Adobe Flash Player versions 23.0.0.207 and earlier, 11.2.202.644 and earlier have an exploitable use after free vulnerability when setting the length property of an array object. Successful exploitation could lead to arbitrary code execution.
In the Linux kernel, the following vulnerability has been resolved: scsi: scsi_debug: Sanity check block descriptor length in resp_mode_select() In resp_mode_select() sanity check the block descriptor len to avoid UAF. BUG: KASAN: use-after-free in resp_mode_select+0xa4c/0xb40 drivers/scsi/scsi_debug.c:2509 Read of size 1 at addr ffff888026670f50 by task scsicmd/15032 CPU: 1 PID: 15032 Comm: scsicmd Not tainted 5.15.0-01d0625 #15 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Call Trace: <TASK> dump_stack_lvl+0x89/0xb5 lib/dump_stack.c:107 print_address_description.constprop.9+0x28/0x160 mm/kasan/report.c:257 kasan_report.cold.14+0x7d/0x117 mm/kasan/report.c:443 __asan_report_load1_noabort+0x14/0x20 mm/kasan/report_generic.c:306 resp_mode_select+0xa4c/0xb40 drivers/scsi/scsi_debug.c:2509 schedule_resp+0x4af/0x1a10 drivers/scsi/scsi_debug.c:5483 scsi_debug_queuecommand+0x8c9/0x1e70 drivers/scsi/scsi_debug.c:7537 scsi_queue_rq+0x16b4/0x2d10 drivers/scsi/scsi_lib.c:1521 blk_mq_dispatch_rq_list+0xb9b/0x2700 block/blk-mq.c:1640 __blk_mq_sched_dispatch_requests+0x28f/0x590 block/blk-mq-sched.c:325 blk_mq_sched_dispatch_requests+0x105/0x190 block/blk-mq-sched.c:358 __blk_mq_run_hw_queue+0xe5/0x150 block/blk-mq.c:1762 __blk_mq_delay_run_hw_queue+0x4f8/0x5c0 block/blk-mq.c:1839 blk_mq_run_hw_queue+0x18d/0x350 block/blk-mq.c:1891 blk_mq_sched_insert_request+0x3db/0x4e0 block/blk-mq-sched.c:474 blk_execute_rq_nowait+0x16b/0x1c0 block/blk-exec.c:63 sg_common_write.isra.18+0xeb3/0x2000 drivers/scsi/sg.c:837 sg_new_write.isra.19+0x570/0x8c0 drivers/scsi/sg.c:775 sg_ioctl_common+0x14d6/0x2710 drivers/scsi/sg.c:941 sg_ioctl+0xa2/0x180 drivers/scsi/sg.c:1166 __x64_sys_ioctl+0x19d/0x220 fs/ioctl.c:52 do_syscall_64+0x3a/0x80 arch/x86/entry/common.c:50 entry_SYSCALL_64_after_hwframe+0x44/0xae arch/x86/entry/entry_64.S:113
In the Linux kernel, the following vulnerability has been resolved: net: dpaa2-eth: fix use-after-free in dpaa2_eth_remove Access to netdev after free_netdev() will cause use-after-free bug. Move debug log before free_netdev() call to avoid it.
In the Linux kernel, the following vulnerability has been resolved: mm/damon/dbgfs: protect targets destructions with kdamond_lock DAMON debugfs interface iterates current monitoring targets in 'dbgfs_target_ids_read()' while holding the corresponding 'kdamond_lock'. However, it also destructs the monitoring targets in 'dbgfs_before_terminate()' without holding the lock. This can result in a use_after_free bug. This commit avoids the race by protecting the destruction with the corresponding 'kdamond_lock'.
Adobe Flash Player versions 24.0.0.194 and earlier have an exploitable use after free vulnerability related to event handlers. Successful exploitation could lead to arbitrary code execution.
Adobe Flash Player versions 24.0.0.221 and earlier have an exploitable use after free vulnerability related to an interaction between the privacy user interface and the ActionScript 2 Camera object. Successful exploitation could lead to arbitrary code execution.
In the Linux kernel, the following vulnerability has been resolved: pid: take a reference when initializing `cad_pid` During boot, kernel_init_freeable() initializes `cad_pid` to the init task's struct pid. Later on, we may change `cad_pid` via a sysctl, and when this happens proc_do_cad_pid() will increment the refcount on the new pid via get_pid(), and will decrement the refcount on the old pid via put_pid(). As we never called get_pid() when we initialized `cad_pid`, we decrement a reference we never incremented, can therefore free the init task's struct pid early. As there can be dangling references to the struct pid, we can later encounter a use-after-free (e.g. when delivering signals). This was spotted when fuzzing v5.13-rc3 with Syzkaller, but seems to have been around since the conversion of `cad_pid` to struct pid in commit 9ec52099e4b8 ("[PATCH] replace cad_pid by a struct pid") from the pre-KASAN stone age of v2.6.19. Fix this by getting a reference to the init task's struct pid when we assign it to `cad_pid`. Full KASAN splat below. ================================================================== BUG: KASAN: use-after-free in ns_of_pid include/linux/pid.h:153 [inline] BUG: KASAN: use-after-free in task_active_pid_ns+0xc0/0xc8 kernel/pid.c:509 Read of size 4 at addr ffff23794dda0004 by task syz-executor.0/273 CPU: 1 PID: 273 Comm: syz-executor.0 Not tainted 5.12.0-00001-g9aef892b2d15 #1 Hardware name: linux,dummy-virt (DT) Call trace: ns_of_pid include/linux/pid.h:153 [inline] task_active_pid_ns+0xc0/0xc8 kernel/pid.c:509 do_notify_parent+0x308/0xe60 kernel/signal.c:1950 exit_notify kernel/exit.c:682 [inline] do_exit+0x2334/0x2bd0 kernel/exit.c:845 do_group_exit+0x108/0x2c8 kernel/exit.c:922 get_signal+0x4e4/0x2a88 kernel/signal.c:2781 do_signal arch/arm64/kernel/signal.c:882 [inline] do_notify_resume+0x300/0x970 arch/arm64/kernel/signal.c:936 work_pending+0xc/0x2dc Allocated by task 0: slab_post_alloc_hook+0x50/0x5c0 mm/slab.h:516 slab_alloc_node mm/slub.c:2907 [inline] slab_alloc mm/slub.c:2915 [inline] kmem_cache_alloc+0x1f4/0x4c0 mm/slub.c:2920 alloc_pid+0xdc/0xc00 kernel/pid.c:180 copy_process+0x2794/0x5e18 kernel/fork.c:2129 kernel_clone+0x194/0x13c8 kernel/fork.c:2500 kernel_thread+0xd4/0x110 kernel/fork.c:2552 rest_init+0x44/0x4a0 init/main.c:687 arch_call_rest_init+0x1c/0x28 start_kernel+0x520/0x554 init/main.c:1064 0x0 Freed by task 270: slab_free_hook mm/slub.c:1562 [inline] slab_free_freelist_hook+0x98/0x260 mm/slub.c:1600 slab_free mm/slub.c:3161 [inline] kmem_cache_free+0x224/0x8e0 mm/slub.c:3177 put_pid.part.4+0xe0/0x1a8 kernel/pid.c:114 put_pid+0x30/0x48 kernel/pid.c:109 proc_do_cad_pid+0x190/0x1b0 kernel/sysctl.c:1401 proc_sys_call_handler+0x338/0x4b0 fs/proc/proc_sysctl.c:591 proc_sys_write+0x34/0x48 fs/proc/proc_sysctl.c:617 call_write_iter include/linux/fs.h:1977 [inline] new_sync_write+0x3ac/0x510 fs/read_write.c:518 vfs_write fs/read_write.c:605 [inline] vfs_write+0x9c4/0x1018 fs/read_write.c:585 ksys_write+0x124/0x240 fs/read_write.c:658 __do_sys_write fs/read_write.c:670 [inline] __se_sys_write fs/read_write.c:667 [inline] __arm64_sys_write+0x78/0xb0 fs/read_write.c:667 __invoke_syscall arch/arm64/kernel/syscall.c:37 [inline] invoke_syscall arch/arm64/kernel/syscall.c:49 [inline] el0_svc_common.constprop.1+0x16c/0x388 arch/arm64/kernel/syscall.c:129 do_el0_svc+0xf8/0x150 arch/arm64/kernel/syscall.c:168 el0_svc+0x28/0x38 arch/arm64/kernel/entry-common.c:416 el0_sync_handler+0x134/0x180 arch/arm64/kernel/entry-common.c:432 el0_sync+0x154/0x180 arch/arm64/kernel/entry.S:701 The buggy address belongs to the object at ffff23794dda0000 which belongs to the cache pid of size 224 The buggy address is located 4 bytes inside of 224-byte region [ff ---truncated---
In the Linux kernel, the following vulnerability has been resolved: atm: nicstar: Fix possible use-after-free in nicstar_cleanup() This module's remove path calls del_timer(). However, that function does not wait until the timer handler finishes. This means that the timer handler may still be running after the driver's remove function has finished, which would result in a use-after-free. Fix by calling del_timer_sync(), which makes sure the timer handler has finished, and unable to re-schedule itself.
In the Linux kernel, the following vulnerability has been resolved: igb: Fix use-after-free error during reset Cleans the next descriptor to watch (next_to_watch) when cleaning the TX ring. Failure to do so can cause invalid memory accesses. If igb_poll() runs while the controller is reset this can lead to the driver try to free a skb that was already freed. (The crash is harder to reproduce with the igb driver, but the same potential problem exists as the code is identical to igc)
In the Linux kernel, the following vulnerability has been resolved: net:emac/emac-mac: Fix a use after free in emac_mac_tx_buf_send In emac_mac_tx_buf_send, it calls emac_tx_fill_tpd(..,skb,..). If some error happens in emac_tx_fill_tpd(), the skb will be freed via dev_kfree_skb(skb) in error branch of emac_tx_fill_tpd(). But the freed skb is still used via skb->len by netdev_sent_queue(,skb->len). As i observed that emac_tx_fill_tpd() haven't modified the value of skb->len, thus my patch assigns skb->len to 'len' before the possible free and use 'len' instead of skb->len later.
In the Linux kernel, the following vulnerability has been resolved: userfaultfd: release page in error path to avoid BUG_ON Consider the following sequence of events: 1. Userspace issues a UFFD ioctl, which ends up calling into shmem_mfill_atomic_pte(). We successfully account the blocks, we shmem_alloc_page(), but then the copy_from_user() fails. We return -ENOENT. We don't release the page we allocated. 2. Our caller detects this error code, tries the copy_from_user() after dropping the mmap_lock, and retries, calling back into shmem_mfill_atomic_pte(). 3. Meanwhile, let's say another process filled up the tmpfs being used. 4. So shmem_mfill_atomic_pte() fails to account blocks this time, and immediately returns - without releasing the page. This triggers a BUG_ON in our caller, which asserts that the page should always be consumed, unless -ENOENT is returned. To fix this, detect if we have such a "dangling" page when accounting fails, and if so, release it before returning.
In the Linux kernel, the following vulnerability has been resolved: ACPI: custom_method: fix potential use-after-free issue In cm_write(), buf is always freed when reaching the end of the function. If the requested count is less than table.length, the allocated buffer will be freed but subsequent calls to cm_write() will still try to access it. Remove the unconditional kfree(buf) at the end of the function and set the buf to NULL in the -EINVAL error path to match the rest of function.
In the Linux kernel, the following vulnerability has been resolved: watchdog: sc520_wdt: Fix possible use-after-free in wdt_turnoff() This module's remove path calls del_timer(). However, that function does not wait until the timer handler finishes. This means that the timer handler may still be running after the driver's remove function has finished, which would result in a use-after-free. Fix by calling del_timer_sync(), which makes sure the timer handler has finished, and unable to re-schedule itself.
In the Linux kernel, the following vulnerability has been resolved: KVM: Destroy I/O bus devices on unregister failure _after_ sync'ing SRCU If allocating a new instance of an I/O bus fails when unregistering a device, wait to destroy the device until after all readers are guaranteed to see the new null bus. Destroying devices before the bus is nullified could lead to use-after-free since readers expect the devices on their reference of the bus to remain valid.
In the Linux kernel, the following vulnerability has been resolved: tipc: skb_linearize the head skb when reassembling msgs It's not a good idea to append the frag skb to a skb's frag_list if the frag_list already has skbs from elsewhere, such as this skb was created by pskb_copy() where the frag_list was cloned (all the skbs in it were skb_get'ed) and shared by multiple skbs. However, the new appended frag skb should have been only seen by the current skb. Otherwise, it will cause use after free crashes as this appended frag skb are seen by multiple skbs but it only got skb_get called once. The same thing happens with a skb updated by pskb_may_pull() with a skb_cloned skb. Li Shuang has reported quite a few crashes caused by this when doing testing over macvlan devices: [] kernel BUG at net/core/skbuff.c:1970! [] Call Trace: [] skb_clone+0x4d/0xb0 [] macvlan_broadcast+0xd8/0x160 [macvlan] [] macvlan_process_broadcast+0x148/0x150 [macvlan] [] process_one_work+0x1a7/0x360 [] worker_thread+0x30/0x390 [] kernel BUG at mm/usercopy.c:102! [] Call Trace: [] __check_heap_object+0xd3/0x100 [] __check_object_size+0xff/0x16b [] simple_copy_to_iter+0x1c/0x30 [] __skb_datagram_iter+0x7d/0x310 [] __skb_datagram_iter+0x2a5/0x310 [] skb_copy_datagram_iter+0x3b/0x90 [] tipc_recvmsg+0x14a/0x3a0 [tipc] [] ____sys_recvmsg+0x91/0x150 [] ___sys_recvmsg+0x7b/0xc0 [] kernel BUG at mm/slub.c:305! [] Call Trace: [] <IRQ> [] kmem_cache_free+0x3ff/0x400 [] __netif_receive_skb_core+0x12c/0xc40 [] ? kmem_cache_alloc+0x12e/0x270 [] netif_receive_skb_internal+0x3d/0xb0 [] ? get_rx_page_info+0x8e/0xa0 [be2net] [] be_poll+0x6ef/0xd00 [be2net] [] ? irq_exit+0x4f/0x100 [] net_rx_action+0x149/0x3b0 ... This patch is to fix it by linearizing the head skb if it has frag_list set in tipc_buf_append(). Note that we choose to do this before calling skb_unshare(), as __skb_linearize() will avoid skb_copy(). Also, we can not just drop the frag_list either as the early time.
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix race between transaction aborts and fsyncs leading to use-after-free There is a race between a task aborting a transaction during a commit, a task doing an fsync and the transaction kthread, which leads to an use-after-free of the log root tree. When this happens, it results in a stack trace like the following: BTRFS info (device dm-0): forced readonly BTRFS warning (device dm-0): Skipping commit of aborted transaction. BTRFS: error (device dm-0) in cleanup_transaction:1958: errno=-5 IO failure BTRFS warning (device dm-0): lost page write due to IO error on /dev/mapper/error-test (-5) BTRFS warning (device dm-0): Skipping commit of aborted transaction. BTRFS warning (device dm-0): direct IO failed ino 261 rw 0,0 sector 0xa4e8 len 4096 err no 10 BTRFS error (device dm-0): error writing primary super block to device 1 BTRFS warning (device dm-0): direct IO failed ino 261 rw 0,0 sector 0x12e000 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 261 rw 0,0 sector 0x12e008 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 261 rw 0,0 sector 0x12e010 len 4096 err no 10 BTRFS: error (device dm-0) in write_all_supers:4110: errno=-5 IO failure (1 errors while writing supers) BTRFS: error (device dm-0) in btrfs_sync_log:3308: errno=-5 IO failure general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b68: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 2 PID: 2458471 Comm: fsstress Not tainted 5.12.0-rc5-btrfs-next-84 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 RIP: 0010:__mutex_lock+0x139/0xa40 Code: c0 74 19 (...) RSP: 0018:ffff9f18830d7b00 EFLAGS: 00010202 RAX: 6b6b6b6b6b6b6b68 RBX: 0000000000000001 RCX: 0000000000000002 RDX: ffffffffb9c54d13 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffff9f18830d7bc0 R08: 0000000000000000 R09: 0000000000000000 R10: ffff9f18830d7be0 R11: 0000000000000001 R12: ffff8c6cd199c040 R13: ffff8c6c95821358 R14: 00000000fffffffb R15: ffff8c6cbcf01358 FS: 00007fa9140c2b80(0000) GS:ffff8c6fac600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa913d52000 CR3: 000000013d2b4003 CR4: 0000000000370ee0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? __btrfs_handle_fs_error+0xde/0x146 [btrfs] ? btrfs_sync_log+0x7c1/0xf20 [btrfs] ? btrfs_sync_log+0x7c1/0xf20 [btrfs] btrfs_sync_log+0x7c1/0xf20 [btrfs] btrfs_sync_file+0x40c/0x580 [btrfs] do_fsync+0x38/0x70 __x64_sys_fsync+0x10/0x20 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7fa9142a55c3 Code: 8b 15 09 (...) RSP: 002b:00007fff26278d48 EFLAGS: 00000246 ORIG_RAX: 000000000000004a RAX: ffffffffffffffda RBX: 0000563c83cb4560 RCX: 00007fa9142a55c3 RDX: 00007fff26278cb0 RSI: 00007fff26278cb0 RDI: 0000000000000005 RBP: 0000000000000005 R08: 0000000000000001 R09: 00007fff26278d5c R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000340 R13: 00007fff26278de0 R14: 00007fff26278d96 R15: 0000563c83ca57c0 Modules linked in: btrfs dm_zero dm_snapshot dm_thin_pool (...) ---[ end trace ee2f1b19327d791d ]--- The steps that lead to this crash are the following: 1) We are at transaction N; 2) We have two tasks with a transaction handle attached to transaction N. Task A and Task B. Task B is doing an fsync; 3) Task B is at btrfs_sync_log(), and has saved fs_info->log_root_tree into a local variable named 'log_root_tree' at the top of btrfs_sync_log(). Task B is about to call write_all_supers(), but before that... 4) Task A calls btrfs_commit_transaction(), and after it sets the transaction state to TRANS_STATE_COMMIT_START, an error happens before it w ---truncated---
In the Linux kernel, the following vulnerability has been resolved: bus: mhi: core: Fix invalid error returning in mhi_queue mhi_queue returns an error when the doorbell is not accessible in the current state. This can happen when the device is in non M0 state, like M3, and needs to be waken-up prior ringing the DB. This case is managed earlier by triggering an asynchronous M3 exit via controller resume/suspend callbacks, that in turn will cause M0 transition and DB update. So, since it's not an error but just delaying of doorbell update, there is no reason to return an error. This also fixes a use after free error for skb case, indeed a caller queuing skb will try to free the skb if the queueing fails, but in that case queueing has been done.
In the Linux kernel, the following vulnerability has been resolved: bus: mhi: pci_generic: Fix possible use-after-free in mhi_pci_remove() This driver's remove path calls del_timer(). However, that function does not wait until the timer handler finishes. This means that the timer handler may still be running after the driver's remove function has finished, which would result in a use-after-free. Fix by calling del_timer_sync(), which makes sure the timer handler has finished, and unable to re-schedule itself.
In the Linux kernel, the following vulnerability has been resolved: net: fddi: fix UAF in fza_probe fp is netdev private data and it cannot be used after free_netdev() call. Using fp after free_netdev() can cause UAF bug. Fix it by moving free_netdev() after error message. TURBOchannel adapter")
In the Linux kernel, the following vulnerability has been resolved: scsi: iscsi: Fix conn use after free during resets If we haven't done a unbind target call we can race where iscsi_conn_teardown wakes up the EH thread and then frees the conn while those threads are still accessing the conn ehwait. We can only do one TMF per session so this just moves the TMF fields from the conn to the session. We can then rely on the iscsi_session_teardown->iscsi_remove_session->__iscsi_unbind_session call to remove the target and it's devices, and know after that point there is no device or scsi-ml callout trying to access the session.
Adobe Flash Player versions 25.0.0.148 and earlier have an exploitable use after free vulnerability when handling multiple mask properties of display objects, aka memory corruption. Successful exploitation could lead to arbitrary code execution.
Adobe Flash Player versions 24.0.0.221 and earlier have an exploitable use after free vulnerability in the ActionScript2 TextField object related to the variable property. Successful exploitation could lead to arbitrary code execution.
In the Linux kernel, the following vulnerability has been resolved: drm: Fix use-after-free read in drm_getunique() There is a time-of-check-to-time-of-use error in drm_getunique() due to retrieving file_priv->master prior to locking the device's master mutex. An example can be seen in the crash report of the use-after-free error found by Syzbot: https://syzkaller.appspot.com/bug?id=148d2f1dfac64af52ffd27b661981a540724f803 In the report, the master pointer was used after being freed. This is because another process had acquired the device's master mutex in drm_setmaster_ioctl(), then overwrote fpriv->master in drm_new_set_master(). The old value of fpriv->master was subsequently freed before the mutex was unlocked. To fix this, we lock the device's master mutex before retrieving the pointer from from fpriv->master. This patch passes the Syzbot reproducer test.
In the Linux kernel, the following vulnerability has been resolved: ext4: fix possible UAF when remounting r/o a mmp-protected file system After commit 618f003199c6 ("ext4: fix memory leak in ext4_fill_super"), after the file system is remounted read-only, there is a race where the kmmpd thread can exit, causing sbi->s_mmp_tsk to point at freed memory, which the call to ext4_stop_mmpd() can trip over. Fix this by only allowing kmmpd() to exit when it is stopped via ext4_stop_mmpd(). Bug-Report-Link: <20210629143603.2166962-1-yebin10@huawei.com>
In the Linux kernel, the following vulnerability has been resolved: regmap: set debugfs_name to NULL after it is freed There is a upstream commit cffa4b2122f5("regmap:debugfs: Fix a memory leak when calling regmap_attach_dev") that adds a if condition when create name for debugfs_name. With below function invoking logical, debugfs_name is freed in regmap_debugfs_exit(), but it is not created again because of the if condition introduced by above commit. regmap_reinit_cache() regmap_debugfs_exit() ... regmap_debugfs_init() So, set debugfs_name to NULL after it is freed.
In the Linux kernel, the following vulnerability has been resolved: arch_topology: Avoid use-after-free for scale_freq_data Currently topology_scale_freq_tick() (which gets called from scheduler_tick()) may end up using a pointer to "struct scale_freq_data", which was previously cleared by topology_clear_scale_freq_source(), as there is no protection in place here. The users of topology_clear_scale_freq_source() though needs a guarantee that the previously cleared scale_freq_data isn't used anymore, so they can free the related resources. Since topology_scale_freq_tick() is called from scheduler tick, we don't want to add locking in there. Use the RCU update mechanism instead (which is already used by the scheduler's utilization update path) to guarantee race free updates here. synchronize_rcu() makes sure that all RCU critical sections that started before it is called, will finish before it returns. And so the callers of topology_clear_scale_freq_source() don't need to worry about their callback getting called anymore.
In the Linux kernel, the following vulnerability has been resolved: sched/fair: Prevent dead task groups from regaining cfs_rq's Kevin is reporting crashes which point to a use-after-free of a cfs_rq in update_blocked_averages(). Initial debugging revealed that we've live cfs_rq's (on_list=1) in an about to be kfree()'d task group in free_fair_sched_group(). However, it was unclear how that can happen. His kernel config happened to lead to a layout of struct sched_entity that put the 'my_q' member directly into the middle of the object which makes it incidentally overlap with SLUB's freelist pointer. That, in combination with SLAB_FREELIST_HARDENED's freelist pointer mangling, leads to a reliable access violation in form of a #GP which made the UAF fail fast. Michal seems to have run into the same issue[1]. He already correctly diagnosed that commit a7b359fc6a37 ("sched/fair: Correctly insert cfs_rq's to list on unthrottle") is causing the preconditions for the UAF to happen by re-adding cfs_rq's also to task groups that have no more running tasks, i.e. also to dead ones. His analysis, however, misses the real root cause and it cannot be seen from the crash backtrace only, as the real offender is tg_unthrottle_up() getting called via sched_cfs_period_timer() via the timer interrupt at an inconvenient time. When unregister_fair_sched_group() unlinks all cfs_rq's from the dying task group, it doesn't protect itself from getting interrupted. If the timer interrupt triggers while we iterate over all CPUs or after unregister_fair_sched_group() has finished but prior to unlinking the task group, sched_cfs_period_timer() will execute and walk the list of task groups, trying to unthrottle cfs_rq's, i.e. re-add them to the dying task group. These will later -- in free_fair_sched_group() -- be kfree()'ed while still being linked, leading to the fireworks Kevin and Michal are seeing. To fix this race, ensure the dying task group gets unlinked first. However, simply switching the order of unregistering and unlinking the task group isn't sufficient, as concurrent RCU walkers might still see it, as can be seen below: CPU1: CPU2: : timer IRQ: : do_sched_cfs_period_timer(): : : : distribute_cfs_runtime(): : rcu_read_lock(); : : : unthrottle_cfs_rq(): sched_offline_group(): : : walk_tg_tree_from(…,tg_unthrottle_up,…): list_del_rcu(&tg->list); : (1) : list_for_each_entry_rcu(child, &parent->children, siblings) : : (2) list_del_rcu(&tg->siblings); : : tg_unthrottle_up(): unregister_fair_sched_group(): struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; : : list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); : : : : if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running) (3) : list_add_leaf_cfs_rq(cfs_rq); : : : : : : : : : ---truncated---
In the Linux kernel, the following vulnerability has been resolved: spi: fix use-after-free of the add_lock mutex Commit 6098475d4cb4 ("spi: Fix deadlock when adding SPI controllers on SPI buses") introduced a per-controller mutex. But mutex_unlock() of said lock is called after the controller is already freed: spi_unregister_controller(ctlr) -> put_device(&ctlr->dev) -> spi_controller_release(dev) -> mutex_unlock(&ctrl->add_lock) Move the put_device() after the mutex_unlock().
In the Linux kernel, the following vulnerability has been resolved: misc/libmasm/module: Fix two use after free in ibmasm_init_one In ibmasm_init_one, it calls ibmasm_init_remote_input_dev(). Inside ibmasm_init_remote_input_dev, mouse_dev and keybd_dev are allocated by input_allocate_device(), and assigned to sp->remote.mouse_dev and sp->remote.keybd_dev respectively. In the err_free_devices error branch of ibmasm_init_one, mouse_dev and keybd_dev are freed by input_free_device(), and return error. Then the execution runs into error_send_message error branch of ibmasm_init_one, where ibmasm_free_remote_input_dev(sp) is called to unregister the freed sp->remote.mouse_dev and sp->remote.keybd_dev. My patch add a "error_init_remote" label to handle the error of ibmasm_init_remote_input_dev(), to avoid the uaf bugs.
A race condition was found in the GSM 0710 tty multiplexor in the Linux kernel. This issue occurs when two threads execute the GSMIOC_SETCONF ioctl on the same tty file descriptor with the gsm line discipline enabled, and can lead to a use-after-free problem on a struct gsm_dlci while restarting the gsm mux. This could allow a local unprivileged user to escalate their privileges on the system.
Use after free in Cast in Google Chrome prior to 139.0.7258.66 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: Medium)
Use-after-free in the usbtv_probe function in drivers/media/usb/usbtv/usbtv-core.c in the Linux kernel through 4.14.10 allows attackers to cause a denial of service (system crash) or possibly have unspecified other impact by triggering failure of audio registration, because a kfree of the usbtv data structure occurs during a usbtv_video_free call, but the usbtv_video_fail label's code attempts to both access and free this data structure.
Use after free in Extensions in Google Chrome prior to 139.0.7258.66 allowed a remote attacker to potentially exploit heap corruption via a crafted Chrome Extension. (Chromium security severity: Medium)
A use-after-free flaw was found in nci_request in net/nfc/nci/core.c in NFC Controller Interface (NCI) in the Linux kernel. This flaw could allow a local attacker with user privileges to cause a data race problem while the device is getting removed, leading to a privilege escalation problem.
Use after free in Aura in Google Chrome prior to 139.0.7258.127 allowed a remote attacker who convinced a user to engage in specific UI gestures to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: Medium)
An issue was discovered in the Linux kernel before 5.14.8. A use-after-free in selinux_ptrace_traceme (aka the SELinux handler for PTRACE_TRACEME) could be used by local attackers to cause memory corruption and escalate privileges, aka CID-a3727a8bac0a. This occurs because of an attempt to access the subjective credentials of another task.
Use after free in Media Stream in Google Chrome prior to 138.0.7204.183 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High)
Adobe Flash Player Desktop Runtime 32.0.0.371 and earlier, Adobe Flash Player for Google Chrome 32.0.0.371 and earlier, and Adobe Flash Player for Microsoft Edge and Internet Explorer 32.0.0.330 and earlier have an use after free vulnerability. Successful exploitation could lead to arbitrary code execution.
The XFRM dump policy implementation in net/xfrm/xfrm_user.c in the Linux kernel before 4.13.11 allows local users to gain privileges or cause a denial of service (use-after-free) via a crafted SO_RCVBUF setsockopt system call in conjunction with XFRM_MSG_GETPOLICY Netlink messages.
In the Linux kernel, the following vulnerability has been resolved: mptcp: use the workqueue to destroy unaccepted sockets Christoph reported a UaF at token lookup time after having refactored the passive socket initialization part: BUG: KASAN: use-after-free in __token_bucket_busy+0x253/0x260 Read of size 4 at addr ffff88810698d5b0 by task syz-executor653/3198 CPU: 1 PID: 3198 Comm: syz-executor653 Not tainted 6.2.0-rc59af4eaa31c1f6c00c8f1e448ed99a45c66340dd5 #6 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x6e/0x91 print_report+0x16a/0x46f kasan_report+0xad/0x130 __token_bucket_busy+0x253/0x260 mptcp_token_new_connect+0x13d/0x490 mptcp_connect+0x4ed/0x860 __inet_stream_connect+0x80e/0xd90 tcp_sendmsg_fastopen+0x3ce/0x710 mptcp_sendmsg+0xff1/0x1a20 inet_sendmsg+0x11d/0x140 __sys_sendto+0x405/0x490 __x64_sys_sendto+0xdc/0x1b0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc We need to properly clean-up all the paired MPTCP-level resources and be sure to release the msk last, even when the unaccepted subflow is destroyed by the TCP internals via inet_child_forget(). We can re-use the existing MPTCP_WORK_CLOSE_SUBFLOW infra, explicitly checking that for the critical scenario: the closed subflow is the MPC one, the msk is not accepted and eventually going through full cleanup. With such change, __mptcp_destroy_sock() is always called on msk sockets, even on accepted ones. We don't need anymore to transiently drop one sk reference at msk clone time. Please note this commit depends on the parent one: mptcp: refactor passive socket initialization
In the Linux kernel, the following vulnerability has been resolved: cifs: Fix warning and UAF when destroy the MR list If the MR allocate failed, the MR recovery work not initialized and list not cleared. Then will be warning and UAF when release the MR: WARNING: CPU: 4 PID: 824 at kernel/workqueue.c:3066 __flush_work.isra.0+0xf7/0x110 CPU: 4 PID: 824 Comm: mount.cifs Not tainted 6.1.0-rc5+ #82 RIP: 0010:__flush_work.isra.0+0xf7/0x110 Call Trace: <TASK> __cancel_work_timer+0x2ba/0x2e0 smbd_destroy+0x4e1/0x990 _smbd_get_connection+0x1cbd/0x2110 smbd_get_connection+0x21/0x40 cifs_get_tcp_session+0x8ef/0xda0 mount_get_conns+0x60/0x750 cifs_mount+0x103/0xd00 cifs_smb3_do_mount+0x1dd/0xcb0 smb3_get_tree+0x1d5/0x300 vfs_get_tree+0x41/0xf0 path_mount+0x9b3/0xdd0 __x64_sys_mount+0x190/0x1d0 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 BUG: KASAN: use-after-free in smbd_destroy+0x4fc/0x990 Read of size 8 at addr ffff88810b156a08 by task mount.cifs/824 CPU: 4 PID: 824 Comm: mount.cifs Tainted: G W 6.1.0-rc5+ #82 Call Trace: dump_stack_lvl+0x34/0x44 print_report+0x171/0x472 kasan_report+0xad/0x130 smbd_destroy+0x4fc/0x990 _smbd_get_connection+0x1cbd/0x2110 smbd_get_connection+0x21/0x40 cifs_get_tcp_session+0x8ef/0xda0 mount_get_conns+0x60/0x750 cifs_mount+0x103/0xd00 cifs_smb3_do_mount+0x1dd/0xcb0 smb3_get_tree+0x1d5/0x300 vfs_get_tree+0x41/0xf0 path_mount+0x9b3/0xdd0 __x64_sys_mount+0x190/0x1d0 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Allocated by task 824: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 __kasan_kmalloc+0x7a/0x90 _smbd_get_connection+0x1b6f/0x2110 smbd_get_connection+0x21/0x40 cifs_get_tcp_session+0x8ef/0xda0 mount_get_conns+0x60/0x750 cifs_mount+0x103/0xd00 cifs_smb3_do_mount+0x1dd/0xcb0 smb3_get_tree+0x1d5/0x300 vfs_get_tree+0x41/0xf0 path_mount+0x9b3/0xdd0 __x64_sys_mount+0x190/0x1d0 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Freed by task 824: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 kasan_save_free_info+0x2a/0x40 ____kasan_slab_free+0x143/0x1b0 __kmem_cache_free+0xc8/0x330 _smbd_get_connection+0x1c6a/0x2110 smbd_get_connection+0x21/0x40 cifs_get_tcp_session+0x8ef/0xda0 mount_get_conns+0x60/0x750 cifs_mount+0x103/0xd00 cifs_smb3_do_mount+0x1dd/0xcb0 smb3_get_tree+0x1d5/0x300 vfs_get_tree+0x41/0xf0 path_mount+0x9b3/0xdd0 __x64_sys_mount+0x190/0x1d0 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Let's initialize the MR recovery work before MR allocate to prevent the warning, remove the MRs from the list to prevent the UAF.
In the Linux kernel, the following vulnerability has been resolved: tracing/histograms: Add histograms to hist_vars if they have referenced variables Hist triggers can have referenced variables without having direct variables fields. This can be the case if referenced variables are added for trigger actions. In this case the newly added references will not have field variables. Not taking such referenced variables into consideration can result in a bug where it would be possible to remove hist trigger with variables being refenced. This will result in a bug that is easily reproducable like so $ cd /sys/kernel/tracing $ echo 'synthetic_sys_enter char[] comm; long id' >> synthetic_events $ echo 'hist:keys=common_pid.execname,id.syscall:vals=hitcount:comm=common_pid.execname' >> events/raw_syscalls/sys_enter/trigger $ echo 'hist:keys=common_pid.execname,id.syscall:onmatch(raw_syscalls.sys_enter).synthetic_sys_enter($comm, id)' >> events/raw_syscalls/sys_enter/trigger $ echo '!hist:keys=common_pid.execname,id.syscall:vals=hitcount:comm=common_pid.execname' >> events/raw_syscalls/sys_enter/trigger [ 100.263533] ================================================================== [ 100.264634] BUG: KASAN: slab-use-after-free in resolve_var_refs+0xc7/0x180 [ 100.265520] Read of size 8 at addr ffff88810375d0f0 by task bash/439 [ 100.266320] [ 100.266533] CPU: 2 PID: 439 Comm: bash Not tainted 6.5.0-rc1 #4 [ 100.267277] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-20220807_005459-localhost 04/01/2014 [ 100.268561] Call Trace: [ 100.268902] <TASK> [ 100.269189] dump_stack_lvl+0x4c/0x70 [ 100.269680] print_report+0xc5/0x600 [ 100.270165] ? resolve_var_refs+0xc7/0x180 [ 100.270697] ? kasan_complete_mode_report_info+0x80/0x1f0 [ 100.271389] ? resolve_var_refs+0xc7/0x180 [ 100.271913] kasan_report+0xbd/0x100 [ 100.272380] ? resolve_var_refs+0xc7/0x180 [ 100.272920] __asan_load8+0x71/0xa0 [ 100.273377] resolve_var_refs+0xc7/0x180 [ 100.273888] event_hist_trigger+0x749/0x860 [ 100.274505] ? kasan_save_stack+0x2a/0x50 [ 100.275024] ? kasan_set_track+0x29/0x40 [ 100.275536] ? __pfx_event_hist_trigger+0x10/0x10 [ 100.276138] ? ksys_write+0xd1/0x170 [ 100.276607] ? do_syscall_64+0x3c/0x90 [ 100.277099] ? entry_SYSCALL_64_after_hwframe+0x6e/0xd8 [ 100.277771] ? destroy_hist_data+0x446/0x470 [ 100.278324] ? event_hist_trigger_parse+0xa6c/0x3860 [ 100.278962] ? __pfx_event_hist_trigger_parse+0x10/0x10 [ 100.279627] ? __kasan_check_write+0x18/0x20 [ 100.280177] ? mutex_unlock+0x85/0xd0 [ 100.280660] ? __pfx_mutex_unlock+0x10/0x10 [ 100.281200] ? kfree+0x7b/0x120 [ 100.281619] ? ____kasan_slab_free+0x15d/0x1d0 [ 100.282197] ? event_trigger_write+0xac/0x100 [ 100.282764] ? __kasan_slab_free+0x16/0x20 [ 100.283293] ? __kmem_cache_free+0x153/0x2f0 [ 100.283844] ? sched_mm_cid_remote_clear+0xb1/0x250 [ 100.284550] ? __pfx_sched_mm_cid_remote_clear+0x10/0x10 [ 100.285221] ? event_trigger_write+0xbc/0x100 [ 100.285781] ? __kasan_check_read+0x15/0x20 [ 100.286321] ? __bitmap_weight+0x66/0xa0 [ 100.286833] ? _find_next_bit+0x46/0xe0 [ 100.287334] ? task_mm_cid_work+0x37f/0x450 [ 100.287872] event_triggers_call+0x84/0x150 [ 100.288408] trace_event_buffer_commit+0x339/0x430 [ 100.289073] ? ring_buffer_event_data+0x3f/0x60 [ 100.292189] trace_event_raw_event_sys_enter+0x8b/0xe0 [ 100.295434] syscall_trace_enter.constprop.0+0x18f/0x1b0 [ 100.298653] syscall_enter_from_user_mode+0x32/0x40 [ 100.301808] do_syscall_64+0x1a/0x90 [ 100.304748] entry_SYSCALL_64_after_hwframe+0x6e/0xd8 [ 100.307775] RIP: 0033:0x7f686c75c1cb [ 100.310617] Code: 73 01 c3 48 8b 0d 65 3c 10 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa b8 21 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 35 3c 10 00 f7 d8 64 89 01 48 [ 100.317847] RSP: 002b:00007ffc60137a38 EFLAGS: 00000246 ORIG_RAX: 0000000000000021 [ 100.321200] RA ---truncated---
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btsdio: fix use after free bug in btsdio_remove due to race condition In btsdio_probe, the data->work is bound with btsdio_work. It will be started in btsdio_send_frame. If the btsdio_remove runs with a unfinished work, there may be a race condition that hdev is freed but used in btsdio_work. Fix it by canceling the work before do cleanup in btsdio_remove.
The mm_init function in kernel/fork.c in the Linux kernel before 4.12.10 does not clear the ->exe_file member of a new process's mm_struct, allowing a local attacker to achieve a use-after-free or possibly have unspecified other impact by running a specially crafted program.
In the Linux kernel, the following vulnerability has been resolved: nvmet: avoid potential UAF in nvmet_req_complete() An nvme target ->queue_response() operation implementation may free the request passed as argument. Such implementation potentially could result in a use after free of the request pointer when percpu_ref_put() is called in nvmet_req_complete(). Avoid such problem by using a local variable to save the sq pointer before calling __nvmet_req_complete(), thus avoiding dereferencing the req pointer after that function call.
A use-after-free flaw was found in the add_partition in block/partitions/core.c in the Linux kernel. A local attacker with user privileges could cause a denial of service on the system. The issue results from the lack of code cleanup when device_add call fails when adding a partition to the disk.
A read-after-free memory flaw was found in the Linux kernel's garbage collection for Unix domain socket file handlers in the way users call close() and fget() simultaneously and can potentially trigger a race condition. This flaw allows a local user to crash the system or escalate their privileges on the system. This flaw affects Linux kernel versions prior to 5.16-rc4.
In the Linux kernel, the following vulnerability has been resolved: lib: cpu_rmap: Avoid use after free on rmap->obj array entries When calling irq_set_affinity_notifier() with NULL at the notify argument, it will cause freeing of the glue pointer in the corresponding array entry but will leave the pointer in the array. A subsequent call to free_irq_cpu_rmap() will try to free this entry again leading to possible use after free. Fix that by setting NULL to the array entry and checking that we have non-zero at the array entry when iterating over the array in free_irq_cpu_rmap(). The current code does not suffer from this since there are no cases where irq_set_affinity_notifier(irq, NULL) (note the NULL passed for the notify arg) is called, followed by a call to free_irq_cpu_rmap() so we don't hit and issue. Subsequent patches in this series excersize this flow, hence the required fix.
In the Linux kernel, the following vulnerability has been resolved: vc_screen: move load of struct vc_data pointer in vcs_read() to avoid UAF After a call to console_unlock() in vcs_read() the vc_data struct can be freed by vc_deallocate(). Because of that, the struct vc_data pointer load must be done at the top of while loop in vcs_read() to avoid a UAF when vcs_size() is called. Syzkaller reported a UAF in vcs_size(). BUG: KASAN: use-after-free in vcs_size (drivers/tty/vt/vc_screen.c:215) Read of size 4 at addr ffff8881137479a8 by task 4a005ed81e27e65/1537 CPU: 0 PID: 1537 Comm: 4a005ed81e27e65 Not tainted 6.2.0-rc5 #1 Hardware name: Red Hat KVM, BIOS 1.15.0-2.module Call Trace: <TASK> __asan_report_load4_noabort (mm/kasan/report_generic.c:350) vcs_size (drivers/tty/vt/vc_screen.c:215) vcs_read (drivers/tty/vt/vc_screen.c:415) vfs_read (fs/read_write.c:468 fs/read_write.c:450) ... </TASK> Allocated by task 1191: ... kmalloc_trace (mm/slab_common.c:1069) vc_allocate (./include/linux/slab.h:580 ./include/linux/slab.h:720 drivers/tty/vt/vt.c:1128 drivers/tty/vt/vt.c:1108) con_install (drivers/tty/vt/vt.c:3383) tty_init_dev (drivers/tty/tty_io.c:1301 drivers/tty/tty_io.c:1413 drivers/tty/tty_io.c:1390) tty_open (drivers/tty/tty_io.c:2080 drivers/tty/tty_io.c:2126) chrdev_open (fs/char_dev.c:415) do_dentry_open (fs/open.c:883) vfs_open (fs/open.c:1014) ... Freed by task 1548: ... kfree (mm/slab_common.c:1021) vc_port_destruct (drivers/tty/vt/vt.c:1094) tty_port_destructor (drivers/tty/tty_port.c:296) tty_port_put (drivers/tty/tty_port.c:312) vt_disallocate_all (drivers/tty/vt/vt_ioctl.c:662 (discriminator 2)) vt_ioctl (drivers/tty/vt/vt_ioctl.c:903) tty_ioctl (drivers/tty/tty_io.c:2776) ... The buggy address belongs to the object at ffff888113747800 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 424 bytes inside of 1024-byte region [ffff888113747800, ffff888113747c00) The buggy address belongs to the physical page: page:00000000b3fe6c7c refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x113740 head:00000000b3fe6c7c order:3 compound_mapcount:0 subpages_mapcount:0 compound_pincount:0 anon flags: 0x17ffffc0010200(slab|head|node=0|zone=2|lastcpupid=0x1fffff) raw: 0017ffffc0010200 ffff888100042dc0 0000000000000000 dead000000000001 raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff888113747880: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff888113747900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb > ffff888113747980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff888113747a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff888113747a80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== Disabling lock debugging due to kernel taint
The init_new_context function in arch/x86/include/asm/mmu_context.h in the Linux kernel before 4.12.10 does not correctly handle errors from LDT table allocation when forking a new process, allowing a local attacker to achieve a use-after-free or possibly have unspecified other impact by running a specially crafted program. This vulnerability only affected kernels built with CONFIG_MODIFY_LDT_SYSCALL=y.