An Allocation of Resources Without Limits or Throttling vulnerability in the Packet Forwarding Engine (PFE) of Juniper Networks Junos OS Evolved allows unauthenticated network based attacker to cause a Denial of Service (DoS). On all Junos Evolved platforms hostbound protocols will be impacted by a high rate of specific hostbound traffic from ports on a PFE. Continued receipt of this amount of traffic will create a sustained Denial of Service (DoS) condition. This issue affects Juniper Networks Junos OS Evolved: 21.2 versions prior to 21.2R3-EVO; 21.3 versions prior to 21.3R2-EVO. This issue does not affect Juniper Networks Junos OS Evolved versions prior to 21.2R1.
A limitless resource allocation vulnerability in FPC resources of Juniper Networks Junos OS Evolved on PTX Series allows an unprivileged attacker to cause Denial of Service (DoS). Continuously polling the SNMP jnxCosQstatTable causes the FPC to run out of GUID space, causing a Denial of Service to the FPC resources. When the FPC runs out of the GUID space, you will see the following syslog messages. The evo-aftmand-bt process is asserting. fpc1 evo-aftmand-bt[17556]: %USER-3: get_next_guid: Ran out of Guid Space start 1748051689472 end 1752346656767 fpc1 audit[17556]: %AUTH-5: ANOM_ABEND auid=4294967295 uid=0 gid=0 ses=4294967295 pid=17556 comm="EvoAftManBt-mai" exe="/usr/sbin/evo-aftmand-bt" sig=6 fpc1 kernel: %KERN-5: audit: type=1701 audit(1648567505.119:57): auid=4294967295 uid=0 gid=0 ses=4294967295 pid=17556 comm="EvoAftManBt-mai" exe="/usr/sbin/evo-aftmand-bt" sig=6 fpc1 emfd-fpa[14438]: %USER-5: Alarm set: APP color=red, class=CHASSIS, reason=Application evo-aftmand-bt fail on node Fpc1 fpc1 emfd-fpa[14438]: %USER-3-EMF_FPA_ALARM_REP: RaiseAlarm: Alarm(Location: /Chassis[0]/Fpc[1] Module: sysman Object: evo-aftmand-bt:0 Error: 2) reported fpc1 sysepochman[12738]: %USER-5-SYSTEM_REBOOT_EVENT: Reboot [node] [ungraceful reboot] [evo-aftmand-bt exited] The FPC resources can be monitored using the following commands: user@router> start shell [vrf:none] user@router-re0:~$ cli -c "show platform application-info allocations app evo-aftmand-bt" | grep ^fpc | grep -v Route | grep -i -v Nexthop | awk '{total[$1] += $5} END { for (key in total) { print key " " total[key]/4294967296 }}' Once the FPCs become unreachable they must be manually restarted as they do not self-recover. This issue affects Juniper Networks Junos OS Evolved on PTX Series: All versions prior to 20.4R3-S4-EVO; 21.1-EVO version 21.1R1-EVO and later versions; 21.2-EVO version 21.2R1-EVO and later versions; 21.3-EVO versions prior to 21.3R3-EVO; 21.4-EVO versions prior to 21.4R2-EVO; 22.1-EVO versions prior to 22.1R2-EVO.
On MX Series platforms with MS-MPC/MS-MIC, an Allocation of Resources Without Limits or Throttling vulnerability in Juniper Networks Junos OS allows an unauthenticated network attacker to cause a partial Denial of Service (DoS) with a high rate of specific traffic. If a Class of Service (CoS) rule is attached to the service-set and a high rate of specific traffic is processed by this service-set, for some of the other traffic which has services applied and is being processed by this MS-MPC/MS-MIC drops will be observed. Continued receipted of this high rate of specific traffic will create a sustained Denial of Service (DoS) condition. This issue affects: Juniper Networks Junos OS on MX Series with MS-MPC/MS-MIC: All versions prior to 17.4R3-S5; 18.3 versions prior to 18.3R3-S5; 18.4 versions prior to 18.4R3-S9; 19.1 versions prior to 19.1R3-S6; 19.2 versions prior to 19.2R1-S7, 19.2R3-S3; 19.3 versions prior to 19.3R2-S7, 19.3R3-S3; 19.4 versions prior to 19.4R3-S5; 20.1 versions prior to 20.1R2-S2, 20.1R3-S1; 20.2 versions prior to 20.2R3-S2; 20.3 versions prior to 20.3R3; 20.4 versions prior to 20.4R2-S1, 20.4R3; 21.1 versions prior to 21.1R1-S1, 21.1R2.
A vulnerability in the handling of internal resources necessary to bring up a large number of Layer 2 broadband remote access subscriber (BRAS) nodes in Juniper Networks Junos OS can cause the Access Node Control Protocol daemon (ANCPD) to crash and restart, leading to a Denial of Service (DoS) condition. Continued processing of spoofed subscriber nodes will create a sustained Denial of Service (DoS) condition. When the number of subscribers attempting to connect exceeds the configured maximum-discovery-table-entries value, the subscriber fails to map to an internal neighbor entry, causing the ANCPD process to crash. This issue affects Juniper Networks Junos OS: All versions prior to 17.3R3-S12; 17.4 versions prior to 17.4R2-S13; 18.1 versions prior to 18.1R3-S13; 18.2 versions prior to 18.2R3-S8; 18.3 versions prior to 18.3R3-S5; 18.4 versions prior to 18.4R1-S8, 18.4R3-S8; 19.1 versions prior to 19.1R3-S4; 19.2 versions prior to 19.2R3-S2; 19.3 versions prior to 19.3R3-S1; 19.4 versions prior to 19.4R3-S1; 20.1 versions prior to 20.1R2; 20.2 versions prior to 20.2R2; 20.3 versions prior to 20.3R2.
A vulnerability due to the improper handling of direct memory access (DMA) buffers on EX4300 switches on Juniper Networks Junos OS allows an attacker sending specific unicast frames to trigger a Denial of Service (DoS) condition by exhausting DMA buffers, causing the FPC to crash and the device to restart. The DMA buffer leak is seen when receiving these specific, valid unicast frames on an interface without Layer 2 Protocol Tunneling (L2PT) or dot1x configured. Interfaces with either L2PT or dot1x configured are not vulnerable to this issue. When this issue occurs, DMA buffer usage keeps increasing and the following error log messages may be observed: Apr 14 14:29:34.360 /kernel: pid 64476 (pfex_junos), uid 0: exited on signal 11 (core dumped) Apr 14 14:29:33.790 init: pfe-manager (PID 64476) terminated by signal number 11. Core dumped! The DMA buffers on the FPC can be monitored by the executing vty command 'show heap': ID Base Total(b) Free(b) Used(b) % Name -- ---------- ----------- ----------- ----------- --- ----------- 0 4a46000 268435456 238230496 30204960 11 Kernel 1 18a46000 67108864 17618536 49490328 73 Bcm_sdk 2 23737000 117440512 18414552 99025960 84 DMA buf <<<<< keeps increasing 3 2a737000 16777216 16777216 0 0 DMA desc This issue affects Juniper Networks Junos OS on the EX4300: 17.3 versions prior to 17.3R3-S11; 17.4 versions prior to 17.4R2-S13, 17.4R3-S4; 18.1 versions prior to 18.1R3-S12; 18.2 versions prior to 18.2R2-S8, 18.2R3-S7; 18.3 versions prior to 18.3R3-S4; 18.4 versions prior to 18.4R1-S8, 18.4R2-S7, 18.4R3-S7; 19.1 versions prior to 19.1R1-S6, 19.1R2-S2, 19.1R3-S4; 19.2 versions prior to 19.2R1-S6, 19.2R3-S2; 19.3 versions prior to 19.3R3-S2; 19.4 versions prior to 19.4R2-S3, 19.4R3-S1; 20.1 versions prior to 20.1R2; 20.2 versions prior to 20.2R2-S1, 20.2R3; 20.3 versions prior to 20.3R1-S1, 20.3R2.
A vulnerability in processing of certain DHCP packets from adjacent clients on EX Series and QFX Series switches running Juniper Networks Junos OS with DHCP local/relay server configured may lead to exhaustion of DMA memory causing a Denial of Service (DoS). Over time, exploitation of this vulnerability may cause traffic to stop being forwarded, or to crashing of the fxpc process. When Packet DMA heap utilization reaches 99%, the system will become unstable. Packet DMA heap utilization can be monitored through the following command: user@junos# request pfe execute target fpc0 timeout 30 command "show heap" ID Base Total(b) Free(b) Used(b) % Name -- ---------- ----------- ----------- ----------- --- ----------- 0 213301a8 536870488 387228840 149641648 27 Kernel 1 91800000 8388608 3735120 4653488 55 DMA 2 92000000 75497472 74452192 1045280 1 PKT DMA DESC 3 d330000 335544320 257091400 78452920 23 Bcm_sdk 4 96800000 184549376 2408 184546968 99 Packet DMA <--- 5 903fffe0 20971504 20971504 0 0 Blob An indication of the issue occurring may be observed through the following log messages: Dec 10 08:07:00.124 2020 hostname fpc0 brcm_pkt_buf_alloc:523 (buf alloc) failed allocating packet buffer Dec 10 08:07:00.126 2020 hostname fpc0 (buf alloc) failed allocating packet buffer Dec 10 08:07:00.128 2020 hostname fpc0 brcm_pkt_buf_alloc:523 (buf alloc) failed allocating packet buffer Dec 10 08:07:00.130 2020 hostnameC fpc0 (buf alloc) failed allocating packet buffer This issue affects Juniper Networks Junos OS on EX Series and QFX Series: 17.4R3 versions prior to 17.4R3-S3; 18.1R3 versions between 18.1R3-S6 and 18.1R3-S11; 18.2R3 versions prior to 18.2R3-S6; 18.3R3 versions prior to 18.3R3-S4; 18.4R2 versions prior to 18.4R2-S5; 18.4R3 versions prior to 18.4R3-S6; 19.1 versions between 19.1R2 and 19.1R3-S3; 19.2 versions prior to 19.2R3-S1; 19.3 versions prior to 19.3R2-S5, 19.3R3; 19.4 versions prior to 19.4R2-S2, 19.4R3; 20.1 versions prior to 20.1R2; 20.2 versions prior to 20.2R1-S2, 20.2R2. Junos OS versions prior to 17.4R3 are unaffected by this vulnerability.
An Improperly Controlled Sequential Memory Allocation vulnerability in the Juniper Networks Deep Packet Inspection-Decoder (JDPI-Decoder) Application Signature component of Junos OS's AppID service on SRX Series devices will stop the JDPI-Decoder from identifying dynamic application traffic, allowing an unauthenticated network-based attacker to send traffic to the target device using the JDPI-Decoder, designed to inspect dynamic application traffic and take action upon this traffic, to instead begin to not take action and to pass the traffic through. An example session can be seen by running the following command and evaluating the output. user@device# run show security flow session source-prefix <address/mask> extensive Session ID: <session ID>, Status: Normal, State: Active Policy name: <name of policy> Dynamic application: junos:UNKNOWN, <<<<< LOOK HERE Please note, the JDPI-Decoder and the AppID SigPack are both affected and both must be upgraded along with the operating system to address the matter. By default, none of this is auto-enabled for automatic updates. This issue affects: Juniper Networks any version of the JDPI-Decoder Engine prior to version 5.7.0-47 with the JDPI-Decoder enabled using any version of the AppID SigPack prior to version 1.550.2-31 (SigPack 3533) on Junos OS on SRX Series: All versions prior to 19.1R3-S10; 19.2 versions prior to 19.2R3-S7; 19.3 versions prior to 19.3R3-S8; 19.4 versions prior to 19.4R3-S11; 20.1 version 20.1R1 and later versions prior to 20.2R3-S7; 20.3 version 20.3R1 and later versions prior to 20.4R3-S6; 21.1 versions prior to 21.1R3-S5; 21.2 versions prior to 21.2R3-S4; 21.3 versions prior to 21.3R3-S3; 21.4 versions prior to 21.4R3-S3; 22.1 versions prior to 22.1R3-S1; 22.2 versions prior to 22.2R2-S1, 22.2R3; 22.3 versions prior to 22.3R1-S2, 22.3R2;
An Allocation of Resources Without Limits or Throttling weakness in the memory management of the Packet Forwarding Engine (PFE) on Juniper Networks Junos OS Evolved PTX10003 Series devices allows an adjacently located attacker who has established certain preconditions and knowledge of the environment to send certain specific genuine packets to begin a Time-of-check Time-of-use (TOCTOU) Race Condition attack which will cause a memory leak to begin. Once this condition begins, and as long as the attacker is able to sustain the offending traffic, a Distributed Denial of Service (DDoS) event occurs. As a DDoS event, the offending packets sent by the attacker will continue to flow from one device to another as long as they are received and processed by any devices, ultimately causing a cascading outage to any vulnerable devices. Devices not vulnerable to the memory leak will process and forward the offending packet(s) to neighboring devices. Due to internal anti-flood security controls and mechanisms reaching their maximum limit of response in the worst-case scenario, all affected Junos OS Evolved devices will reboot in as little as 1.5 days. Reboots to restore services cannot be avoided once the memory leak begins. The device will self-recover after crashing and rebooting. Operator intervention isn't required to restart the device. This issue affects: Juniper Networks Junos OS Evolved on PTX10003: All versions prior to 20.4R3-S4-EVO; 21.3 versions prior to 21.3R3-S1-EVO; 21.4 versions prior to 21.4R2-S2-EVO, 21.4R3-EVO; 22.1 versions prior to 22.1R1-S2-EVO, 22.1R2-EVO; 22.2 versions prior to 22.2R2-EVO. To check memory, customers may VTY to the PFE first then execute the following show statement: show jexpr jtm ingress-main-memory chip 255 | no-more Alternatively one may execute from the RE CLI: request pfe execute target fpc0 command "show jexpr jtm ingress-main-memory chip 255 | no-more" Iteration 1: Example output: Mem type: NH, alloc type: JTM 136776 bytes used (max 138216 bytes used) 911568 bytes available (909312 bytes from free pages) Iteration 2: Example output: Mem type: NH, alloc type: JTM 137288 bytes used (max 138216 bytes used) 911056 bytes available (909312 bytes from free pages) The same can be seen in the CLI below, assuming the scale does not change: show npu memory info Example output: FPC0:NPU16 mem-util-jnh-nh-size 2097152 FPC0:NPU16 mem-util-jnh-nh-allocated 135272 FPC0:NPU16 mem-util-jnh-nh-utilization 6
An Allocation of Resources Without Limits or Throttling vulnerability in the Packet Forwarding Engine (PFE) of Juniper Networks Junos OS allows a network-based, unauthenticated attacker to cause a Denial of Service (DoS). On QFX10K Series, Inter-Chassis Control Protocol (ICCP) is used in MC-LAG topologies to exchange control information between the devices in the topology. ICCP connection flaps and sync issues will be observed due to excessive specific traffic to the local device. This issue affects Juniper Networks Junos OS on QFX10K Series: * All versions prior to 20.2R3-S7; * 20.4 versions prior to 20.4R3-S4; * 21.1 versions prior to 21.1R3-S3; * 21.2 versions prior to 21.2R3-S1; * 21.3 versions prior to 21.3R3; * 21.4 versions prior to 21.4R3; * 22.1 versions prior to 22.1R2.
An Allocation of Resources Without Limits or Throttling vulnerability in Juniper Networks Junos OS allows an unauthenticated, network-based attacker to cause Denial of Service (DoS). On all Junos OS QFX5000 Series and EX4000 Series platforms, when a high number of VLANs are configured, a specific DHCP packet will cause PFE hogging which will lead to dropping of socket connections. This issue affects: Juniper Networks Junos OS on QFX5000 Series and EX4000 Series * 21.1 versions prior to 21.1R3-S5; * 21.2 versions prior to 21.2R3-S5; * 21.3 versions prior to 21.3R3-S5; * 21.4 versions prior to 21.4R3-S4; * 22.1 versions prior to 22.1R3-S3; * 22.2 versions prior to 22.2R3-S1; * 22.3 versions prior to 22.3R2-S2, 22.3R3; * 22.4 versions prior to 22.4R2. This issue does not affect Juniper Networks Junos OS versions prior to 21.1R1
iptables before 1.2.4 does not accurately convert rate limits that are specified on the command line, which could allow attackers or users to generate more or less traffic than intended by the administrator.
Java Facebook Thrift servers would not error upon receiving messages declaring containers of sizes larger than the payload. As a result, malicious clients could send short messages which would result in a large memory allocation, potentially leading to denial of service. This issue affects Facebook Thrift prior to v2019.12.09.00.
Microsoft Communicator, and Communicator in Microsoft Office 2010 beta, allows remote attackers to cause a denial of service (memory consumption) via a large number of SIP INVITE requests, which trigger the creation of many sessions.
A Denial of Service (DoS) vulnerability exists in berriai/litellm version v1.44.5. This vulnerability can be exploited by appending characters, such as dashes (-), to the end of a multipart boundary in an HTTP request. The server continuously processes each character, leading to excessive resource consumption and rendering the service unavailable. The issue is unauthenticated and does not require any user interaction, impacting all users of the service.
A vulnerability in the file upload process of gradio-app/gradio version @gradio/video@0.10.2 allows for a Denial of Service (DoS) attack. An attacker can append a large number of characters to the end of a multipart boundary, causing the system to continuously process each character and issue warnings. This can render Gradio inaccessible for extended periods, disrupting services and causing significant downtime.
SuperAGI version v0.0.14 is vulnerable to an unauthenticated Denial of Service (DoS) attack. The vulnerability exists in the resource upload request, where appending characters, such as dashes (-), to the end of a multipart boundary in an HTTP request causes the server to continuously process each character. This leads to excessive resource consumption and renders the service unavailable. The issue is unauthenticated and does not require any user interaction, impacting all users of the service.
A vulnerability in danswer-ai/danswer v0.3.94 allows an attacker to cause a Denial of Service (DoS) by uploading a file with a malformed multipart boundary. By appending a large number of characters to the end of the multipart boundary, the server continuously processes each character, rendering the application inaccessible. This issue can be exploited by sending a single crafted request, affecting all users on the server.
A vulnerability in imartinez/privategpt version 0.5.0 allows for a Denial of Service (DOS) attack. When uploading a file, if an attacker appends a large number of characters to the end of a multipart boundary, the system will continuously process these characters, rendering privateGPT inaccessible. This uncontrolled resource consumption can lead to prolonged unavailability of the service, disrupting operations and causing potential data inaccessibility and loss of productivity.
A vulnerability in the `/3/ImportFiles` endpoint of h2oai/h2o-3 version 3.46.1 allows an attacker to cause a denial of service. The endpoint takes a single GET parameter, `path`, which can be recursively set to reference itself. This leads the server to repeatedly call its own endpoint, eventually filling up the request queue and leaving the server unable to handle other requests.
In version 0.3.8 of open-webui, an endpoint for converting markdown to HTML is exposed without authentication. A maliciously crafted markdown payload can cause the server to spend excessive time converting it, leading to a denial of service. The server becomes unresponsive to other requests until the conversion is complete.
A vulnerability in gaizhenbiao/chuanhuchatgpt version 20240410 allows an attacker to create arbitrary folders at any location on the server, including the root directory (C: dir). This can lead to uncontrolled resource consumption, resulting in resource exhaustion, denial of service (DoS), server unavailability, and potential data loss or corruption.
The ap_proxy_http_process_response function in mod_proxy_http.c in the mod_proxy module in the Apache HTTP Server 2.0.63 and 2.2.8 does not limit the number of forwarded interim responses, which allows remote HTTP servers to cause a denial of service (memory consumption) via a large number of interim responses.
A vulnerability in danswer-ai/danswer version 0.9.0 allows for denial of service through memory exhaustion. The issue arises from the use of a vulnerable version of the starlette package (<=0.49) via fastapi, which was patched in fastapi version 0.115.3. The vulnerability can be exploited by sending multiple requests to the /auth/saml/callback endpoint, leading to uncontrolled memory consumption and eventual denial of service.
In version 3.25.0 of aimhubio/aim, the tracking server is vulnerable to a denial of service attack. The server overrides the maximum size for websocket messages, allowing very large images to be tracked. This causes the server to become unresponsive to other requests while processing the large image, leading to a denial of service condition.
If Apache HTTP Server 2.4.53 is configured to do transformations with mod_sed in contexts where the input to mod_sed may be very large, mod_sed may make excessively large memory allocations and trigger an abort.
A lack of rate limiting in the 'forgot password' feature of Zammad v5.1.0 allows attackers to send an excessive amount of reset requests for a legitimate user, leading to a possible Denial of Service (DoS) via a large amount of generated e-mail messages.
OPC UA .NET Standard Stack 1.04.368 allows remote attacker to cause a crash via a crafted message that triggers excessive memory allocation.
BentoML version v1.3.4post1 is vulnerable to a Denial of Service (DoS) attack. The vulnerability can be exploited by appending characters, such as dashes (-), to the end of a multipart boundary in an HTTP request. This causes the server to continuously process each character, leading to excessive resource consumption and rendering the service unavailable. The issue is unauthenticated and does not require any user interaction, impacting all users of the service.
A Denial-of-Service (DoS) vulnerability was discovered in F-Secure Atlant whereby the fsicapd component used in certain F-Secure products while scanning larger packages/fuzzed files consume too much memory eventually can crash the scanning engine. The exploit can be triggered remotely by an attacker.
A Denial of Service (DoS) vulnerability in the file upload feature of stangirard/quivr v0.0.298 allows unauthenticated attackers to cause excessive resource consumption by appending characters to the end of a multipart boundary in an HTTP request. This leads to the server continuously processing each character, rendering the service unavailable and impacting all users.
The ZlibDecoders in Netty 4.1.x before 4.1.46 allow for unbounded memory allocation while decoding a ZlibEncoded byte stream. An attacker could send a large ZlibEncoded byte stream to the Netty server, forcing the server to allocate all of its free memory to a single decoder.
A flaw was discovered in Undertow in versions before Undertow 2.1.1.Final where certain requests to the "Expect: 100-continue" header may cause an out of memory error. This flaw may potentially lead to a denial of service.
Pexip Infinity 27 before 28.0 allows remote attackers to trigger excessive resource consumption and termination because of registrar resource mishandling.
A vulnerability in gaizhenbiao/chuanhuchatgpt version 20240628 allows for a Denial of Service (DOS) attack. When uploading a file, if an attacker appends a large number of characters to the end of a multipart boundary, the system will continuously process each character, rendering ChuanhuChatGPT inaccessible. This uncontrolled resource consumption can lead to prolonged unavailability of the service, disrupting operations and causing potential data inaccessibility and loss of productivity.
Some HTTP/2 implementations are vulnerable to unconstrained interal data buffering, potentially leading to a denial of service. The attacker opens the HTTP/2 window so the peer can send without constraint; however, they leave the TCP window closed so the peer cannot actually write (many of) the bytes on the wire. The attacker then sends a stream of requests for a large response object. Depending on how the servers queue the responses, this can consume excess memory, CPU, or both.
In Tor before 0.3.3.12, 0.3.4.x before 0.3.4.11, 0.3.5.x before 0.3.5.8, and 0.4.x before 0.4.0.2-alpha, remote denial of service against Tor clients and relays can occur via memory exhaustion in the KIST cell scheduler.
A vulnerability in aimhubio/aim version 3.25.0 allows for a denial of service (DoS) attack. The issue arises when a large number of tracked metrics are retrieved simultaneously from the Aim web API, causing the web server to become unresponsive. The root cause is the lack of a limit on the number of metrics that can be requested per call, combined with the server's single-threaded nature, leading to excessive resource consumption and blocking of the server.
In version 0.3.32 of open-webui/open-webui, the absence of authentication mechanisms allows any unauthenticated attacker to access the `api/v1/utils/code/format` endpoint. If a malicious actor sends a POST request with an excessively high volume of content, the server could become completely unresponsive. This could lead to severe performance issues, causing the server to become unresponsive or experience significant degradation, ultimately resulting in service interruptions for legitimate users.
Some HTTP/2 implementations are vulnerable to a header leak, potentially leading to a denial of service. The attacker sends a stream of headers with a 0-length header name and 0-length header value, optionally Huffman encoded into 1-byte or greater headers. Some implementations allocate memory for these headers and keep the allocation alive until the session dies. This can consume excess memory.
Some HTTP/2 implementations are vulnerable to a reset flood, potentially leading to a denial of service. The attacker opens a number of streams and sends an invalid request over each stream that should solicit a stream of RST_STREAM frames from the peer. Depending on how the peer queues the RST_STREAM frames, this can consume excess memory, CPU, or both.
Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
In Apache HTTP Server 2.4.53 and earlier, a malicious request to a lua script that calls r:parsebody(0) may cause a denial of service due to no default limit on possible input size.
In vm-superio before 0.1.1, the serial console FIFO can grow to unlimited memory usage when data is sent to the input source (i.e., standard input). This behavior cannot be reproduced from the guest side. When no rate limiting is in place, the host can be subject to memory pressure, impacting all other VMs running on the same host.
A vulnerability in ollama/ollama <=0.3.14 allows a malicious user to create a customized GGUF model file, upload it to the Ollama server, and create it. This can cause the server to allocate unlimited memory, leading to a Denial of Service (DoS) attack.
A vulnerability in haotian-liu/llava v1.2.0 allows an attacker to cause a Denial of Service (DoS) by appending a large number of characters to the end of a multipart boundary in a file upload request. This causes the server to continuously process each character, rendering the application inaccessible.
Django 1.11.x before 1.11.19, 2.0.x before 2.0.11, and 2.1.x before 2.1.6 allows Uncontrolled Memory Consumption via a malicious attacker-supplied value to the django.utils.numberformat.format() function.
automatic1111/stable-diffusion-webui version 1.10.0 contains a vulnerability where the server fails to handle excessive characters appended to the end of multipart boundaries. This flaw can be exploited by sending malformed multipart requests with arbitrary characters at the end of the boundary, leading to excessive resource consumption and a complete denial of service (DoS) for all users. The vulnerability is unauthenticated, meaning no user login or interaction is required for an attacker to exploit this issue.
In danny-avila/librechat version git 0c2a583, there is an improper input validation vulnerability. The application uses multer middleware for handling multipart file uploads. When using in-memory storage (the default setting for multer), there is no limit on the upload file size. This can lead to a server crash due to out-of-memory errors when handling large files. An attacker without any privileges can exploit this vulnerability to cause a complete denial of service. The issue is fixed in version 0.7.6.
A vulnerability, which was classified as problematic, has been found in Tongda OA 2017 up to 11.7. This issue affects some unknown processing of the file /inc/package_static_resources.php. The manipulation leads to resource consumption. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used.
A vulnerability in binary-husky/gpt_academic version 3.83 allows an attacker to cause a Denial of Service (DoS) by adding excessive characters to the end of a multipart boundary during file upload. This results in the server continuously processing each character and displaying warnings, rendering the application inaccessible. The issue occurs when the terminal shows a warning: 'multipart.multipart Consuming a byte '0x2d' in end state'.