If an application encounters a fatal protocol error and then calls SSL_shutdown() twice (once to send a close_notify, and once to receive one) then OpenSSL can respond differently to the calling application if a 0 byte record is received with invalid padding compared to if a 0 byte record is received with an invalid MAC. If the application then behaves differently based on that in a way that is detectable to the remote peer, then this amounts to a padding oracle that could be used to decrypt data. In order for this to be exploitable "non-stitched" ciphersuites must be in use. Stitched ciphersuites are optimised implementations of certain commonly used ciphersuites. Also the application must call SSL_shutdown() twice even if a protocol error has occurred (applications should not do this but some do anyway). Fixed in OpenSSL 1.0.2r (Affected 1.0.2-1.0.2q).
In BIG-IP versions 15.1.0-15.1.0.4, 15.0.0-15.0.1.3, 14.1.0-14.1.2.3, 13.1.0-13.1.3.4, 12.1.0-12.1.5.1, and 11.6.1-11.6.5.2 and BIG-IQ versions 5.2.0-7.0.0, the host OpenSSH servers utilize keys of less than 2048 bits which are no longer considered secure.
SSL virtual servers in F5 BIG-IP systems 10.x before 10.2.4 HF9, 11.x before 11.2.1 HF12, 11.3.0 before HF10, 11.4.0 before HF8, 11.4.1 before HF5, 11.5.0 before HF5, and 11.5.1 before HF5, when used with third-party Secure Sockets Layer (SSL) accelerator cards, might allow remote attackers to have unspecified impact via a timing side-channel attack.
The HTTPS protocol, as used in unspecified web applications, can encrypt compressed data without properly obfuscating the length of the unencrypted data, which makes it easier for man-in-the-middle attackers to obtain plaintext secret values by observing length differences during a series of guesses in which a string in an HTTP request URL potentially matches an unknown string in an HTTP response body, aka a "BREACH" attack, a different issue than CVE-2012-4929.
On BIG-IP versions 11.6.0-11.6.2 (fixed in 11.6.2 HF1), 12.0.0-12.1.2 HF1 (fixed in 12.1.2 HF2), or 13.0.0-13.0.0 HF2 (fixed in 13.0.0 HF3) a virtual server configured with a Client SSL profile may be vulnerable to an Adaptive Chosen Ciphertext attack (AKA Bleichenbacher attack) against RSA, which when exploited, may result in plaintext recovery of encrypted messages and/or a Man-in-the-middle (MiTM) attack, despite the attacker not having gained access to the server's private key itself, aka a ROBOT attack.
In BIG-IP 11.5.1-11.5.8 and 11.6.1-11.6.3, the Configuration Utility login page may not follow best security practices when handling a malicious request.
In BIG-IP 15.0.0, 14.1.0-14.1.0.6, 14.0.0-14.0.0.5, 13.0.0-13.1.1.5, 12.1.0-12.1.4.1, 11.5.1-11.6.4, BIG-IQ 7.0.0, 6.0.0-6.1.0,5.2.0-5.4.0, iWorkflow 2.3.0, and Enterprise Manager 3.1.1, the Configuration utility login page may not follow best security practices when handling a malicious request.
A weakness has been identified in JhumanJ OpnForm up to 1.9.3. This affects an unknown function of the file /api/password/email of the component Forgotten Password Handler. This manipulation causes information exposure through discrepancy. It is possible to initiate the attack remotely. The attack is considered to have high complexity. The exploitability is reported as difficult. The exploit has been made available to the public and could be exploited. This issue is currently aligned with Laravel issue #46465, which is why no mitigation action was taken.
A security flaw has been discovered in Portabilis i-Diario up to 1.5.0. Affected by this vulnerability is an unknown functionality of the file /password/email of the component Password Recovery Endpoint. The manipulation results in observable response discrepancy. It is possible to launch the attack remotely. This attack is characterized by high complexity. The exploitation appears to be difficult. The exploit has been released to the public and may be exploited.
The Realm implementations in Apache Tomcat versions 9.0.0.M1 to 9.0.0.M9, 8.5.0 to 8.5.4, 8.0.0.RC1 to 8.0.36, 7.0.0 to 7.0.70 and 6.0.0 to 6.0.45 did not process the supplied password if the supplied user name did not exist. This made a timing attack possible to determine valid user names. Note that the default configuration includes the LockOutRealm which makes exploitation of this vulnerability harder.
A vulnerability was found in Netadmin Software NetAdmin IAM up to 3.5 and classified as problematic. Affected by this issue is some unknown functionality of the file /controller/api/Answer/ReturnUserQuestionsFilled of the component HTTP POST Request Handler. The manipulation of the argument username leads to information exposure through discrepancy. The attack may be launched remotely. The complexity of an attack is rather high. The exploitation is known to be difficult. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure is planning to release a fix in mid-October 2024.
GnuTLS incorrectly validates the first byte of padding in CBC modes
mudler/localai version 2.17.1 is vulnerable to a Timing Attack. This type of side-channel attack allows an attacker to compromise the cryptosystem by analyzing the time taken to execute cryptographic algorithms. Specifically, in the context of password handling, an attacker can determine valid login credentials based on the server's response time, potentially leading to unauthorized access.
A vulnerability was found in nasirkhan Laravel Starter up to 11.8.0. It has been rated as problematic. Affected by this issue is some unknown functionality of the file /forgot-password of the component Password Reset Handler. The manipulation of the argument Email leads to observable response discrepancy. The attack may be launched remotely. The complexity of an attack is rather high. The exploitation is known to be difficult. The exploit has been disclosed to the public and may be used. The identifier of this vulnerability is VDB-268784. NOTE: The vendor was contacted early about this disclosure but did not respond in any way.
A vulnerability, which was classified as problematic, was found in spa-cartcms 1.9.0.6. Affected is an unknown function of the file /login of the component Username Handler. The manipulation of the argument email leads to observable behavioral discrepancy. It is possible to launch the attack remotely. The complexity of an attack is rather high. The exploitability is told to be difficult. The exploit has been disclosed to the public and may be used. The identifier of this vulnerability is VDB-268896.
The mpi_powm function in Libgcrypt before 1.6.3 and GnuPG before 1.4.19 allows attackers to obtain sensitive information by leveraging timing differences when accessing a pre-computed table during modular exponentiation, related to a "Last-Level Cache Side-Channel Attack."
jose-node-esm-runtime is an npm package which provides a number of cryptographic functions. In versions prior to 3.11.4 the AES_CBC_HMAC_SHA2 Algorithm (A128CBC-HS256, A192CBC-HS384, A256CBC-HS512) decryption would always execute both HMAC tag verification and CBC decryption, if either failed `JWEDecryptionFailed` would be thrown. But a possibly observable difference in timing when padding error would occur while decrypting the ciphertext makes a padding oracle and an adversary might be able to make use of that oracle to decrypt data without knowing the decryption key by issuing on average 128*b calls to the padding oracle (where b is the number of bytes in the ciphertext block). A patch was released which ensures the HMAC tag is verified before performing CBC decryption. The fixed versions are `>=3.11.4`. Users should upgrade to `^3.11.4`.
jose-node-cjs-runtime is an npm package which provides a number of cryptographic functions. In versions prior to 3.11.4 the AES_CBC_HMAC_SHA2 Algorithm (A128CBC-HS256, A192CBC-HS384, A256CBC-HS512) decryption would always execute both HMAC tag verification and CBC decryption, if either failed `JWEDecryptionFailed` would be thrown. But a possibly observable difference in timing when padding error would occur while decrypting the ciphertext makes a padding oracle and an adversary might be able to make use of that oracle to decrypt data without knowing the decryption key by issuing on average 128*b calls to the padding oracle (where b is the number of bytes in the ciphertext block). A patch was released which ensures the HMAC tag is verified before performing CBC decryption. The fixed versions are `>=3.11.4`. Users should upgrade to `^3.11.4`.
Theoretically, it would be possible for an attacker to brute-force the password for an instance in single-user password protection mode via a timing attack given the linear nature of the `!==` used for comparison. The risk is minified by the additional overhead of the request, which varies in a non-constant nature making the attack less reliable to execute
The WP 2FA WordPress plugin before 2.3.0 uses comparison operators that don't mitigate time-based attacks, which could be abused to leak information about the authentication codes being compared.
A security vulnerability has been identified in the cryptlib cryptographic library when cryptlib is compiled with the support for RSA key exchange ciphersuites in TLS (by setting the USE_RSA_SUITES define), it will be vulnerable to the timing variant of the Bleichenbacher attack. An attacker that is able to perform a large number of connections to the server will be able to decrypt RSA ciphertexts or forge signatures using server's certificate.
A vulnerability was found that the response times to malformed ciphertexts in RSA-PSK ClientKeyExchange differ from response times of ciphertexts with correct PKCS#1 v1.5 padding.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.1). An attacker in machine-in-the-middle could obtain plaintext secret values by observing length differences during a series of guesses in which a string in an HTTP request URL potentially matches an unknown string in an HTTP response body, aka a "BREACH" attack.
A vulnerability was found in OpenSC where PKCS#1 encryption padding removal is not implemented as side-channel resistant. This issue may result in the potential leak of private data.
Mattermost versions 9.8.x <= 9.8.0, 9.7.x <= 9.7.4, 9.6.x <= 9.6.2 and 9.5.x <= 9.5.5, when shared channels are enabled, fail to use constant time comparison for remote cluster tokens which allows an attacker to retrieve the remote cluster token via a timing attack during remote cluster token comparison.
wolfSSL SP Math All RSA implementation is vulnerable to the Marvin Attack, new variation of a timing Bleichenbacher style attack, when built with the following options to configure: --enable-all CFLAGS="-DWOLFSSL_STATIC_RSA" The define “WOLFSSL_STATIC_RSA” enables static RSA cipher suites, which is not recommended, and has been disabled by default since wolfSSL 3.6.6. Therefore the default build since 3.6.6, even with "--enable-all", is not vulnerable to the Marvin Attack. The vulnerability is specific to static RSA cipher suites, and expected to be padding-independent. The vulnerability allows an attacker to decrypt ciphertexts and forge signatures after probing with a large number of test observations. However the server’s private key is not exposed.
RustCrypto/RSA is a portable RSA implementation in pure Rust. Due to a non-constant-time implementation, information about the private key is leaked through timing information which is observable over the network. An attacker may be able to use that information to recover the key. There is currently no fix available. As a workaround, avoid using the RSA crate in settings where attackers are able to observe timing information, e.g. local use on a non-compromised computer.
Dell BSAFE Micro Edition Suite, versions before 4.5.2, contain an Observable Timing Discrepancy Vulnerability.
A timing-based side-channel flaw exists in the rust-openssl package, which could be sufficient to recover a plaintext across a network in a Bleichenbacher-style attack. To achieve successful decryption, an attacker would have to be able to send a large number of trial messages for decryption. The vulnerability affects the legacy PKCS#1v1.5 RSA encryption padding mode.
An issue was discovered in Bouncy Castle Java TLS API and JSSE Provider before 1.78. Timing-based leakage may occur in RSA based handshakes because of exception processing.
1Panel is an open source Linux server operation and maintenance management panel. The password verification in the source code uses the != symbol instead hmac.Equal. This may lead to a timing attack vulnerability. This vulnerability is fixed in 1.10.3-lts.
Observable discrepancy in some Intel(R) QAT Engine for OpenSSL software before version v1.6.1 may allow information disclosure via network access.
Apache Hive cookie signature verification used a non constant time comparison which is known to be vulnerable to timing attacks. This could allow recovery of another users cookie signature. The issue was addressed in Apache Hive 2.3.8
In Shrine before version 3.3.0, when using the `derivation_endpoint` plugin, it's possible for the attacker to use a timing attack to guess the signature of the derivation URL. The problem has been fixed by comparing sent and calculated signature in constant time, using `Rack::Utils.secure_compare`. Users using the `derivation_endpoint` plugin are urged to upgrade to Shrine 3.3.0 or greater. A possible workaround is provided in the linked advisory.
The client side in OpenSSH 5.7 through 8.4 has an Observable Discrepancy leading to an information leak in the algorithm negotiation. This allows man-in-the-middle attackers to target initial connection attempts (where no host key for the server has been cached by the client). NOTE: some reports state that 8.5 and 8.6 are also affected.
The Raccoon attack is a timing attack on DHE ciphersuites inherit in the TLS specification. To mitigate this vulnerability, Firefox disabled support for DHE ciphersuites.
A timing-based side-channel flaw exists in the perl-Crypt-OpenSSL-RSA package, which could be sufficient to recover plaintext across a network in a Bleichenbacher-style attack. To achieve successful decryption, an attacker would have to be able to send a large number of trial messages. The vulnerability affects the legacy PKCS#1v1.5 RSA encryption padding mode.
The openssl_private_decrypt function in PHP, when using PKCS1 padding (OPENSSL_PKCS1_PADDING, which is the default), is vulnerable to the Marvin Attack unless it is used with an OpenSSL version that includes the changes from this pull request: https://github.com/openssl/openssl/pull/13817 (rsa_pkcs1_implicit_rejection). These changes are part of OpenSSL 3.2 and have also been backported to stable versions of various Linux distributions, as well as to the PHP builds provided for Windows since the previous release. All distributors and builders should ensure that this version is used to prevent PHP from being vulnerable. PHP Windows builds for the versions 8.1.29, 8.2.20 and 8.3.8 and above include OpenSSL patches that fix the vulnerability.
A timing side-channel issue was addressed with improvements to constant-time computation in cryptographic functions. This issue is fixed in macOS Sonoma 14.3, watchOS 10.3, tvOS 17.3, iOS 17.3 and iPadOS 17.3. An attacker may be able to decrypt legacy RSA PKCS#1 v1.5 ciphertexts without having the private key.
Versions of the package jsrsasign before 11.0.0 are vulnerable to Observable Discrepancy via the RSA PKCS1.5 or RSAOAEP decryption process. An attacker can decrypt ciphertexts by exploiting the Marvin security flaw. Exploiting this vulnerability requires the attacker to have access to a large number of ciphertexts encrypted with the same key. Workaround The vulnerability can be mitigated by finding and replacing RSA and RSAOAEP decryption with another crypto library.
Crypto++ (aka cryptopp) through 8.9.0 has a Marvin side channel during decryption with PKCS#1 v1.5 padding.
An issue was discovered in certain Apple products. iOS before 10.3.3 is affected. Safari before 10.1.2 is affected. tvOS before 10.2.2 is affected. The issue involves the "WebKit" component. It allows remote attackers to conduct a timing side-channel attack to bypass the Same Origin Policy and obtain sensitive information via a crafted web site that uses SVG filters.
A timing attack in SVG rendering in Google Chrome prior to 60.0.3112.78 for Linux, Windows, and Mac allowed a remote attacker to extract pixel values from a cross-origin page being iframe'd via a crafted HTML page.
A vulnerability was found in OpenShift OSIN. It has been classified as problematic. This affects the function ClientSecretMatches/CheckClientSecret. The manipulation of the argument secret leads to observable timing discrepancy. The name of the patch is 8612686d6dda34ae9ef6b5a974e4b7accb4fea29. It is recommended to apply a patch to fix this issue. The associated identifier of this vulnerability is VDB-216987.
jose is an npm library providing a number of cryptographic operations. In vulnerable versions AES_CBC_HMAC_SHA2 Algorithm (A128CBC-HS256, A192CBC-HS384, A256CBC-HS512) decryption would always execute both HMAC tag verification and CBC decryption, if either failed `JWEDecryptionFailed` would be thrown. A possibly observable difference in timing when padding error would occur while decrypting the ciphertext makes a padding oracle and an adversary might be able to make use of that oracle to decrypt data without knowing the decryption key by issuing on average 128*b calls to the padding oracle (where b is the number of bytes in the ciphertext block). All major release versions have had a patch released which ensures the HMAC tag is verified before performing CBC decryption. The fixed versions are `^1.28.1 || ^2.0.5 || >=3.11.4`. Users should upgrade their v1.x dependency to ^1.28.1, their v2.x dependency to ^2.0.5, and their v3.x dependency to ^3.11.4. Thanks to Jason from Microsoft Vulnerability Research (MSVR) for bringing this up and Eva Sarafianou (@esarafianou) for helping to score this advisory.
Symantec IntelligenceCenter 3.3 is vulnerable to the Return of the Bleichenbacher Oracle Threat (ROBOT) attack. A remote attacker, who has captured a pre-recorded SSL session inspected by SSLV, can establish large numbers of crafted SSL connections to the target and obtain the session keys required to decrypt the pre-recorded SSL session.
A vulnerability classified as problematic has been found in langhsu Mblog Blog System 3.5.0. Affected is an unknown function of the file /login. The manipulation leads to observable response discrepancy. It is possible to launch the attack remotely. The complexity of an attack is rather high. The exploitability is told to be difficult. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way.
A vulnerability classified as problematic was found in funnyzpc Mee-Admin up to 1.6. This vulnerability affects unknown code of the file /mee/login of the component Login. The manipulation of the argument username leads to observable response discrepancy. The attack can be initiated remotely. The complexity of an attack is rather high. The exploitation appears to be difficult. The exploit has been disclosed to the public and may be used.
A vulnerability, which was classified as problematic, has been found in Antabot White-Jotter up to 0.2.2. This issue affects some unknown processing of the file /login. The manipulation of the argument username leads to observable response discrepancy. The attack may be initiated remotely. The complexity of an attack is rather high. The exploitation is known to be difficult. The exploit has been disclosed to the public and may be used.
Some components in Apache Kafka use `Arrays.equals` to validate a password or key, which is vulnerable to timing attacks that make brute force attacks for such credentials more likely to be successful. Users should upgrade to 2.8.1 or higher, or 3.0.0 or higher where this vulnerability has been fixed. The affected versions include Apache Kafka 2.0.0, 2.0.1, 2.1.0, 2.1.1, 2.2.0, 2.2.1, 2.2.2, 2.3.0, 2.3.1, 2.4.0, 2.4.1, 2.5.0, 2.5.1, 2.6.0, 2.6.1, 2.6.2, 2.7.0, 2.7.1, and 2.8.0.