An Incorrect Default Permissions vulnerability in saphanabootstrap-formula of SUSE Linux Enterprise Module for SAP Applications 15-SP1, SUSE Linux Enterprise Server for SAP 12-SP5; openSUSE Leap 15.4 allows local attackers to escalate to root by manipulating the sudo configuration that is created. This issue affects: SUSE Linux Enterprise Module for SAP Applications 15-SP1 saphanabootstrap-formula versions prior to 0.13.1+git.1667812208.4db963e. SUSE Linux Enterprise Server for SAP 12-SP5 saphanabootstrap-formula versions prior to 0.13.1+git.1667812208.4db963e. openSUSE Leap 15.4 saphanabootstrap-formula versions prior to 0.13.1+git.1667812208.4db963e.
qemu-dm.debug in Xen 3.2.1 allows local users to overwrite arbitrary files via a symlink attack on the /tmp/args temporary file.
i2myspell in myspell 3.1 allows local users to overwrite arbitrary files via a symlink attack on (1) /tmp/i2my#####.1 and (2) /tmp/i2my#####.2 temporary files.
migrate_aliases.sh in Citadel Server 7.37 allows local users to overwrite arbitrary files via a symlink attack on a temporary file.
NGINX Open Source before versions 1.23.2 and 1.22.1, NGINX Open Source Subscription before versions R2 P1 and R1 P1, and NGINX Plus before versions R27 P1 and R26 P1 have a vulnerability in the module ngx_http_mp4_module that might allow a local attacker to corrupt NGINX worker memory, resulting in its termination or potential other impact using a specially crafted audio or video file. The issue affects only NGINX products that are built with the ngx_http_mp4_module, when the mp4 directive is used in the configuration file. Further, the attack is possible only if an attacker can trigger processing of a specially crafted audio or video file with the module ngx_http_mp4_module.
Xenstore: Guests can get access to Xenstore nodes of deleted domains Access rights of Xenstore nodes are per domid. When a domain is gone, there might be Xenstore nodes left with access rights containing the domid of the removed domain. This is normally no problem, as those access right entries will be corrected when such a node is written later. There is a small time window when a new domain is created, where the access rights of a past domain with the same domid as the new one will be regarded to be still valid, leading to the new domain being able to get access to a node which was meant to be accessible by the removed domain. For this to happen another domain needs to write the node before the newly created domain is being introduced to Xenstore by dom0.
In the Linux kernel, pick_next_rt_entity() may return a type confused entry, not detected by the BUG_ON condition, as the confused entry will not be NULL, but list_head.The buggy error condition would lead to a type confused entry with the list head,which would then be used as a type confused sched_rt_entity,causing memory corruption.
test.sh in Honeyd 1.5c might allow local users to overwrite arbitrary files via a symlink attack on a temporary file.
sysstat is a set of system performance tools for the Linux operating system. On 32 bit systems, in versions 9.1.16 and newer but prior to 12.7.1, allocate_structures contains a size_t overflow in sa_common.c. The allocate_structures function insufficiently checks bounds before arithmetic multiplication, allowing for an overflow in the size allocated for the buffer representing system activities. This issue may lead to Remote Code Execution (RCE). This issue has been patched in version 12.7.1.
Redis is an in-memory database that persists on disk. Versions 7.0.0 and above, prior to 7.0.5 are vulnerable to an Integer Overflow. Executing an `XAUTOCLAIM` command on a stream key in a specific state, with a specially crafted `COUNT` argument may cause an integer overflow, a subsequent heap overflow, and potentially lead to remote code execution. This has been patched in Redis version 7.0.5. No known workarounds exist.
The mkdumprd script called "dracut" in the current working directory "." allows local users to trick the administrator into executing code as root.
The fork implementation in the Linux kernel before 4.5 on s390 platforms mishandles the case of four page-table levels, which allows local users to cause a denial of service (system crash) or possibly have unspecified other impact via a crafted application, related to arch/s390/include/asm/mmu_context.h and arch/s390/include/asm/pgalloc.h.
snapd 2.54.2 did not properly validate the location of the snap-confine binary. A local attacker who can hardlink this binary to another location to cause snap-confine to execute other arbitrary binaries and hence gain privilege escalation. Fixed in snapd versions 2.54.3+18.04, 2.54.3+20.04 and 2.54.3+21.10.1
The decode_data function in drivers/net/hamradio/6pack.c in the Linux kernel before 5.13.13 has a slab out-of-bounds write. Input from a process that has the CAP_NET_ADMIN capability can lead to root access.
sshd in OpenSSH 6.2 through 8.x before 8.8, when certain non-default configurations are used, allows privilege escalation because supplemental groups are not initialized as expected. Helper programs for AuthorizedKeysCommand and AuthorizedPrincipalsCommand may run with privileges associated with group memberships of the sshd process, if the configuration specifies running the command as a different user.
A crafted NTFS image can cause an out-of-bounds read in ntfs_ie_lookup in NTFS-3G < 2021.8.22.
A heap out-of-bounds write vulnerability in the Linux kernel's Performance Events system component can be exploited to achieve local privilege escalation. A perf_event's read_size can overflow, leading to an heap out-of-bounds increment or write in perf_read_group(). We recommend upgrading past commit 382c27f4ed28f803b1f1473ac2d8db0afc795a1b.
A crafted NTFS image can cause an out-of-bounds access in ntfs_inode_sync_standard_information in NTFS-3G < 2021.8.22.
A crafted NTFS image can cause a heap-based buffer overflow in ntfs_compressed_pwrite in NTFS-3G < 2021.8.22.
The pit_ioport_read in i8254.c in the Linux kernel before 2.6.33 and QEMU before 2.3.1 does not distinguish between read lengths and write lengths, which might allow guest OS users to execute arbitrary code on the host OS by triggering use of an invalid index.
The prepend_path function in fs/dcache.c in the Linux kernel before 4.2.4 does not properly handle rename actions inside a bind mount, which allows local users to bypass an intended container protection mechanism by renaming a directory, related to a "double-chroot attack."
A null pointer dereference flaw was found in the nft_inner.c functionality of netfilter in the Linux kernel. This issue could allow a local user to crash the system or escalate their privileges on the system.
Stack-based buffer overflow in the get_matching_model_microcode function in arch/x86/kernel/cpu/microcode/intel_early.c in the Linux kernel before 4.0 allows context-dependent attackers to gain privileges by constructing a crafted microcode header and leveraging root privileges for write access to the initrd.
In NTFS-3G versions < 2021.8.22, when a specially crafted NTFS inode is loaded in the function ntfs_inode_real_open, a heap buffer overflow can occur allowing for code execution and escalation of privileges.
In NTFS-3G versions < 2021.8.22, when a specially crafted NTFS inode pathname is supplied in an NTFS image a heap buffer overflow can occur resulting in memory disclosure, denial of service and even code execution.
OpenSSH through 9.6, when common types of DRAM are used, might allow row hammer attacks (for authentication bypass) because the integer value of authenticated in mm_answer_authpassword does not resist flips of a single bit. NOTE: this is applicable to a certain threat model of attacker-victim co-location in which the attacker has user privileges.
kernel/module.c in the Linux kernel before 5.12.14 mishandles Signature Verification, aka CID-0c18f29aae7c. Without CONFIG_MODULE_SIG, verification that a kernel module is signed, for loading via init_module, does not occur for a module.sig_enforce=1 command-line argument.
NTFS-3G versions < 2021.8.22, when a specially crafted NTFS attribute from the MFT is setup in the function ntfs_attr_setup_flag, a heap buffer overflow can occur allowing for code execution and escalation of privileges.
In NTFS-3G versions < 2021.8.22, when specially crafted NTFS attributes are read in the function ntfs_attr_pread_i, a heap buffer overflow can occur and allow for writing to arbitrary memory or denial of service of the application.
In NTFS-3G versions < 2021.8.22, when a specially crafted MFT section is supplied in an NTFS image a heap buffer overflow can occur and allow for code execution.
An issue was discovered in Xen through 4.12.x allowing attackers to gain host OS privileges via DMA in a situation where an untrusted domain has access to a physical device. This occurs because passed through PCI devices may corrupt host memory after deassignment. When a PCI device is assigned to an untrusted domain, it is possible for that domain to program the device to DMA to an arbitrary address. The IOMMU is used to protect the host from malicious DMA by making sure that the device addresses can only target memory assigned to the guest. However, when the guest domain is torn down, or the device is deassigned, the device is assigned back to dom0, thus allowing any in-flight DMA to potentially target critical host data. An untrusted domain with access to a physical device can DMA into host memory, leading to privilege escalation. Only systems where guests are given direct access to physical devices capable of DMA (PCI pass-through) are vulnerable. Systems which do not use PCI pass-through are not vulnerable.
It was found that cifs-utils' mount.cifs was invoking a shell when requesting the Samba password, which could be used to inject arbitrary commands. An attacker able to invoke mount.cifs with special permission, such as via sudo rules, could use this flaw to escalate their privileges.
In RDoc 3.11 through 6.x before 6.3.1, as distributed with Ruby through 3.0.1, it is possible to execute arbitrary code via | and tags in a filename.
The InfiniBand (IB) implementation in the Linux kernel package before 2.6.32-504.12.2 on Red Hat Enterprise Linux (RHEL) 6 does not properly restrict use of User Verbs for registration of memory regions, which allows local users to access arbitrary physical memory locations, and consequently cause a denial of service (system crash) or gain privileges, by leveraging permissions on a uverbs device under /dev/infiniband/.
PoD operations on misaligned GFNs T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] x86 HVM and PVH guests may be started in populate-on-demand (PoD) mode, to provide a way for them to later easily have more memory assigned. Guests are permitted to control certain P2M aspects of individual pages via hypercalls. These hypercalls may act on ranges of pages specified via page orders (resulting in a power-of-2 number of pages). The implementation of some of these hypercalls for PoD does not enforce the base page frame number to be suitably aligned for the specified order, yet some code involved in PoD handling actually makes such an assumption. These operations are XENMEM_decrease_reservation (CVE-2021-28704) and XENMEM_populate_physmap (CVE-2021-28707), the latter usable only by domains controlling the guest, i.e. a de-privileged qemu or a stub domain. (Patch 1, combining the fix to both these two issues.) In addition handling of XENMEM_decrease_reservation can also trigger a host crash when the specified page order is neither 4k nor 2M nor 1G (CVE-2021-28708, patch 2).
A flaw was found in dpdk in versions before 18.11.10 and before 19.11.5. A lack of bounds checking when copying iv_data from the VM guest memory into host memory can lead to a large buffer overflow. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability.
certain VT-d IOMMUs may not work in shared page table mode For efficiency reasons, address translation control structures (page tables) may (and, on suitable hardware, by default will) be shared between CPUs, for second-level translation (EPT), and IOMMUs. These page tables are presently set up to always be 4 levels deep. However, an IOMMU may require the use of just 3 page table levels. In such a configuration the lop level table needs to be stripped before inserting the root table's address into the hardware pagetable base register. When sharing page tables, Xen erroneously skipped this stripping. Consequently, the guest is able to write to leaf page table entries.
Multiple untrusted search path vulnerabilities in updater.exe in Mozilla Firefox before 36.0, Firefox ESR 31.x before 31.5, and Thunderbird before 31.5 on Windows, when the Maintenance Service is not used, allow local users to gain privileges via a Trojan horse DLL in (1) the current working directory or (2) a temporary directory, as demonstrated by bcrypt.dll.
PoD operations on misaligned GFNs T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] x86 HVM and PVH guests may be started in populate-on-demand (PoD) mode, to provide a way for them to later easily have more memory assigned. Guests are permitted to control certain P2M aspects of individual pages via hypercalls. These hypercalls may act on ranges of pages specified via page orders (resulting in a power-of-2 number of pages). The implementation of some of these hypercalls for PoD does not enforce the base page frame number to be suitably aligned for the specified order, yet some code involved in PoD handling actually makes such an assumption. These operations are XENMEM_decrease_reservation (CVE-2021-28704) and XENMEM_populate_physmap (CVE-2021-28707), the latter usable only by domains controlling the guest, i.e. a de-privileged qemu or a stub domain. (Patch 1, combining the fix to both these two issues.) In addition handling of XENMEM_decrease_reservation can also trigger a host crash when the specified page order is neither 4k nor 2M nor 1G (CVE-2021-28708, patch 2).
Firejail before 0.9.64.4 allows attackers to bypass intended access restrictions because there is a TOCTOU race condition between a stat operation and an OverlayFS mount operation.
libffi requests an executable stack allowing attackers to more easily trigger arbitrary code execution by overwriting the stack. Please note that libffi is used by a number of other libraries. It was previously stated that this affects libffi version 3.2.1 but this appears to be incorrect. libffi prior to version 3.1 on 32 bit x86 systems was vulnerable, and upstream is believed to have fixed this issue in version 3.1.
A vulnerability was found in perl 5.30.0 through 5.38.0. This issue occurs when a crafted regular expression is compiled by perl, which can allow an attacker controlled byte buffer overflow in a heap allocated buffer.
An issue was discovered in xenoprof in Xen through 4.13.x, allowing guest OS users (with active profiling) to obtain sensitive information about other guests, cause a denial of service, or possibly gain privileges. For guests for which "active" profiling was enabled by the administrator, the xenoprof code uses the standard Xen shared ring structure. Unfortunately, this code did not treat the guest as a potential adversary: it trusts the guest not to modify buffer size information or modify head / tail pointers in unexpected ways. This can crash the host (DoS). Privilege escalation cannot be ruled out.
The PPPoL2TP feature in net/l2tp/l2tp_ppp.c in the Linux kernel through 3.15.6 allows local users to gain privileges by leveraging data-structure differences between an l2tp socket and an inet socket.
When Apache Tomcat 9.0.0.M1 to 9.0.28, 8.5.0 to 8.5.47, 7.0.0 and 7.0.97 is configured with the JMX Remote Lifecycle Listener, a local attacker without access to the Tomcat process or configuration files is able to manipulate the RMI registry to perform a man-in-the-middle attack to capture user names and passwords used to access the JMX interface. The attacker can then use these credentials to access the JMX interface and gain complete control over the Tomcat instance.
A double free bug in packet_set_ring() in net/packet/af_packet.c can be exploited by a local user through crafted syscalls to escalate privileges or deny service. We recommend upgrading kernel past the effected versions or rebuilding past ec6af094ea28f0f2dda1a6a33b14cd57e36a9755
In PHP versions 7.3.x up to and including 7.3.31, 7.4.x below 7.4.25 and 8.0.x below 8.0.12, when running PHP FPM SAPI with main FPM daemon process running as root and child worker processes running as lower-privileged users, it is possible for the child processes to access memory shared with the main process and write to it, modifying it in a way that would cause the root process to conduct invalid memory reads and writes, which can be used to escalate privileges from local unprivileged user to the root user.
A flaw was found in the Linux Kernel in versions after 4.5-rc1 in the way mremap handled DAX Huge Pages. This flaw allows a local attacker with access to a DAX enabled storage to escalate their privileges on the system.
maintenservice_installer.exe in the Maintenance Service Installer in Mozilla Firefox before 29.0 and Firefox ESR 24.x before 24.5 on Windows allows local users to gain privileges by placing a Trojan horse DLL file into a temporary directory at an unspecified point in the update process.
UNIX Symbolic Link (Symlink) Following vulnerability in the cronjob shipped with nagios of SUSE Linux Enterprise Server 12, SUSE Linux Enterprise Server 11; openSUSE Factory allows local attackers to cause cause DoS or potentially escalate privileges by winning a race. This issue affects: SUSE Linux Enterprise Server 12 nagios version 3.5.1-5.27 and prior versions. SUSE Linux Enterprise Server 11 nagios version 3.0.6-1.25.36.3.1 and prior versions. openSUSE Factory nagios version 4.4.5-2.1 and prior versions.