 does not properly handle unspecified special characters in Cascading Style Sheets (CSS) documents, which allows remote attackers to obtain sensitive information from a different (1) domain or (2) zone via a crafted web site, aka "CSS Special Character Information Disclosure Vulnerability."
Microsoft Internet Explorer 6, 7, and 8 does not prevent rendering of cached content as HTML, which allows remote attackers to access content from a different (1) domain or (2) zone via unspecified script code, aka "Cross-Domain Information Disclosure Vulnerability," a different vulnerability than CVE-2010-3348.
Microsoft Internet Explorer 6, 7, and 8 does not prevent rendering of cached content as HTML, which allows remote attackers to access content from a different (1) domain or (2) zone via unspecified script code, aka "Cross-Domain Information Disclosure Vulnerability," a different vulnerability than CVE-2010-3342.
mod_proxy_http.c in mod_proxy_http in the Apache HTTP Server 2.2.9 through 2.2.15, 2.3.4-alpha, and 2.3.5-alpha on Windows, NetWare, and OS/2, in certain configurations involving proxy worker pools, does not properly detect timeouts, which allows remote attackers to obtain a potentially sensitive response intended for a different client in opportunistic circumstances via a normal HTTP request.
Microsoft Internet Explorer, when the Invisible Hand extension is enabled, uses cookies during background HTTP requests in a possibly unexpected manner, which might allow remote web servers to identify specific persons and their product searches via HTTP request logging, related to a "cross-site data leakage" issue.
The Jupyter Server provides the backend for Jupyter web applications. Jupyter Server on Windows has a vulnerability that lets unauthenticated attackers leak the NTLMv2 password hash of the Windows user running the Jupyter server. An attacker can crack this password to gain access to the Windows machine hosting the Jupyter server, or access other network-accessible machines or 3rd party services using that credential. Or an attacker perform an NTLM relay attack without cracking the credential to gain access to other network-accessible machines. This vulnerability is fixed in 2.14.1.
The AutoFill feature in Apple Safari before 5.0.1 on Mac OS X 10.5 through 10.6 and Windows, and before 4.1.1 on Mac OS X 10.4, allows remote attackers to obtain sensitive Address Book Card information via JavaScript code that forces keystroke events for input fields.
The Cascading Style Sheets (CSS) implementation in WebKit in Apple Safari before 5.0 on Mac OS X 10.5 through 10.6 and Windows, and before 4.1 on Mac OS X 10.4, does not properly handle the :visited pseudo-class, which allows remote attackers to obtain sensitive information about visited web pages via a crafted HTML document.
WebKit in Apple Safari before 5.0 on Mac OS X 10.5 through 10.6 and Windows, and before 4.1 on Mac OS X 10.4, sends an https URL in the Referer header of an http request in certain circumstances involving https to http redirection, which allows remote HTTP servers to obtain potentially sensitive information via standard HTTP logging, a related issue to CVE-2010-0660.
The Cascading Style Sheets (CSS) implementation in WebKit in Apple Safari before 5.0 on Mac OS X 10.5 through 10.6 and Windows, and before 4.1 on Mac OS X 10.4, allows remote attackers to discover sensitive URLs via an HREF attribute associated with a redirecting URL.