In libXfont before 1.5.4 and libXfont2 before 2.0.3, a local attacker can open (but not read) files on the system as root, triggering tape rewinds, watchdogs, or similar mechanisms that can be triggered by opening files.
CUPS before 2.0 allows local users to read arbitrary files via a symlink attack on (1) index.html, (2) index.class, (3) index.pl, (4) index.php, (5) index.pyc, or (6) index.py.
DistUpgrade/DistUpgradeViewKDE.py in Update Manager before 1:0.87.31.1, 1:0.134.x before 1:0.134.11.1, 1:0.142.x before 1:0.142.23.1, 1:0.150.x before 1:0.150.5.1, and 1:0.152.x before 1:0.152.25.5 does not properly create temporary files, which allows local users to obtain the XAUTHORITY file content for a user via a symlink attack on the temporary file.
dmrc.c in Light Display Manager (aka LightDM) before 1.1.1 allows local users to read arbitrary files via a symlink attack on ~/.dmrc.
fr-archive-libarchive.c in GNOME file-roller through 3.36.1 allows Directory Traversal during extraction because it lacks a check of whether a file's parent is a symlink to a directory outside of the intended extraction location.
The postinst script in the tomcat6 package before 6.0.45+dfsg-1~deb7u4 on Debian wheezy, before 6.0.35-1ubuntu3.9 on Ubuntu 12.04 LTS and on Ubuntu 14.04 LTS; the tomcat7 package before 7.0.28-4+deb7u8 on Debian wheezy, before 7.0.56-3+deb8u6 on Debian jessie, before 7.0.52-1ubuntu0.8 on Ubuntu 14.04 LTS, and on Ubuntu 12.04 LTS, 16.04 LTS, and 16.10; and the tomcat8 package before 8.0.14-1+deb8u5 on Debian jessie, before 8.0.32-1ubuntu1.3 on Ubuntu 16.04 LTS, before 8.0.37-1ubuntu0.1 on Ubuntu 16.10, and before 8.0.38-2ubuntu1 on Ubuntu 17.04 might allow local users with access to the tomcat account to obtain sensitive information or gain root privileges via a symlink attack on the Catalina localhost directory.
init_tmp in TeeJee.FileSystem.vala in Timeshift before 20.03 unsafely reuses a preexisting temporary directory in the predictable location /tmp/timeshift. It follows symlinks in this location or uses directories owned by unprivileged users. Because Timeshift also executes scripts under this location, an attacker can attempt to win a race condition to replace scripts created by Timeshift with attacker-controlled scripts. Upon success, an attacker-controlled script is executed with full root privileges. This logic is practically always triggered when Timeshift runs regardless of the command-line arguments used.
The web interface in CUPS before 1.7.4 allows local users in the lp group to read arbitrary files via a symlink attack on a file in /var/cache/cups/rss/.
Race condition in cpio 2.6 and earlier allows local users to modify permissions of arbitrary files via a hard link attack on a file while it is being decompressed, whose permissions are changed by cpio after the decompression is complete.
The pg_ctlcluster script in postgresql-common package in Debian wheezy before 134wheezy5, in Debian jessie before 165+deb8u2, in Debian unstable before 178, in Ubuntu 12.04 LTS before 129ubuntu1.2, in Ubuntu 14.04 LTS before 154ubuntu1.1, in Ubuntu 16.04 LTS before 173ubuntu0.1, in Ubuntu 17.04 before 179ubuntu0.1, and in Ubuntu 17.10 before 184ubuntu1.1 allows local users to gain root privileges via a symlink attack on a logfile in /var/log/postgresql.
The nginx package before 1.6.2-5+deb8u3 on Debian jessie, the nginx packages before 1.4.6-1ubuntu3.6 on Ubuntu 14.04 LTS, before 1.10.0-0ubuntu0.16.04.3 on Ubuntu 16.04 LTS, and before 1.10.1-0ubuntu1.1 on Ubuntu 16.10, and the nginx ebuild before 1.10.2-r3 on Gentoo allow local users with access to the web server user account to gain root privileges via a symlink attack on the error log.
snap-confine in snapd before 2.38 incorrectly set the ownership of a snap application to the uid and gid of the first calling user. Consequently, that user had unintended access to a private /tmp directory.
The MOTD update script in the base-files package in Ubuntu 18.04 LTS before 10.1ubuntu2.2, and Ubuntu 18.10 before 10.1ubuntu6 incorrectly handled temporary files. A local attacker could use this issue to cause a denial of service, or possibly escalate privileges if kernel symlink restrictions were disabled.
It was discovered that read_file() in apport/hookutils.py would follow symbolic links or open FIFOs. When this function is used by the openjdk-14 package apport hooks, it could expose private data to other local users.
It was discovered that the process_report() function in data/whoopsie-upload-all allowed arbitrary file writes via symlinks.
It was discovered that read_file() in apport/hookutils.py would follow symbolic links or open FIFOs. When this function is used by the xorg-hwe-18.04 package apport hooks, it could expose private data to other local users.
It was discovered that read_file() in apport/hookutils.py would follow symbolic links or open FIFOs. When this function is used by the openjdk-13 package apport hooks, it could expose private data to other local users.
It was discovered that read_file() in apport/hookutils.py would follow symbolic links or open FIFOs. When this function is used by the openjdk-lts package apport hooks, it could expose private data to other local users.
It was discovered that read_file() in apport/hookutils.py would follow symbolic links or open FIFOs. When this function is used by the xorg package apport hooks, it could expose private data to other local users.
It was discovered that read_file() in apport/hookutils.py would follow symbolic links or open FIFOs. When this function is used by the openjdk-17 package apport hooks, it could expose private data to other local users.
It was discovered that read_file() in apport/hookutils.py would follow symbolic links or open FIFOs. When this function is used by the openjdk-16 package apport hooks, it could expose private data to other local users.
It was discovered that read_file() in apport/hookutils.py would follow symbolic links or open FIFOs. When this function is used by the openjdk-15 package apport hooks, it could expose private data to other local users.
sosreport in SoS 3.x allows local users to obtain sensitive information from sosreport files or gain privileges via a symlink attack on an archive file in a temporary directory, as demonstrated by sosreport-$hostname-$date.tar in /tmp/sosreport-$hostname-$date.
Kevin Backhouse discovered that apport would read a user-supplied configuration file with elevated privileges. By replacing the file with a symbolic link, a user could get apport to read any file on the system as root, with unknown consequences.
The distcheck rule in dist-check.mk in GNU coreutils 5.2.1 through 8.1 allows local users to gain privileges via a symlink attack on a file in a directory tree under /tmp.
systemd-tmpfiles in systemd through 237 mishandles symlinks present in non-terminal path components, which allows local users to obtain ownership of arbitrary files via vectors involving creation of a directory and a file under that directory, and later replacing that directory with a symlink. This occurs even if the fs.protected_symlinks sysctl is turned on.
w3m through 0.5.3 does not properly handle temporary files when the ~/.w3m directory is unwritable, which allows a local attacker to craft a symlink attack to overwrite arbitrary files.
In snapd versions prior to 2.62, snapd failed to properly check the destination of symbolic links when extracting a snap. The snap format is a squashfs file-system image and so can contain symbolic links and other file types. Various file entries within the snap squashfs image (such as icons and desktop files etc) are directly read by snapd when it is extracted. An attacker who could convince a user to install a malicious snap which contained symbolic links at these paths could then cause snapd to write out the contents of the symbolic link destination into a world-readable directory. This in-turn could allow an unprivileged user to gain access to privileged information.
lxc-start in lxc before 1.0.8 and 1.1.x before 1.1.4 allows local container administrators to escape AppArmor confinement via a symlink attack on a (1) mount target or (2) bind mount source.
kernel_crashdump in Apport before 2.19 allows local users to cause a denial of service (disk consumption) or possibly gain privileges via a (1) symlink or (2) hard link attack on /var/crash/vmcore.log.
It was discovered that read_file() in apport/hookutils.py would follow symbolic links or open FIFOs. When this function is used by the openjdk-8 package apport hooks, it could expose private data to other local users.
Apport creates a world writable lock file with root ownership in the world writable /var/lock/apport directory. If the apport/ directory does not exist (this is not uncommon as /var/lock is a tmpfs), it will create the directory, otherwise it will simply continue execution using the existing directory. This allows for a symlink attack if an attacker were to create a symlink at /var/lock/apport, changing apport's lock file location. This file could then be used to escalate privileges, for example. Fixed in versions 2.20.1-0ubuntu2.23, 2.20.9-0ubuntu7.14, 2.20.11-0ubuntu8.8 and 2.20.11-0ubuntu22.
storeBackup.pl in storeBackup through 3.5 relies on the /tmp/storeBackup.lock pathname, which allows symlink attacks that possibly lead to privilege escalation. (Local users can also create a plain file named /tmp/storeBackup.lock to block use of storeBackup until an admin manually deletes that file.)
An issue was discovered in the tar crate before 0.4.16 for Rust. Arbitrary file overwrite can occur via a symlink or hardlink in a TAR archive.
A vulnerability was found in node-tar before version 4.4.2 (excluding version 2.2.2). An Arbitrary File Overwrite issue exists when extracting a tarball containing a hardlink to a file that already exists on the system, in conjunction with a later plain file with the same name as the hardlink. This plain file content replaces the existing file content. A patch has been applied to node-tar v2.2.2).
cpio, as used in build 2007.05.10, 2010.07.28, and possibly other versions, allows remote attackers to overwrite arbitrary files via a symlink within an RPM package archive.
Argument injection vulnerability in devscripts before 2.15.7 allows remote attackers to write to arbitrary files via a crafted symlink and crafted filename.
RARLAB UnRAR before 6.12 on Linux and UNIX allows directory traversal to write to files during an extract (aka unpack) operation, as demonstrated by creating a ~/.ssh/authorized_keys file. NOTE: WinRAR and Android RAR are unaffected.
Tar.php in Archive_Tar through 1.4.11 allows write operations with Directory Traversal due to inadequate checking of symbolic links, a related issue to CVE-2020-28948.
Syncthing version 0.14.33 and older is vulnerable to symlink traversal resulting in arbitrary file overwrite
An issue was discovered in the tar crate before 0.4.36 for Rust. When symlinks are present in a TAR archive, extraction can create arbitrary directories via .. traversal.
Hadoop 1.0.3 contains a symlink vulnerability.
Open redirect vulnerability in htdocs/user.php in XOOPS 2.0.18 allows remote attackers to redirect users to arbitrary web sites and conduct phishing attacks via a URL in the xoops_redirect parameter.
Mercurial prior to version 4.3 is vulnerable to a missing symlink check that can malicious repositories to modify files outside the repository
A privilege escalation vulnerability in Trend Micro Antivirus for Mac 2019 (v9.0.1379 and below) could potentially allow an attacker to create a symbolic link to a target file and modify it.
Eudora 4.x allows remote attackers to bypass the user warning for executable attachments such as .exe, .com, and .bat by using a .lnk file that refers to the attachment, aka "Stealth Attachment."
Netscape Navigator 7.0.2 and Mozilla allows remote attackers to access cookie information in a different domain via an HTTP request for a domain with an extra . (dot) at the end.
pyro before 3.15 unsafely handles pid files in temporary directory locations and opening the pid file as root. An attacker can use this flaw to overwrite arbitrary files via symlinks.
There is an Unauthorized file access vulnerability in Huawei Smartphone.Successful exploitation of this vulnerability by modifying soft links may tamper with the files restored from backups.
fstream before 1.0.12 is vulnerable to Arbitrary File Overwrite. Extracting tarballs containing a hardlink to a file that already exists in the system, and a file that matches the hardlink, will overwrite the system's file with the contents of the extracted file. The fstream.DirWriter() function is vulnerable.