Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). Supported versions that are affected are Prior to 5.2.44, prior to 6.0.24 and prior to 6.1.12. Difficult to exploit vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle VM VirtualBox accessible data. CVSS 3.1 Base Score 5.3 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:C/C:H/I:N/A:N).
Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). Supported versions that are affected are Prior to 5.2.44, prior to 6.0.24 and prior to 6.1.12. Difficult to exploit vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle VM VirtualBox accessible data. CVSS 3.1 Base Score 5.3 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:C/C:H/I:N/A:N).
Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). Supported versions that are affected are Prior to 5.2.44, prior to 6.0.24 and prior to 6.1.12. Difficult to exploit vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle VM VirtualBox accessible data. CVSS 3.1 Base Score 5.3 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:C/C:H/I:N/A:N).
Systems with microprocessors utilizing speculative execution and branch prediction may allow unauthorized disclosure of information to an attacker with local user access via a side-channel analysis.
Vulnerability in the PeopleSoft Enterprise PeopleTools component of Oracle PeopleSoft Products (subcomponent: Application Designer). Supported versions that are affected are 8.54 and 8.55. Difficult to exploit vulnerability allows low privileged attacker with logon to the infrastructure where PeopleSoft Enterprise PeopleTools executes to compromise PeopleSoft Enterprise PeopleTools. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all PeopleSoft Enterprise PeopleTools accessible data. CVSS 3.0 Base Score 4.7 (Confidentiality impacts). CVSS Vector: (CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:N).
A backporting error was discovered in the Linux stable/longterm kernel 4.4.x through 4.4.190, 4.9.x through 4.9.190, 4.14.x through 4.14.141, 4.19.x through 4.19.69, and 5.2.x through 5.2.11. Misuse of the upstream "x86/ptrace: Fix possible spectre-v1 in ptrace_get_debugreg()" commit reintroduced the Spectre vulnerability that it aimed to eliminate. This occurred because the backport process depends on cherry picking specific commits, and because two (correctly ordered) code lines were swapped.
Systems with microprocessors utilizing speculative execution and branch prediction may allow unauthorized disclosure of information to an attacker with local user access via a speculative buffer overflow and side-channel analysis.
Unspecified vulnerability in the Oracle Agile Product Lifecycle Management for Process component in Oracle Supply Chain Products Suite 6.1.0.4, 6.1.1.6, and 6.2.0.0 allows local users to affect confidentiality via vectors related to Supplier Portal.
Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). Supported versions that are affected are Prior to 5.2.36, prior to 6.0.16 and prior to 6.1.2. Difficult to exploit vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle VM VirtualBox accessible data. CVSS 3.0 Base Score 5.3 (Confidentiality impacts). CVSS Vector: (CVSS:3.0/AV:L/AC:H/PR:H/UI:N/S:C/C:H/I:N/A:N).
Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). Supported versions that are affected are Prior to 5.2.44, prior to 6.0.24 and prior to 6.1.12. Difficult to exploit vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle VM VirtualBox accessible data. CVSS 3.1 Base Score 5.3 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:C/C:H/I:N/A:N).
Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). Supported versions that are affected are Prior to 5.2.44, prior to 6.0.24 and prior to 6.1.12. Difficult to exploit vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle VM VirtualBox accessible data. CVSS 3.1 Base Score 5.3 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:C/C:H/I:N/A:N).
Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). Supported versions that are affected are Prior to 5.2.44, prior to 6.0.24 and prior to 6.1.12. Difficult to exploit vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle VM VirtualBox accessible data. CVSS 3.1 Base Score 5.3 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:C/C:H/I:N/A:N).
kernel/bpf/verifier.c in the Linux kernel before 4.20.6 performs undesirable out-of-bounds speculation on pointer arithmetic in various cases, including cases of different branches with different state or limits to sanitize, leading to side-channel attacks.
Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). The supported version that is affected is Prior to 6.1.20. Difficult to exploit vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle VM VirtualBox accessible data. CVSS 3.1 Base Score 5.3 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:C/C:H/I:N/A:N).
Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). The supported version that is affected is Prior to 6.1.20. Difficult to exploit vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle VM VirtualBox accessible data. CVSS 3.1 Base Score 5.3 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:C/C:H/I:N/A:N).
The HTTP strict parsing changes added in Apache httpd 2.2.32 and 2.4.24 introduced a bug in token list parsing, which allows ap_find_token() to search past the end of its input string. By maliciously crafting a sequence of request headers, an attacker may be able to cause a segmentation fault, or to force ap_find_token() to return an incorrect value.
The stream reading functions in lib/opencdk/read-packet.c in GnuTLS before 3.3.26 and 3.5.x before 3.5.8 allow remote attackers to cause a denial of service (out-of-memory error and crash) via a crafted OpenPGP certificate.
libcurl versions from 7.34.0 to before 7.64.0 are vulnerable to a heap out-of-bounds read in the code handling the end-of-response for SMTP. If the buffer passed to `smtp_endofresp()` isn't NUL terminated and contains no character ending the parsed number, and `len` is set to 5, then the `strtol()` call reads beyond the allocated buffer. The read contents will not be returned to the caller.
Lack of correct bounds checking in Skia in Google Chrome prior to 73.0.3683.75 allowed a remote attacker to perform an out of bounds memory read via a crafted HTML page.
An issue was discovered in the Linux kernel before 5.14.15. There is an array-index-out-of-bounds flaw in the detach_capi_ctr function in drivers/isdn/capi/kcapi.c.
Crash in the pcapng file parser in Wireshark 3.6.0 allows denial of service via crafted capture file
Object lifecycle issue in SwiftShader in Google Chrome prior to 75.0.3770.80 allowed a remote attacker to potentially perform out of bounds memory access via a crafted HTML page.
repodata_schema2id in repodata.c in libsolv before 0.7.6 has a heap-based buffer over-read via a last schema whose length is less than the length of the input schema.
Inappropriate optimization in V8 in Google Chrome prior to 73.0.3683.75 allowed a remote attacker to perform an out of bounds memory read via a crafted HTML page.
Crash in the Sysdig Event dissector in Wireshark 3.6.0 and 3.4.0 to 3.4.10 allows denial of service via packet injection or crafted capture file
vim is vulnerable to Out-of-bounds Read
A local privilege escalation vulnerability was found on polkit's pkexec utility. The pkexec application is a setuid tool designed to allow unprivileged users to run commands as privileged users according predefined policies. The current version of pkexec doesn't handle the calling parameters count correctly and ends trying to execute environment variables as commands. An attacker can leverage this by crafting environment variables in such a way it'll induce pkexec to execute arbitrary code. When successfully executed the attack can cause a local privilege escalation given unprivileged users administrative rights on the target machine.
libfreerdp/gdi/gdi.c in FreeRDP > 1.0 through 2.0.0-rc4 has an Out-of-bounds Read.
An issue was discovered in OpenEXR before 2.4.1. There is an off-by-one error in use of the ImfXdr.h read function by DwaCompressor::Classifier::Classifier, leading to an out-of-bounds read.
An out of bounds read flaw was discovered in libssh2 before 1.8.1 in the _libssh2_packet_require and _libssh2_packet_requirev functions. A remote attacker who compromises a SSH server may be able to cause a Denial of Service or read data in the client memory.
Skia, as used in Google Chrome before 23.0.1271.91, allows remote attackers to cause a denial of service (out-of-bounds read) via unspecified vectors.
ASN.1 strings are represented internally within OpenSSL as an ASN1_STRING structure which contains a buffer holding the string data and a field holding the buffer length. This contrasts with normal C strings which are repesented as a buffer for the string data which is terminated with a NUL (0) byte. Although not a strict requirement, ASN.1 strings that are parsed using OpenSSL's own "d2i" functions (and other similar parsing functions) as well as any string whose value has been set with the ASN1_STRING_set() function will additionally NUL terminate the byte array in the ASN1_STRING structure. However, it is possible for applications to directly construct valid ASN1_STRING structures which do not NUL terminate the byte array by directly setting the "data" and "length" fields in the ASN1_STRING array. This can also happen by using the ASN1_STRING_set0() function. Numerous OpenSSL functions that print ASN.1 data have been found to assume that the ASN1_STRING byte array will be NUL terminated, even though this is not guaranteed for strings that have been directly constructed. Where an application requests an ASN.1 structure to be printed, and where that ASN.1 structure contains ASN1_STRINGs that have been directly constructed by the application without NUL terminating the "data" field, then a read buffer overrun can occur. The same thing can also occur during name constraints processing of certificates (for example if a certificate has been directly constructed by the application instead of loading it via the OpenSSL parsing functions, and the certificate contains non NUL terminated ASN1_STRING structures). It can also occur in the X509_get1_email(), X509_REQ_get1_email() and X509_get1_ocsp() functions. If a malicious actor can cause an application to directly construct an ASN1_STRING and then process it through one of the affected OpenSSL functions then this issue could be hit. This might result in a crash (causing a Denial of Service attack). It could also result in the disclosure of private memory contents (such as private keys, or sensitive plaintext). Fixed in OpenSSL 1.1.1l (Affected 1.1.1-1.1.1k). Fixed in OpenSSL 1.0.2za (Affected 1.0.2-1.0.2y).
An out of bounds read flaw was discovered in libssh2 before 1.8.1 when a specially crafted SFTP packet is received from the server. A remote attacker who compromises a SSH server may be able to cause a Denial of Service or read data in the client memory.
The VerticalFilter function in the DDS coder in ImageMagick before 6.9.4-3 and 7.x before 7.0.1-4 allows remote attackers to have unspecified impact via a crafted DDS file, which triggers an out-of-bounds read.
An out of bounds read flaw was discovered in libssh2 before 1.8.1 in the way SSH packets with a padding length value greater than the packet length are parsed. A remote attacker who compromises a SSH server may be able to cause a Denial of Service or read data in the client memory.
A carefully crafted request uri-path can cause mod_proxy_uwsgi to read above the allocated memory and crash (DoS). This issue affects Apache HTTP Server versions 2.4.30 to 2.4.48 (inclusive).
An out-of-bounds array read in the apr_time_exp*() functions was fixed in the Apache Portable Runtime 1.6.3 release (CVE-2017-12613). The fix for this issue was not carried forward to the APR 1.7.x branch, and hence version 1.7.0 regressed compared to 1.6.3 and is vulnerable to the same issue.
Redis is an open source, in-memory database that persists on disk. When using the Redis Lua Debugger, users can send malformed requests that cause the debugger’s protocol parser to read data beyond the actual buffer. This issue affects all versions of Redis with Lua debugging support (3.2 or newer). The problem is fixed in versions 6.2.6, 6.0.16 and 5.0.14.
An out of bounds read flaw was discovered in libssh2 before 1.8.1 in the way SFTP packets with empty payloads are parsed. A remote attacker who compromises a SSH server may be able to cause a Denial of Service or read data in the client memory.
The Array.prototype.concat implementation in builtins.cc in Google V8, as used in Google Chrome before 49.0.2623.108, does not properly consider element data types, which allows remote attackers to cause a denial of service (out-of-bounds read) or possibly have unspecified other impact via crafted JavaScript code.
An out of bounds read flaw was discovered in libssh2 before 1.8.1 in the way SSH_MSG_CHANNEL_REQUEST packets with an exit status message and no payload are parsed. A remote attacker who compromises a SSH server may be able to cause a Denial of Service or read data in the client memory.
Vulnerability in the Oracle Installed Base product of Oracle E-Business Suite (component: HTML UI). Supported versions that are affected are 12.2.3-12.2.13. Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise Oracle Installed Base. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Oracle Installed Base, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Installed Base accessible data as well as unauthorized read access to a subset of Oracle Installed Base accessible data. CVSS 3.1 Base Score 6.1 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N).
Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). Supported versions that are affected are Prior to 7.0.20. Difficult to exploit vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in unauthorized read access to a subset of Oracle VM VirtualBox accessible data. CVSS 3.1 Base Score 2.5 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:C/C:L/I:N/A:N).
Vulnerability in the Oracle Business Intelligence Enterprise Edition product of Oracle Analytics (component: Data Visualization). The supported version that is affected is 7.0.0.0.0. Easily exploitable vulnerability allows low privileged attacker with network access via HTTP to compromise Oracle Business Intelligence Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized read access to a subset of Oracle Business Intelligence Enterprise Edition accessible data. CVSS 3.1 Base Score 4.3 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N).
QEMU, through version 2.10 and through version 3.1.0, is vulnerable to an out-of-bounds read of up to 128 bytes in the hw/i2c/i2c-ddc.c:i2c_ddc() function. A local attacker with permission to execute i2c commands could exploit this to read stack memory of the qemu process on the host.
GNU LibreDWG 0.9.3.2564 has a heap-based buffer over-read in bit_search_sentinel in bits.c.
In PHP versions 7.2.x below 7.2.9, 7.3.x below 7.3.16 and 7.4.x below 7.4.4, while parsing EXIF data with exif_read_data() function, it is possible for malicious data to cause PHP to read one byte of uninitialized memory. This could potentially lead to information disclosure or crash.
GNU LibreDWG 0.9.3.2564 has a heap-based buffer over-read in copy_compressed_bytes in decode_r2007.c.
Inappropriate implementation in developer tools in Google Chrome prior to 81.0.4044.92 allowed a remote attacker who had convinced the user to use devtools to potentially exploit heap corruption via a crafted HTML page.
In Wireshark 3.2.x before 3.2.1, the WASSP dissector could crash. This was addressed in epan/dissectors/packet-wassp.c by using >= and <= to resolve off-by-one errors.