A flaw was found in the virtio-net device in QEMU. When enabling the RSS feature on the virtio-net network card, the indirections_table data within RSS becomes controllable. Setting excessively large values may cause an index out-of-bounds issue, potentially resulting in heap overflow access. This flaw allows a privileged user in the guest to crash the QEMU process on the host.
The load_multiboot function in hw/i386/multiboot.c in Quick Emulator (aka QEMU) allows local guest OS users to execute arbitrary code on the QEMU host via a mh_load_end_addr value greater than mh_bss_end_addr, which triggers an out-of-bounds read or write memory access.
It was discovered that the update for the virt:rhel module in the RHSA-2020:4676 (https://access.redhat.com/errata/RHSA-2020:4676) erratum released as part of Red Hat Enterprise Linux 8.3 failed to include the fix for the qemu-kvm component issue CVE-2020-10756, which was previously corrected in virt:rhel/qemu-kvm via erratum RHSA-2020:4059 (https://access.redhat.com/errata/RHSA-2020:4059). CVE-2021-20295 was assigned to that Red Hat specific security regression. For more details about the original security issue CVE-2020-10756, refer to bug 1835986 or the CVE page: https://access.redhat.com/security/cve/CVE-2020-10756.
A component of the HarmonyOS has a Improper Input Validation vulnerability. Local attackers may exploit this vulnerability to cause nearby process crash.
There is an out-of-bound read vulnerability in Mate 30 10.0.0.182(C00E180R6P2). A module does not verify the some input when dealing with messages. Attackers can exploit this vulnerability by sending malicious input through specific module. This could cause out-of-bound, compromising normal service.
There is an out of bounds read vulnerability in eSE620X vESS V100R001C10SPC200, V100R001C20SPC200, V200R001C00SPC300. A local attacker can exploit this vulnerability by sending specific message to the target device. Due to insufficient validation of internal message, successful exploit may cause the process and the service abnormal.
There is an out-of-bounds read vulnerability in eSE620X vESS V100R001C10SPC200, V100R001C20SPC200, V200R001C00SPC300. The vulnerability is due to a function that handles an internal message contains an out-of-bounds read vulnerability. An attacker could crafted messages between system process, successful exploit could cause Denial of Service (DoS).
Twister Antivirus v8.17 is vulnerable to an Out-of-bounds Read vulnerability by triggering the 0x801120B8 IOCTL code of the filmfd.sys driver.
Various out of bounds reads when handling responses in OpenSC before 0.19.0-rc1 could be used by attackers able to supply crafted smartcards to potentially crash the opensc library using programs.
Out of bounds read in igdkm64.sys in Intel(R) Graphics Driver for Windows* before versions 10.18.x.5059 (aka 15.33.x.5059), 10.18.x.5057 (aka 15.36.x.5057), 20.19.x.5063 (aka 15.40.x.5063) 21.20.x.5064 (aka 15.45.x.5064) and 24.20.100.6373 may allow an authenticated user to potentially enable denial of service via local access.
Possible buffer over-read due to incorrect overflow check when loading splash image in Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables
parse_string in cJSON before 1.7.18 has a heap-based buffer over-read via {"1":1, with no trailing newline if cJSON_ParseWithLength is called.
A flaw was found in the Linux kernel's implementation of string matching within a packet. A privileged user (with root or CAP_NET_ADMIN) when inserting iptables rules could insert a rule which can panic the system. Kernel before kernel 5.5-rc1 is affected.
Possible Buffer Over-read due to lack of validation of boundary checks when loading splash image in Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables
Possible buffer over read due to lack of length check while flashing meta images in Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Wearables
Improper buffer size check logic in aviextractor library prior to SMR May-2022 Release 1 allows out of bounds read leading to possible temporary denial of service. The patch adds buffer size check logic.
Improper buffer size check logic in wmfextractor library prior to SMR May-2022 Release 1 allows out of bounds read leading to possible temporary denial of service. The patch adds buffer size check logic.
Improper buffer size check logic in aviextractor library prior to SMR May-2022 Release 1 allows out of bounds read leading to possible temporary denial of service. The patch adds buffer size check logic.
Improper boundary check in media.extractor library prior to SMR Apr-2022 Release 1 allows attackers to cause denial of service via a crafted media file.
Out of bounds read in system driver for some Intel(R) Graphics Drivers before version 15.33.50.5129 may allow an authenticated user to potentially enable denial of service via local access.
Taurus-AN00B versions earlier than 10.1.0.156(C00E155R7P2) have an out-of-bounds read and write vulnerability. Some functions do not verify inputs sufficiently. Attackers can exploit this vulnerability by sending specific request. This could compromise normal service of the affected device.
Possible buffer overflow due to lack of buffer length check during management frame Rx handling lead to denial of service in Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer Electronics Connectivity
Improper buffer size check logic in aviextractor library prior to SMR May-2022 Release 1 allows out of bounds read leading to possible temporary denial of service. The patch adds buffer size check logic.
swtpm is a libtpms-based TPM emulator with socket, character device, and Linux CUSE interface. Versions prior to 0.5.3, 0.6.2, and 0.7.1 are vulnerable to out-of-bounds read. A specially crafted header of swtpm's state, where the blobheader's hdrsize indicator has an invalid value, may cause an out-of-bounds access when the byte array representing the state of the TPM is accessed. This will likely crash swtpm or prevent it from starting since the state cannot be understood. Users should upgrade to swtpm v0.5.3, v0.6.2, or v0.7.1 to receive a patch. There are currently no known workarounds.
In video decoder, there is a possible out of bounds read due to improper input validation. This could lead to local denial of service with no additional execution privileges needed
NVIDIA Windows GPU Display Driver, all versions, contains a vulnerability in the DirectX 11 user mode driver (nvwgf2um/x.dll), in which a specially crafted shader can cause an out of bounds access, leading to denial of service.
In video decoder, there is a possible out of bounds read due to improper input validation. This could lead to local denial of service with no additional execution privileges needed
In video decoder, there is a possible out of bounds read due to improper input validation. This could lead to local denial of service with no additional execution privileges needed
The Linux kernel was found vulnerable out of bounds memory access in the drivers/video/fbdev/sm712fb.c:smtcfb_read() function. The vulnerability could result in local attackers being able to crash the kernel.
Symantec Endpoint Protection (SEP) and Symantec Endpoint Protection Small Business Edition (SEP SBE), prior to 14.2 RU2 MP1 and prior to 14.2.5569.2100 respectively, may be susceptible to an out of bounds vulnerability, which is a type of issue that results in an existing application reading memory outside of the bounds of the memory that had been allocated to the program.
in OpenHarmony v3.2.4 and prior versions allow a local attacker cause apps crash through type confusion.
In video decoder, there is a possible out of bounds read due to improper input validation. This could lead to local denial of service with no additional execution privileges needed
Tensorflow is an Open Source Machine Learning Framework. The TFG dialect of TensorFlow (MLIR) makes several assumptions about the incoming `GraphDef` before converting it to the MLIR-based dialect. If an attacker changes the `SavedModel` format on disk to invalidate these assumptions and the `GraphDef` is then converted to MLIR-based IR then they can cause a crash in the Python interpreter. Under certain scenarios, heap OOB read/writes are possible. These issues have been discovered via fuzzing and it is possible that more weaknesses exist. We will patch them as they are discovered.
In imgsensor, there is a possible out of bounds read due to a missing bounds check. This could lead to local denial of service with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06479698; Issue ID: ALPS06479698.
Out-of-bounds read condition in older versions of some Intel Graphics Driver for Windows code branches allows local users to perform a denial of service attack.
The vrend_draw_vbo function in virglrenderer before 0.6.0 allows local guest OS users to cause a denial of service (out-of-bounds array access and QEMU process crash) via vectors involving vertext_buffer_index.
In the Linux kernel, the following vulnerability has been resolved: ipv6: Fix KASAN: slab-out-of-bounds Read in fib6_nh_flush_exceptions Reported by syzbot: HEAD commit: 90c911ad Merge tag 'fixes' of git://git.kernel.org/pub/scm.. git tree: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git master dashboard link: https://syzkaller.appspot.com/bug?extid=123aa35098fd3c000eb7 compiler: Debian clang version 11.0.1-2 ================================================================== BUG: KASAN: slab-out-of-bounds in fib6_nh_get_excptn_bucket net/ipv6/route.c:1604 [inline] BUG: KASAN: slab-out-of-bounds in fib6_nh_flush_exceptions+0xbd/0x360 net/ipv6/route.c:1732 Read of size 8 at addr ffff8880145c78f8 by task syz-executor.4/17760 CPU: 0 PID: 17760 Comm: syz-executor.4 Not tainted 5.12.0-rc8-syzkaller #0 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:79 [inline] dump_stack+0x202/0x31e lib/dump_stack.c:120 print_address_description+0x5f/0x3b0 mm/kasan/report.c:232 __kasan_report mm/kasan/report.c:399 [inline] kasan_report+0x15c/0x200 mm/kasan/report.c:416 fib6_nh_get_excptn_bucket net/ipv6/route.c:1604 [inline] fib6_nh_flush_exceptions+0xbd/0x360 net/ipv6/route.c:1732 fib6_nh_release+0x9a/0x430 net/ipv6/route.c:3536 fib6_info_destroy_rcu+0xcb/0x1c0 net/ipv6/ip6_fib.c:174 rcu_do_batch kernel/rcu/tree.c:2559 [inline] rcu_core+0x8f6/0x1450 kernel/rcu/tree.c:2794 __do_softirq+0x372/0x7a6 kernel/softirq.c:345 invoke_softirq kernel/softirq.c:221 [inline] __irq_exit_rcu+0x22c/0x260 kernel/softirq.c:422 irq_exit_rcu+0x5/0x20 kernel/softirq.c:434 sysvec_apic_timer_interrupt+0x91/0xb0 arch/x86/kernel/apic/apic.c:1100 </IRQ> asm_sysvec_apic_timer_interrupt+0x12/0x20 arch/x86/include/asm/idtentry.h:632 RIP: 0010:lock_acquire+0x1f6/0x720 kernel/locking/lockdep.c:5515 Code: f6 84 24 a1 00 00 00 02 0f 85 8d 02 00 00 f7 c3 00 02 00 00 49 bd 00 00 00 00 00 fc ff df 74 01 fb 48 c7 44 24 40 0e 36 e0 45 <4b> c7 44 3d 00 00 00 00 00 4b c7 44 3d 09 00 00 00 00 43 c7 44 3d RSP: 0018:ffffc90009e06560 EFLAGS: 00000206 RAX: 1ffff920013c0cc0 RBX: 0000000000000246 RCX: dffffc0000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffffc90009e066e0 R08: dffffc0000000000 R09: fffffbfff1f992b1 R10: fffffbfff1f992b1 R11: 0000000000000000 R12: 0000000000000000 R13: dffffc0000000000 R14: 0000000000000000 R15: 1ffff920013c0cb4 rcu_lock_acquire+0x2a/0x30 include/linux/rcupdate.h:267 rcu_read_lock include/linux/rcupdate.h:656 [inline] ext4_get_group_info+0xea/0x340 fs/ext4/ext4.h:3231 ext4_mb_prefetch+0x123/0x5d0 fs/ext4/mballoc.c:2212 ext4_mb_regular_allocator+0x8a5/0x28f0 fs/ext4/mballoc.c:2379 ext4_mb_new_blocks+0xc6e/0x24f0 fs/ext4/mballoc.c:4982 ext4_ext_map_blocks+0x2be3/0x7210 fs/ext4/extents.c:4238 ext4_map_blocks+0xab3/0x1cb0 fs/ext4/inode.c:638 ext4_getblk+0x187/0x6c0 fs/ext4/inode.c:848 ext4_bread+0x2a/0x1c0 fs/ext4/inode.c:900 ext4_append+0x1a4/0x360 fs/ext4/namei.c:67 ext4_init_new_dir+0x337/0xa10 fs/ext4/namei.c:2768 ext4_mkdir+0x4b8/0xc00 fs/ext4/namei.c:2814 vfs_mkdir+0x45b/0x640 fs/namei.c:3819 ovl_do_mkdir fs/overlayfs/overlayfs.h:161 [inline] ovl_mkdir_real+0x53/0x1a0 fs/overlayfs/dir.c:146 ovl_create_real+0x280/0x490 fs/overlayfs/dir.c:193 ovl_workdir_create+0x425/0x600 fs/overlayfs/super.c:788 ovl_make_workdir+0xed/0x1140 fs/overlayfs/super.c:1355 ovl_get_workdir fs/overlayfs/super.c:1492 [inline] ovl_fill_super+0x39ee/0x5370 fs/overlayfs/super.c:2035 mount_nodev+0x52/0xe0 fs/super.c:1413 legacy_get_tree+0xea/0x180 fs/fs_context.c:592 vfs_get_tree+0x86/0x270 fs/super.c:1497 do_new_mount fs/namespace.c:2903 [inline] path_mount+0x196f/0x2be0 fs/namespace.c:3233 do_mount fs/namespace.c:3246 [inline] __do_sys_mount fs/namespace.c:3454 [inline] __se_sys_mount+0x2f9/0x3b0 fs/namespace.c:3431 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x4665f9 Code: ff ff c3 66 2e 0f 1f 84 ---truncated---
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix tail_call_reachable rejection for interpreter when jit failed During testing of f263a81451c1 ("bpf: Track subprog poke descriptors correctly and fix use-after-free") under various failure conditions, for example, when jit_subprogs() fails and tries to clean up the program to be run under the interpreter, we ran into the following freeze: [...] #127/8 tailcall_bpf2bpf_3:FAIL [...] [ 92.041251] BUG: KASAN: slab-out-of-bounds in ___bpf_prog_run+0x1b9d/0x2e20 [ 92.042408] Read of size 8 at addr ffff88800da67f68 by task test_progs/682 [ 92.043707] [ 92.044030] CPU: 1 PID: 682 Comm: test_progs Tainted: G O 5.13.0-53301-ge6c08cb33a30-dirty #87 [ 92.045542] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1 04/01/2014 [ 92.046785] Call Trace: [ 92.047171] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.047773] ? __bpf_prog_run_args32+0x8b/0xb0 [ 92.048389] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.049019] ? ktime_get+0x117/0x130 [...] // few hundred [similar] lines more [ 92.659025] ? ktime_get+0x117/0x130 [ 92.659845] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.660738] ? __bpf_prog_run_args32+0x8b/0xb0 [ 92.661528] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.662378] ? print_usage_bug+0x50/0x50 [ 92.663221] ? print_usage_bug+0x50/0x50 [ 92.664077] ? bpf_ksym_find+0x9c/0xe0 [ 92.664887] ? ktime_get+0x117/0x130 [ 92.665624] ? kernel_text_address+0xf5/0x100 [ 92.666529] ? __kernel_text_address+0xe/0x30 [ 92.667725] ? unwind_get_return_address+0x2f/0x50 [ 92.668854] ? ___bpf_prog_run+0x15d4/0x2e20 [ 92.670185] ? ktime_get+0x117/0x130 [ 92.671130] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.672020] ? __bpf_prog_run_args32+0x8b/0xb0 [ 92.672860] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.675159] ? ktime_get+0x117/0x130 [ 92.677074] ? lock_is_held_type+0xd5/0x130 [ 92.678662] ? ___bpf_prog_run+0x15d4/0x2e20 [ 92.680046] ? ktime_get+0x117/0x130 [ 92.681285] ? __bpf_prog_run32+0x6b/0x90 [ 92.682601] ? __bpf_prog_run64+0x90/0x90 [ 92.683636] ? lock_downgrade+0x370/0x370 [ 92.684647] ? mark_held_locks+0x44/0x90 [ 92.685652] ? ktime_get+0x117/0x130 [ 92.686752] ? lockdep_hardirqs_on+0x79/0x100 [ 92.688004] ? ktime_get+0x117/0x130 [ 92.688573] ? __cant_migrate+0x2b/0x80 [ 92.689192] ? bpf_test_run+0x2f4/0x510 [ 92.689869] ? bpf_test_timer_continue+0x1c0/0x1c0 [ 92.690856] ? rcu_read_lock_bh_held+0x90/0x90 [ 92.691506] ? __kasan_slab_alloc+0x61/0x80 [ 92.692128] ? eth_type_trans+0x128/0x240 [ 92.692737] ? __build_skb+0x46/0x50 [ 92.693252] ? bpf_prog_test_run_skb+0x65e/0xc50 [ 92.693954] ? bpf_prog_test_run_raw_tp+0x2d0/0x2d0 [ 92.694639] ? __fget_light+0xa1/0x100 [ 92.695162] ? bpf_prog_inc+0x23/0x30 [ 92.695685] ? __sys_bpf+0xb40/0x2c80 [ 92.696324] ? bpf_link_get_from_fd+0x90/0x90 [ 92.697150] ? mark_held_locks+0x24/0x90 [ 92.698007] ? lockdep_hardirqs_on_prepare+0x124/0x220 [ 92.699045] ? finish_task_switch+0xe6/0x370 [ 92.700072] ? lockdep_hardirqs_on+0x79/0x100 [ 92.701233] ? finish_task_switch+0x11d/0x370 [ 92.702264] ? __switch_to+0x2c0/0x740 [ 92.703148] ? mark_held_locks+0x24/0x90 [ 92.704155] ? __x64_sys_bpf+0x45/0x50 [ 92.705146] ? do_syscall_64+0x35/0x80 [ 92.706953] ? entry_SYSCALL_64_after_hwframe+0x44/0xae [...] Turns out that the program rejection from e411901c0b77 ("bpf: allow for tailcalls in BPF subprograms for x64 JIT") is buggy since env->prog->aux->tail_call_reachable is never true. Commit ebf7d1f508a7 ("bpf, x64: rework pro/epilogue and tailcall handling in JIT") added a tracker into check_max_stack_depth() which propagates the tail_call_reachable condition throughout the subprograms. This info is then assigned to the subprogram's ---truncated---
Insufficient input validation in SEV firmware may allow an attacker to perform out-of-bounds memory reads within the ASP boot loader, potentially leading to a denial of service.
In imgsensor, there is a possible out of bounds read due to a missing bounds check. This could lead to local denial of service with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06478078; Issue ID: ALPS06478078.
njs through 0.4.3, used in NGINX, has an out-of-bounds read in njs_json_stringify_iterator in njs_json.c.
An issue was discovered in the Linux kernel before 5.14.15. There is an array-index-out-of-bounds flaw in the detach_capi_ctr function in drivers/isdn/capi/kcapi.c.
PEM module of Huawei DP300 V500R002C00; IPS Module V500R001C00; V500R001C30; NGFW Module V500R001C00; V500R002C00; NIP6300 V500R001C00; V500R001C30; NIP6600 V500R001C00; V500R001C30; RP200 V500R002C00; V600R006C00; S12700 V200R007C00; V200R007C01; V200R008C00; V200R009C00; V200R010C00; S1700 V200R006C10; V200R009C00; V200R010C00; S2700 V200R006C10; V200R007C00; V200R008C00; V200R009C00; V200R010C00; S5700 V200R006C00; V200R007C00; V200R008C00; V200R009C00; V200R010C00; S6700 V200R008C00; V200R009C00; V200R010C00; S7700 V200R007C00; V200R008C00; V200R009C00; V200R010C00; S9700 V200R007C00; V200R007C01; V200R008C00; V200R009C00; V200R010C00; Secospace USG6300 V500R001C00; V500R001C30; Secospace USG6500 V500R001C00; V500R001C30; Secospace USG6600 V500R001C00; V500R001C30S; TE30 V100R001C02; V100R001C10; V500R002C00; V600R006C00; TE40 V500R002C00; V600R006C00; TE50 V500R002C00; V600R006C00; TE60 V100R001C01; V100R001C10; V500R002C00; V600R006C00; TP3106 V100R002C00; TP3206 V100R002C00; V100R002C10; USG9500 V500R001C00; V500R001C30; ViewPoint 9030 V100R011C02; V100R011C03 has an Out-of-Bounds memory access vulnerability due to insufficient verification. An authenticated local attacker can make processing crash by a malicious certificate. The attacker can exploit this vulnerability to cause a denial of service.
In phasecheckserver, there is a possible out of bounds read due to a missing bounds check. This could lead to local denial of service with no additional execution privileges needed
Out-of-bounds read in the Intel(R) Trace Analyzer and Collector before version 2021.5 may allow an authenticated user to potentially enable denial of service via local access.
In the Linux kernel, the following vulnerability has been resolved: usb: typec: tipd: Remove WARN_ON in tps6598x_block_read Calling tps6598x_block_read with a higher than allowed len can be handled by just returning an error. There's no need to crash systems with panic-on-warn enabled.
In the Linux kernel, the following vulnerability has been resolved: net: stmmac: dwmac-rk: fix oob read in rk_gmac_setup KASAN reports an out-of-bounds read in rk_gmac_setup on the line: while (ops->regs[i]) { This happens for most platforms since the regs flexible array member is empty, so the memory after the ops structure is being read here. It seems that mostly this happens to contain zero anyway, so we get lucky and everything still works. To avoid adding redundant data to nearly all the ops structures, add a new flag to indicate whether the regs field is valid and avoid this loop when it is not.
A memory out-of-bounds read flaw was found in the Linux kernel before 5.9-rc2 with the ext3/ext4 file system, in the way it accesses a directory with broken indexing. This flaw allows a local user to crash the system if the directory exists. The highest threat from this vulnerability is to system availability.
A denial of service vulnerability exists in the D3DKMTEscape handler functionality of AMD ATIKMDAG.SYS (e.g. version 26.20.15029.27017). A specially crafted D3DKMTEscape API request can cause an out-of-bounds read in Windows OS kernel memory area. This vulnerability can be triggered from a non-privileged account.
A denial of service vulnerability exists in the D3DKMTCreateAllocation handler functionality of AMD ATIKMDAG.SYS (e.g. version 26.20.15029.27017). A specially crafted D3DKMTCreateAllocation API request can cause an out-of-bounds read and denial of service (BSOD). This vulnerability can be triggered from a non-privileged account.