The udl_fb_mmap function in drivers/gpu/drm/udl/udl_fb.c at the Linux kernel version 3.4 and up to and including 4.15 has an integer-overflow vulnerability allowing local users with access to the udldrmfb driver to obtain full read and write permissions on kernel physical pages, resulting in a code execution in kernel space.
Integer overflow in the oom_badness function in mm/oom_kill.c in the Linux kernel before 3.1.8 on 64-bit platforms allows local users to cause a denial of service (memory consumption or process termination) by using a certain large amount of memory.
In the Linux kernel, the following vulnerability has been resolved: wifi: nl80211: fix integer overflow in nl80211_parse_mbssid_elems() nl80211_parse_mbssid_elems() uses a u8 variable num_elems to count the number of MBSSID elements in the nested netlink attribute attrs, which can lead to an integer overflow if a user of the nl80211 interface specifies 256 or more elements in the corresponding attribute in userspace. The integer overflow can lead to a heap buffer overflow as num_elems determines the size of the trailing array in elems, and this array is thereafter written to for each element in attrs. Note that this vulnerability only affects devices with the wiphy->mbssid_max_interfaces member set for the wireless physical device struct in the device driver, and can only be triggered by a process with CAP_NET_ADMIN capabilities. Fix this by checking for a maximum of 255 elements in attrs.
In the Linux kernel, the following vulnerability has been resolved: drm/xe/xe_migrate: Cast to output precision before multiplying operands Addressing potential overflow in result of multiplication of two lower precision (u32) operands before widening it to higher precision (u64). -v2 Fix commit message and description. (Rodrigo) (cherry picked from commit 34820967ae7b45411f8f4f737c2d63b0c608e0d7)
Integer overflow in libpng, as used in Google Chrome before 17.0.963.56, allows remote attackers to cause a denial of service or possibly have unspecified other impact via unknown vectors that trigger an integer truncation.
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: L2CAP: Fix div-by-zero in l2cap_le_flowctl_init() l2cap_le_flowctl_init() can cause both div-by-zero and an integer overflow since hdev->le_mtu may not fall in the valid range. Move MTU from hci_dev to hci_conn to validate MTU and stop the connection process earlier if MTU is invalid. Also, add a missing validation in read_buffer_size() and make it return an error value if the validation fails. Now hci_conn_add() returns ERR_PTR() as it can fail due to the both a kzalloc failure and invalid MTU value. divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI CPU: 0 PID: 67 Comm: kworker/u5:0 Tainted: G W 6.9.0-rc5+ #20 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Workqueue: hci0 hci_rx_work RIP: 0010:l2cap_le_flowctl_init+0x19e/0x3f0 net/bluetooth/l2cap_core.c:547 Code: e8 17 17 0c 00 66 41 89 9f 84 00 00 00 bf 01 00 00 00 41 b8 02 00 00 00 4c 89 fe 4c 89 e2 89 d9 e8 27 17 0c 00 44 89 f0 31 d2 <66> f7 f3 89 c3 ff c3 4d 8d b7 88 00 00 00 4c 89 f0 48 c1 e8 03 42 RSP: 0018:ffff88810bc0f858 EFLAGS: 00010246 RAX: 00000000000002a0 RBX: 0000000000000000 RCX: dffffc0000000000 RDX: 0000000000000000 RSI: ffff88810bc0f7c0 RDI: ffffc90002dcb66f RBP: ffff88810bc0f880 R08: aa69db2dda70ff01 R09: 0000ffaaaaaaaaaa R10: 0084000000ffaaaa R11: 0000000000000000 R12: ffff88810d65a084 R13: dffffc0000000000 R14: 00000000000002a0 R15: ffff88810d65a000 FS: 0000000000000000(0000) GS:ffff88811ac00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020000100 CR3: 0000000103268003 CR4: 0000000000770ef0 PKRU: 55555554 Call Trace: <TASK> l2cap_le_connect_req net/bluetooth/l2cap_core.c:4902 [inline] l2cap_le_sig_cmd net/bluetooth/l2cap_core.c:5420 [inline] l2cap_le_sig_channel net/bluetooth/l2cap_core.c:5486 [inline] l2cap_recv_frame+0xe59d/0x11710 net/bluetooth/l2cap_core.c:6809 l2cap_recv_acldata+0x544/0x10a0 net/bluetooth/l2cap_core.c:7506 hci_acldata_packet net/bluetooth/hci_core.c:3939 [inline] hci_rx_work+0x5e5/0xb20 net/bluetooth/hci_core.c:4176 process_one_work kernel/workqueue.c:3254 [inline] process_scheduled_works+0x90f/0x1530 kernel/workqueue.c:3335 worker_thread+0x926/0xe70 kernel/workqueue.c:3416 kthread+0x2e3/0x380 kernel/kthread.c:388 ret_from_fork+0x5c/0x90 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 </TASK> Modules linked in: ---[ end trace 0000000000000000 ]---
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix shift-out-of-bounds in dctcp_update_alpha(). In dctcp_update_alpha(), we use a module parameter dctcp_shift_g as follows: alpha -= min_not_zero(alpha, alpha >> dctcp_shift_g); ... delivered_ce <<= (10 - dctcp_shift_g); It seems syzkaller started fuzzing module parameters and triggered shift-out-of-bounds [0] by setting 100 to dctcp_shift_g: memcpy((void*)0x20000080, "/sys/module/tcp_dctcp/parameters/dctcp_shift_g\000", 47); res = syscall(__NR_openat, /*fd=*/0xffffffffffffff9cul, /*file=*/0x20000080ul, /*flags=*/2ul, /*mode=*/0ul); memcpy((void*)0x20000000, "100\000", 4); syscall(__NR_write, /*fd=*/r[0], /*val=*/0x20000000ul, /*len=*/4ul); Let's limit the max value of dctcp_shift_g by param_set_uint_minmax(). With this patch: # echo 10 > /sys/module/tcp_dctcp/parameters/dctcp_shift_g # cat /sys/module/tcp_dctcp/parameters/dctcp_shift_g 10 # echo 11 > /sys/module/tcp_dctcp/parameters/dctcp_shift_g -bash: echo: write error: Invalid argument [0]: UBSAN: shift-out-of-bounds in net/ipv4/tcp_dctcp.c:143:12 shift exponent 100 is too large for 32-bit type 'u32' (aka 'unsigned int') CPU: 0 PID: 8083 Comm: syz-executor345 Not tainted 6.9.0-05151-g1b294a1f3561 #2 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x201/0x300 lib/dump_stack.c:114 ubsan_epilogue lib/ubsan.c:231 [inline] __ubsan_handle_shift_out_of_bounds+0x346/0x3a0 lib/ubsan.c:468 dctcp_update_alpha+0x540/0x570 net/ipv4/tcp_dctcp.c:143 tcp_in_ack_event net/ipv4/tcp_input.c:3802 [inline] tcp_ack+0x17b1/0x3bc0 net/ipv4/tcp_input.c:3948 tcp_rcv_state_process+0x57a/0x2290 net/ipv4/tcp_input.c:6711 tcp_v4_do_rcv+0x764/0xc40 net/ipv4/tcp_ipv4.c:1937 sk_backlog_rcv include/net/sock.h:1106 [inline] __release_sock+0x20f/0x350 net/core/sock.c:2983 release_sock+0x61/0x1f0 net/core/sock.c:3549 mptcp_subflow_shutdown+0x3d0/0x620 net/mptcp/protocol.c:2907 mptcp_check_send_data_fin+0x225/0x410 net/mptcp/protocol.c:2976 __mptcp_close+0x238/0xad0 net/mptcp/protocol.c:3072 mptcp_close+0x2a/0x1a0 net/mptcp/protocol.c:3127 inet_release+0x190/0x1f0 net/ipv4/af_inet.c:437 __sock_release net/socket.c:659 [inline] sock_close+0xc0/0x240 net/socket.c:1421 __fput+0x41b/0x890 fs/file_table.c:422 task_work_run+0x23b/0x300 kernel/task_work.c:180 exit_task_work include/linux/task_work.h:38 [inline] do_exit+0x9c8/0x2540 kernel/exit.c:878 do_group_exit+0x201/0x2b0 kernel/exit.c:1027 __do_sys_exit_group kernel/exit.c:1038 [inline] __se_sys_exit_group kernel/exit.c:1036 [inline] __x64_sys_exit_group+0x3f/0x40 kernel/exit.c:1036 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xe4/0x240 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x67/0x6f RIP: 0033:0x7f6c2b5005b6 Code: Unable to access opcode bytes at 0x7f6c2b50058c. RSP: 002b:00007ffe883eb948 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7 RAX: ffffffffffffffda RBX: 00007f6c2b5862f0 RCX: 00007f6c2b5005b6 RDX: 0000000000000001 RSI: 000000000000003c RDI: 0000000000000001 RBP: 0000000000000001 R08: 00000000000000e7 R09: ffffffffffffffc0 R10: 0000000000000006 R11: 0000000000000246 R12: 00007f6c2b5862f0 R13: 0000000000000001 R14: 0000000000000000 R15: 0000000000000001 </TASK>
In the Linux kernel, the following vulnerability has been resolved: block: fix overflow in blk_ioctl_discard() There is no check for overflow of 'start + len' in blk_ioctl_discard(). Hung task occurs if submit an discard ioctl with the following param: start = 0x80000000000ff000, len = 0x8000000000fff000; Add the overflow validation now.
Multiple integer overflows in the next_pidmap function in kernel/pid.c in the Linux kernel before 2.6.38.4 allow local users to cause a denial of service (system crash) via a crafted (1) getdents or (2) readdir system call.
The futex_requeue function in kernel/futex.c in the Linux kernel before 4.14.15 might allow attackers to cause a denial of service (integer overflow) or possibly have unspecified other impact by triggering a negative wake or requeue value.
An integer overflow issue was addressed with improved input validation. This issue is fixed in tvOS 15.5, iTunes 12.12.4 for Windows, iOS 15.5 and iPadOS 15.5, watchOS 8.6, macOS Monterey 12.4. A remote attacker may be able to cause unexpected application termination or arbitrary code execution.
In the Linux kernel, the following vulnerability has been resolved: bnxt: avoid overflow in bnxt_get_nvram_directory() The value of an arithmetic expression is subject of possible overflow due to a failure to cast operands to a larger data type before performing arithmetic. Used macro for multiplication instead operator for avoiding overflow. Found by Security Code and Linux Verification Center (linuxtesting.org) with SVACE.
VMware Workstation (15.x before 15.0.2 and 14.x before 14.1.5) and Fusion (11.x before 11.0.2 and 10.x before 10.1.5) contain an integer overflow vulnerability in the virtual network devices. This issue may allow a guest to execute code on the host.
In the Linux kernel, the following vulnerability has been resolved: drm/radeon: Fix integer overflow in radeon_cs_parser_init The type of size is unsigned, if size is 0x40000000, there will be an integer overflow, size will be zero after size *= sizeof(uint32_t), will cause uninitialized memory to be referenced later
An Integer Overflow exists in WebKit in Google Chrome before Blink M11 in the macOS WebCore::GraphicsContext::fillRect function.
In the Linux kernel, the following vulnerability has been resolved: bpf: Guard stack limits against 32bit overflow This patch promotes the arithmetic around checking stack bounds to be done in the 64-bit domain, instead of the current 32bit. The arithmetic implies adding together a 64-bit register with a int offset. The register was checked to be below 1<<29 when it was variable, but not when it was fixed. The offset either comes from an instruction (in which case it is 16 bit), from another register (in which case the caller checked it to be below 1<<29 [1]), or from the size of an argument to a kfunc (in which case it can be a u32 [2]). Between the register being inconsistently checked to be below 1<<29, and the offset being up to an u32, it appears that we were open to overflowing the `int`s which were currently used for arithmetic. [1] https://github.com/torvalds/linux/blob/815fb87b753055df2d9e50f6cd80eb10235fe3e9/kernel/bpf/verifier.c#L7494-L7498 [2] https://github.com/torvalds/linux/blob/815fb87b753055df2d9e50f6cd80eb10235fe3e9/kernel/bpf/verifier.c#L11904
Adobe Flash Player versions 29.0.0.171 and earlier have an Integer Overflow vulnerability. Successful exploitation could lead to information disclosure.
In the Linux kernel, the following vulnerability has been resolved: netfilter: ipset: Fix overflow before widen in the bitmap_ip_create() function. When first_ip is 0, last_ip is 0xFFFFFFFF, and netmask is 31, the value of an arithmetic expression 2 << (netmask - mask_bits - 1) is subject to overflow due to a failure casting operands to a larger data type before performing the arithmetic. Note that it's harmless since the value will be checked at the next step. Found by InfoTeCS on behalf of Linux Verification Center (linuxtesting.org) with SVACE.
In the Linux kernel, the following vulnerability has been resolved: virtio-blk: fix implicit overflow on virtio_max_dma_size The following codes have an implicit conversion from size_t to u32: (u32)max_size = (size_t)virtio_max_dma_size(vdev); This may lead overflow, Ex (size_t)4G -> (u32)0. Once virtio_max_dma_size() has a larger size than U32_MAX, use U32_MAX instead.
Integer overflow in the SCTP_SOCKOPT_DEBUG_NAME SCTP socket option in socket.c in the Linux kernel 2.4.25 and earlier allows local users to execute arbitrary code via an optlen value of -1, which causes kmalloc to allocate 0 bytes of memory.
In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Fix coverity issue with unintentional integer overflow 1. Instead of multiplying 2 variable of different types. Change to assign a value of one variable and then multiply the other variable. 2. Add a int variable for multiplier calculation instead of calculating different types multiplier with dma_addr_t variable directly.
A heap-based buffer overflow vulnerability exists in the PDF parsing of Foxit PDF Reader when processing specially crafted JBIG2 data. An integer overflow in the calculation of the image buffer size may occur, potentially allowing a remote attacker to execute arbitrary code.
Substance3D - Stager versions 3.1.4 and earlier are affected by an Integer Overflow or Wraparound vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
Substance3D - Stager versions 3.1.4 and earlier are affected by an Integer Overflow or Wraparound vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
Dimension versions 4.1.4 and earlier are affected by an Integer Overflow or Wraparound vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
Adobe Acrobat and Reader versions 2019.012.20035 and earlier, 2019.012.20035 and earlier, 2017.011.30142 and earlier, 2017.011.30143 and earlier, 2015.006.30497 and earlier, and 2015.006.30498 and earlier have an integer overflow vulnerability. Successful exploitation could lead to information disclosure.
Multiple integer overflows in fs/bio.c in the Linux kernel before 2.6.36.2 allow local users to cause a denial of service (system crash) via a crafted device ioctl to a SCSI device.
Integer overflow in the ioc_general function in drivers/scsi/gdth.c in the Linux kernel before 2.6.36.1 on 64-bit platforms allows local users to cause a denial of service (memory corruption) or possibly have unspecified other impact via a large argument in an ioctl call.
Perl before 5.26.3 and 5.28.x before 5.28.1 has a buffer overflow via a crafted regular expression that triggers invalid write operations.
Adobe Acrobat and Reader versions 2019.010.20069 and earlier, 2019.010.20069 and earlier, 2017.011.30113 and earlier version, and 2015.006.30464 and earlier have an integer overflow vulnerability. Successful exploitation could lead to information disclosure.
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Ensure index calculation will not overflow [WHY & HOW] Make sure vmid0p72_idx, vnom0p8_idx and vmax0p9_idx calculation will never overflow and exceess array size. This fixes 3 OVERRUN and 1 INTEGER_OVERFLOW issues reported by Coverity.
Integer Overflow or Wraparound in GitHub repository vim/vim prior to 9.0.1846.
Illustrator versions 28.7.6, 29.5.1 and earlier are affected by an Integer Overflow or Wraparound vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
Adobe Acrobat and Reader versions 2019.008.20081 and earlier, 2019.008.20080 and earlier, 2019.008.20081 and earlier, 2017.011.30106 and earlier version, 2017.011.30105 and earlier version, 2015.006.30457 and earlier, and 2015.006.30456 and earlier have an integer overflow vulnerability. Successful exploitation could lead to information disclosure.
A numeric overflow in Skia in Google Chrome prior to 58.0.3029.81 for Linux, Windows, and Mac, and 58.0.3029.83 for Android, allowed a remote attacker to perform an out of bounds memory read via a crafted HTML page.
Adobe Acrobat and Reader versions 2019.008.20081 and earlier, 2019.008.20080 and earlier, 2019.008.20081 and earlier, 2017.011.30106 and earlier version, 2017.011.30105 and earlier version, 2015.006.30457 and earlier, and 2015.006.30456 and earlier have an integer overflow vulnerability. Successful exploitation could lead to information disclosure.
Adobe Acrobat and Reader versions 2019.008.20081 and earlier, 2019.008.20080 and earlier, 2019.008.20081 and earlier, 2017.011.30106 and earlier version, 2017.011.30105 and earlier version, 2015.006.30457 and earlier, and 2015.006.30456 and earlier have an integer overflow vulnerability. Successful exploitation could lead to information disclosure.
Adobe Acrobat and Reader versions 2019.008.20081 and earlier, 2019.008.20080 and earlier, 2019.008.20081 and earlier, 2017.011.30106 and earlier version, 2017.011.30105 and earlier version, 2015.006.30457 and earlier, and 2015.006.30456 and earlier have an integer overflow vulnerability. Successful exploitation could lead to information disclosure.
A program using swift-nio-http2 is vulnerable to a denial of service attack, caused by a network peer sending a specially crafted HPACK-encoded header block. This attack affects all swift-nio-http2 versions from 1.0.0 to 1.19.1. There are a number of implementation errors in the parsing of HPACK-encoded header blocks that allow maliciously crafted HPACK header blocks to cause crashes in processes using swift-nio-http2. Each of these crashes is triggered instead of an integer overflow. A malicious HPACK header block could be sent on any of the HPACK-carrying frames in a HTTP/2 connection (HEADERS and PUSH_PROMISE), at any position. Sending a HPACK header block does not require any special permission, so any HTTP/2 connection peer may send one. For clients, this means any server to which they connect may launch this attack. For servers, anyone they allow to connect to them may launch such an attack. The attack is low-effort: it takes very little resources to send an appropriately crafted field block. The impact on availability is high: receiving a frame carrying this field block immediately crashes the server, dropping all in-flight connections and causing the service to need to restart. It is straightforward for an attacker to repeatedly send appropriately crafted field blocks, so attackers require very few resources to achieve a substantial denial of service. The attack does not have any confidentiality or integrity risks in and of itself: swift-nio-http2 is parsing the field block in memory-safe code and the crash is triggered instead of an integer overflow. However, sudden process crashes can lead to violations of invariants in services, so it is possible that this attack can be used to trigger an error condition that has confidentiality or integrity risks. The risk can be mitigated if untrusted peers can be prevented from communicating with the service. This mitigation is not available to many services. The issue is fixed by rewriting the parsing code to correctly handle all conditions in the function. The principal issue was found by automated fuzzing by oss-fuzz, but several associated bugs in the same code were found by code audit and fixed at the same time
An integer overflow was addressed by adopting 64-bit timestamps. This issue is fixed in watchOS 26.2, macOS Sonoma 14.8.3, iOS 18.7.3 and iPadOS 18.7.3, iOS 26.2 and iPadOS 26.2, macOS Tahoe 26.2, macOS Sequoia 15.7.3, visionOS 26.2, tvOS 26.2. An app may be able to gain root privileges.
Animate versions 24.0.8, 23.0.11 and earlier are affected by an Integer Overflow or Wraparound vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
Integer overflow in the ethtool_get_rxnfc function in net/core/ethtool.c in the Linux kernel before 2.6.33.7 on 32-bit platforms allows local users to cause a denial of service or possibly have unspecified other impact via an ETHTOOL_GRXCLSRLALL ethtool command with a large info.rule_cnt value that triggers a buffer overflow, a different vulnerability than CVE-2010-3084.
If LimitXMLRequestBody is set to allow request bodies larger than 350MB (defaults to 1M) on 32 bit systems an integer overflow happens which later causes out of bounds writes. This issue affects Apache HTTP Server 2.4.52 and earlier.
Bridge versions 15.0.3, 14.1.6 and earlier are affected by an Integer Overflow or Wraparound vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
An integer overflow flaw was found in the Linux kernel's create_elf_tables() function. An unprivileged local user with access to SUID (or otherwise privileged) binary could use this flaw to escalate their privileges on the system. Kernel versions 2.6.x, 3.10.x and 4.14.x are believed to be vulnerable.
In the Linux kernel, the following vulnerability has been resolved: bpf: Check bloom filter map value size This patch adds a missing check to bloom filter creating, rejecting values above KMALLOC_MAX_SIZE. This brings the bloom map in line with many other map types. The lack of this protection can cause kernel crashes for value sizes that overflow int's. Such a crash was caught by syzkaller. The next patch adds more guard-rails at a lower level.
NVIDIA CUDA Toolkit SDK contains an integer overflow vulnerability in cuobjdump.To exploit this vulnerability, a remote attacker would require a local user to download a specially crafted, corrupted file and locally execute cuobjdump against the file. Such an attack may lead to remote code execution that causes complete denial of service and an impact on data confidentiality and integrity.
An integer overflow in the uvesafb_setcmap function in drivers/video/fbdev/uvesafb.c in the Linux kernel before 4.17.4 could result in local attackers being able to crash the kernel or potentially elevate privileges because kmalloc_array is not used.
In subtitle service, there is a possible application crash due to an integer overflow. This could lead to local denial of service with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: DTV03330673; Issue ID: DTV03330673.
In the Linux kernel, the following vulnerability has been resolved: fbcon: fix integer overflow in fbcon_do_set_font Fix integer overflow vulnerabilities in fbcon_do_set_font() where font size calculations could overflow when handling user-controlled font parameters. The vulnerabilities occur when: 1. CALC_FONTSZ(h, pitch, charcount) performs h * pith * charcount multiplication with user-controlled values that can overflow. 2. FONT_EXTRA_WORDS * sizeof(int) + size addition can also overflow 3. This results in smaller allocations than expected, leading to buffer overflows during font data copying. Add explicit overflow checking using check_mul_overflow() and check_add_overflow() kernel helpers to safety validate all size calculations before allocation.