In GeForce Experience (GFE) 3.x before 3.10.0.55, NVIDIA Installer Framework contains a vulnerability in NVISystemService64 where a value passed from a user to the driver is used without validation, which may lead to denial of service or possible escalation of privileges.
NVIDIA GeForce Experience versions prior to 3.19 contains a vulnerability in the Web Helper component, in which an attacker with local system access can craft input that may not be properly validated. Such an attack may lead to code execution, denial of service or information disclosure.
In NVIDIA Jetson TX1 L4T R32 version branch prior to R32.2, Tegra bootloader contains a vulnerability in nvtboot in which the nvtboot-cpu image is loaded without the load address first being validated, which may lead to code execution, denial of service, or escalation of privileges.
NVIDIA GeForce Experience, all versions prior to 3.20.1, contains a vulnerability in the Downloader component in which a user with local system access can craft input that may allow malicious files to be downloaded and saved. This behavior may lead to code execution, denial of service, or information disclosure.
The NVIDIA UNIX driver before 295.40 allows local users to access arbitrary memory locations by leveraging GPU device-node read/write privileges.
Android images for T210 provided by NVIDIA contain a vulnerability in BROM, where failure to limit access to AHB-DMA when BROM fails may allow an unprivileged attacker with physical access to cause denial of service or impact integrity and confidentiality beyond the security scope of BROM.
Trusty contains a vulnerability in the NVIDIA OTE protocol that is present in all TAs. An incorrect message stream deserialization allows an attacker to use the malicious CA that is run by the user to cause the buffer overflow, which may lead to information disclosure and data modification.
Trusty contains a vulnerability in command handlers where the length of input buffers is not verified. This vulnerability can cause memory corruption, which may lead to information disclosure, escalation of privileges, and denial of service.
Trusty TLK contains a vulnerability in its access permission settings where it does not properly restrict access to a resource from a user with local privileges, which might lead to limited information disclosure, a low risk of modifcations to data, and limited denial of service.
Bootloader contains a vulnerability in NVIDIA MB2 where potential heap overflow might cause corruption of the heap metadata, which might lead to arbitrary code execution, denial of service, and information disclosure during secure boot.
Trusty TLK contains a vulnerability in the NVIDIA TLK kernel function where a lack of checks allows the exploitation of an integer overflow on the size parameter of the tz_map_shared_mem function, which might lead to denial of service, information disclosure, or data tampering.
Trusty contains a vulnerability in all trusted applications (TAs) where the stack cookie was not randomized, which might result in stack-based buffer overflow, leading to denial of service, escalation of privileges, and information disclosure.
Trusty contains a vulnerability in the HDCP service TA where bounds checking in command 10 is missing. The length of an I/O buffer parameter is not checked, which might lead to memory corruption.
Trusty (the trusted OS produced by NVIDIA for Jetson devices) driver contains a vulnerability in the NVIDIA OTE protocol message parsing code where an integer overflow in a malloc() size calculation leads to a buffer overflow on the heap, which might result in information disclosure, escalation of privileges, and denial of service.
NVIDIA Linux distributions contain a vulnerability in nvmap ioctl, which allows any user with a local account to exploit a use-after-free condition, leading to code privilege escalation, loss of confidentiality and integrity, or denial of service.
Bootloader contains a vulnerability in NVIDIA MB2 where a potential heap overflow could cause memory corruption, which might lead to denial of service or code execution.
Bootloader contains a vulnerability in NVIDIA TegraBoot where a potential heap overflow might allow an attacker to control all the RAM after the heap block, leading to denial of service or code execution.
Trusty TLK contains a vulnerability in the NVIDIA TLK kernel where an integer overflow in the calculation of a length could lead to a heap overflow.
Trusty TLK contains a vulnerability in the NVIDIA TLK kernel where an integer overflow in the calloc size calculation can cause the multiplication of count and size can overflow, which might lead to heap overflows.
Trusty TLK contains a vulnerability in the NVIDIA TLK kernel’s tz_map_shared_mem function where an integer overflow on the size parameter causes the request buffer and the logging buffer to overflow, allowing writes to arbitrary addresses within the kernel.
Bootloader contains a vulnerability in NVIDIA MB2 where a potential heap overflow might lead to denial of service or escalation of privileges.
NVIDIA Linux kernel distributions contain a vulnerability in nvmap NVGPU_IOCTL_CHANNEL_SET_ERROR_NOTIFIER, where improper access control may lead to code execution, compromised integrity, or denial of service.
NVIDIA Windows GPU Display Driver contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape where a value passed from a user to the driver is not correctly validated and used as the index to an array which may lead to denial of service or potential escalation of privileges.
NVIDIA GeForce Experience contains a vulnerability in all versions prior to 3.16 during application installation on Windows 7 in elevated privilege mode, where a local user who initiates a browser session may obtain escalation of privileges on the browser.
NVIDIA vGPU manager contains a vulnerability in the vGPU plugin, in which an input index is not validated, which may lead to integer overflow, which in turn may cause tampering of data, information disclosure, or denial of service. This affects vGPU version 8.x (prior to 8.6) and version 11.0 (prior to 11.3).
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where it doesn't release some resources during driver unload requests from guests. This flaw allows a malicious guest to perform operations by reusing those resources, which may lead to information disclosure, data tampering, or denial of service. This affects vGPU version 12.x (prior to 12.3), version 11.x (prior to 11.5) and version 8.x (prior 8.8).
NVIDIA GPU Display Driver for Windows contains a vulnerability in nvidia-smi where an uncontrolled DLL loading path may lead to arbitrary code execution, denial of service, information disclosure, and data tampering.
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where it improperly validates the length field in a request from a guest. This flaw allows a malicious guest to send a length field that is inconsistent with the actual length of the input, which may lead to information disclosure, data tampering, or denial of service. This affects vGPU version 12.x (prior to 12.3), version 11.x (prior to 11.5) and version 8.x (prior 8.8).
NVIDIA GPU Display Driver for Windows, all versions, contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape in which improper access control may lead to denial of service and information disclosure.
NVIDIA Linux kernel distributions contain a vulnerability in FuSa Capture (VI/ISP), where integer underflow due to lack of input validation may lead to complete denial of service, partial integrity, and serious confidentiality loss for all processes in the system.
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where there is the potential to execute privileged operations by the guest OS, which may lead to information disclosure, data tampering, escalation of privileges, and denial of service
NVIDIA vGPU software contains a vulnerability in the guest kernel mode driver and Virtual GPU Manager (vGPU plugin), in which an input length is not validated, which may lead to information disclosure, tampering of data, or denial of service. This affects vGPU version 12.x (prior to 12.2) and version 11.x (prior to 11.4).
NVIDIA Windows GPU Display Driver, all versions, contains a vulnerability in the NVIDIA Control Panel component in which an attacker with local system access can corrupt a system file, which may lead to denial of service or escalation of privileges.
NVIDIA GPU Display Driver for Linux contains a vulnerability in the kernel mode layer handler, where an unprivileged regular user can cause an integer to be truncated, which may lead to denial of service or data tampering.
NVIDIA Triton Inference Server for Linux contains a vulnerability in shared memory APIs, where a user can cause an improper memory access issue by a network API. A successful exploit of this vulnerability might lead to denial of service and data tampering.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the user mode layer, where an unprivileged regular user can cause an out-of-bounds read. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
NVIDIA GPU Display Driver for Linux contains a vulnerability in the kernel mode layer (nvidia.ko), where an off-by-one error may lead to data tampering or information disclosure.
NVIDIA CUDA Toolkit contains a vulnerability in command `cuobjdump` where a user may cause a crash by passing in a malformed ELF file. A successful exploit of this vulnerability may cause an out of bounds read in the unprivileged process memory which could lead to a limited denial of service.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the user mode layer, where an unprivileged regular user can cause an out-of-bounds write. A successful exploit of this vulnerability may lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the user mode layer, where an unprivileged regular user can cause an out-of-bounds read. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
NVIDIA Triton Inference Server contains a vulnerability where a user may cause an out-of-bounds read issue by releasing a shared memory region while it is in use. A successful exploit of this vulnerability may lead to denial of service.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the user mode layer, where an unprivileged regular user can cause an out-of-bounds read. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in nvdisasm, where an attacker can cause an out-of-bounds read issue by deceiving a user into reading a malformed ELF file. A successful exploit of this vulnerability might lead to denial of service.
NVIDIA GPU Display Driver for Linux contains a vulnerability in the kernel mode layer handler, where an out-of-bounds read may lead to denial of service, information disclosure, or data tampering.
NVIDIA GPU Display Driver for Linux contains a vulnerability in the kernel mode layer (nvidia.ko), where an out-of-bounds array access may lead to denial of service, information disclosure, or data tampering.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape, where a local user with basic capabilities can cause an out-of-bounds read, which may lead to denial of service, or information disclosure.
NVIDIA GPU Display Driver for Windows and Linux contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape where an out of bounds array access may lead to denial of service or information disclosure.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape, where a local user with basic capabilities can cause an out-of-bounds read, which may lead to a system crash or a leak of internal kernel information.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the kernel mode layer (nvlddmkm.sys), where a local user with basic capabilities can cause an out-of-bounds read, which may lead to code execution, denial of service, escalation of privileges, information disclosure, or data tampering.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the user mode layer, where an unprivileged regular user can cause an out-of-bounds read. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.