TensorFlow is an end-to-end open source platform for machine learning. In eager mode (default in TF 2.0 and later), session operations are invalid. However, users could still call the raw ops associated with them and trigger a null pointer dereference. The implementation(https://github.com/tensorflow/tensorflow/blob/eebb96c2830d48597d055d247c0e9aebaea94cd5/tensorflow/core/kernels/session_ops.cc#L104) dereferences the session state pointer without checking if it is valid. Thus, in eager mode, `ctx->session_state()` is nullptr and the call of the member function is undefined behavior. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `EmbeddingLookup` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/e4b29809543b250bc9b19678ec4776299dd569ba/tensorflow/lite/kernels/embedding_lookup.cc#L73-L74). An attacker can craft a model such that the first dimension of the `value` input is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc) does not validate all constraints specified in the op's contract(https://www.tensorflow.org/api_docs/python/tf/raw_ops/QuantizedBatchNormWithGlobalNormalization). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `QuantizedMul` by passing in invalid thresholds for the quantization. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/87cf4d3ea9949051e50ca3f071fc909538a51cd0/tensorflow/core/kernels/quantized_mul_op.cc#L287-L290) assumes that the 4 arguments are always valid scalars and tries to access the numeric value directly. However, if any of these tensors is empty, then `.flat<T>()` is an empty buffer and accessing the element at position 0 results in overflow. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.Conv2DBackpropInput`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/b40060c9f697b044e3107917c797ba052f4506ab/tensorflow/core/kernels/conv_grad_input_ops.h#L625-L655) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by controlling the values of `num_segments` tensor argument for `UnsortedSegmentJoin`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a2a607db15c7cd01d754d37e5448d72a13491bdb/tensorflow/core/kernels/unsorted_segment_join_op.cc#L92-L93) assumes that the `num_segments` tensor is a valid scalar. Since the tensor is empty the `CHECK` involved in `.scalar<T>()()` that checks that the number of elements is exactly 1 will be invalidated and this would result in process termination. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. Missing validation between arguments to `tf.raw_ops.Conv3DBackprop*` operations can result in heap buffer overflows. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/4814fafb0ca6b5ab58a09411523b2193fed23fed/tensorflow/core/kernels/conv_grad_shape_utils.cc#L94-L153) assumes that the `input`, `filter_sizes` and `out_backprop` tensors have the same shape, as they are accessed in parallel. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.SparseConcat`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/b432a38fe0e1b4b904a6c222cbce794c39703e87/tensorflow/core/kernels/sparse_concat_op.cc#L76) takes the values specified in `shapes[0]` as dimensions for the output shape. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The implementation of TrySimplify(https://github.com/tensorflow/tensorflow/blob/c22d88d6ff33031aa113e48aa3fc9aa74ed79595/tensorflow/core/grappler/optimizers/arithmetic_optimizer.cc#L390-L401) has undefined behavior due to dereferencing a null pointer in corner cases that result in optimizing a node with no inputs. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/6f26b3f3418201479c264f2a02000880d8df151c/tensorflow/core/kernels/quantized_add_op.cc#L289-L295) computes a modulo operation without validating that the divisor is not zero. Since `vector_num_elements` is determined based on input shapes(https://github.com/tensorflow/tensorflow/blob/6f26b3f3418201479c264f2a02000880d8df151c/tensorflow/core/kernels/quantized_add_op.cc#L522-L544), a user can trigger scenarios where this quantity is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger an integer division by zero undefined behavior in `tf.raw_ops.QuantizedBiasAdd`. This is because the implementation of the Eigen kernel(https://github.com/tensorflow/tensorflow/blob/61bca8bd5ba8a68b2d97435ddfafcdf2b85672cd/tensorflow/core/kernels/quantization_utils.h#L812-L849) does a division by the number of elements of the smaller input (based on shape) without checking that this is not zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a dereference of a null pointer in `tf.raw_ops.StringNGrams`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L67-L74) does not fully validate the `data_splits` argument. This would result in `ngrams_data`(https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L106-L110) to be a null pointer when the output would be computed to have 0 or negative size. Later writes to the output tensor would then cause a null pointer dereference. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.FractionalAvgPool`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_avg_pool_op.cc#L85-L89) computes a divisor quantity by dividing two user controlled values. The user controls the values of `input_size[i]` and `pooling_ratio_[i]` (via the `value.shape()` and `pooling_ratio` arguments). If the value in `input_size[i]` is smaller than the `pooling_ratio_[i]`, then the floor operation results in `output_size[i]` being 0. The `DCHECK_GT` line is a no-op outside of debug mode, so in released versions of TF this does not trigger. Later, these computed values are used as arguments(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_avg_pool_op.cc#L96-L99) to `GeneratePoolingSequence`(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_pool_common.cc#L100-L108). There, the first computation is a division in a modulo operation. Since `output_length` can be 0, this results in runtime crashing. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. A specially crafted TFLite model could trigger an OOB write on heap in the TFLite implementation of `ArgMin`/`ArgMax`(https://github.com/tensorflow/tensorflow/blob/102b211d892f3abc14f845a72047809b39cc65ab/tensorflow/lite/kernels/arg_min_max.cc#L52-L59). If `axis_value` is not a value between 0 and `NumDimensions(input)`, then the condition in the `if` is never true, so code writes past the last valid element of `output_dims->data`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. Optimized pooling implementations in TFLite fail to check that the stride arguments are not 0 before calling `ComputePaddingHeightWidth`(https://github.com/tensorflow/tensorflow/blob/3f24ccd932546416ec906a02ddd183b48a1d2c83/tensorflow/lite/kernels/pooling.cc#L90). Since users can craft special models which will have `params->stride_{height,width}` be zero, this will result in a division by zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Google Chrome before 11.0.696.57 does not properly handle PDF documents with multipart encoding, which allows remote attackers to cause a denial of service (out-of-bounds read) via a crafted document.
Google Chrome before 11.0.696.57 does not properly handle SVG documents, which allows remote attackers to cause a denial of service (out-of-bounds read) via unspecified vectors.
Tensorflow is an Open Source Machine Learning Framework. The TFG dialect of TensorFlow (MLIR) makes several assumptions about the incoming `GraphDef` before converting it to the MLIR-based dialect. If an attacker changes the `SavedModel` format on disk to invalidate these assumptions and the `GraphDef` is then converted to MLIR-based IR then they can cause a crash in the Python interpreter. Under certain scenarios, heap OOB read/writes are possible. These issues have been discovered via fuzzing and it is possible that more weaknesses exist. We will patch them as they are discovered.
Google Chrome before 9.0.597.107 on 64-bit Linux platforms does not properly perform pickle deserialization, which allows remote attackers to cause a denial of service (out-of-bounds read) via unspecified vectors.
The WebGL implementation in Google Chrome before 9.0.597.107 allows remote attackers to cause a denial of service (out-of-bounds read) via unspecified vectors, aka Issue 71960.
The WebGL implementation in Google Chrome before 9.0.597.107 allows remote attackers to cause a denial of service (out-of-bounds read) via unspecified vectors, aka Issue 71717.
Tensorflow is an Open Source Machine Learning Framework. TensorFlow's type inference can cause a heap out of bounds read as the bounds checking is done in a `DCHECK` (which is a no-op during production). An attacker can control the `input_idx` variable such that `ix` would be larger than the number of values in `node_t.args`. The fix will be included in TensorFlow 2.8.0. This is the only affected version.
Out of bounds read in Fonts in Google Chrome prior to 124.0.6367.60 allowed a remote attacker to obtain potentially sensitive information from process memory via a crafted HTML page. (Chromium security severity: Medium)
In initiateTdlsSetupInternal of sta_iface.cpp, there is a possible out of bounds read due to a missing bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-13Android ID: A-262236670
The CSSParser::parseFontFaceSrc function in WebCore/css/CSSParser.cpp in WebKit, as used in Google Chrome before 8.0.552.224, Chrome OS before 8.0.552.343, webkitgtk before 1.2.6, and other products does not properly parse Cascading Style Sheets (CSS) token sequences, which allows remote attackers to cause a denial of service (out-of-bounds read) via a crafted local font, related to "Type Confusion."
In handleCreateConferenceComplete of ConnectionServiceWrapper.java, there is a possible way to reveal images across users due to a confused deputy. This could lead to local information disclosure with no additional execution privileges needed. User interaction is needed for exploitation.
In BuildGetRadioNode of protocolmiscbulider.cpp, there is a possible out of bounds read due to improper input validation. This could lead to local information disclosure from the modem with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-264540759References: N/A
Out of bounds read in V8 API in Google Chrome prior to 124.0.6367.78 allowed a remote attacker to leak cross-site data via a crafted HTML page. (Chromium security severity: High)
Tensorflow is an Open Source Machine Learning Framework. The implementation of `FractionalAvgPoolGrad` does not consider cases where the input tensors are invalid allowing an attacker to read from outside of bounds of heap. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, if the parameter `indices` for `DynamicStitch` does not match the shape of the parameter `data`, it can trigger an stack OOB read. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.
In WLAN driver, there is a possible out of bounds read due to an incorrect bounds check. This could lead to local information disclosure with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06545464; Issue ID: ALPS06545464.
TensorFlow is an open source platform for machine learning. Attackers using Tensorflow prior to 2.12.0 or 2.11.1 can access heap memory which is not in the control of user, leading to a crash or remote code execution. The fix will be included in TensorFlow version 2.12.0 and will also cherrypick this commit on TensorFlow version 2.11.1.
In btm_ble_periodic_adv_sync_lost of btm_ble_gap.cc, there is a possible remote code execution due to a buffer overflow. This could lead to remote code execution with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-13Android ID: A-273502002
In WLAN driver, there is a possible out of bounds read due to an incorrect bounds check. This could lead to local information disclosure with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06535950; Issue ID: ALPS06535950.
In dropFramesUntilIframe of AAVCAssembler.cpp, there is a possible out of bounds read due to a heap buffer overflow. This could lead to remote information disclosure with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-12 Android-12L Android-13Android ID: A-230630526
TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, an out of bounds read is in GRUBlockCellGrad. A fix is included in TensorFlow 2.12.0 and 2.11.1.
In imgsys_cmdq, there is a possible out of bounds read due to a missing valid range checking. This could lead to local information disclosure with System execution privileges needed. User interaction is needed for exploitation. Patch ID: ALPS07354058; Issue ID: ALPS07340121.
In ProtocolCellIdentityParserV4::Parse() of protocolnetadapter.cpp, there is a possible out of bounds read due to a missing bounds check. This could lead to local information disclosure with baseband firmware compromise required. User Interaction is not needed for exploitation.
In multiple locations of p2p_iface.cpp, there is a possible out of bounds read due to a missing bounds check. This could lead to local information disclosure with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-13Android ID: A-257030100
In imgsensor, there is a possible out of bounds read due to a missing bounds check. This could lead to local denial of service with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06479698; Issue ID: ALPS06479698.
In vpu, there is a possible information disclosure due to an incorrect bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06382421; Issue ID: ALPS06382421.
In camera isp, there is a possible out of bounds read due to a missing bounds check. This could lead to local information disclosure with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06479306; Issue ID: ALPS06479306.
Tensorflow is an Open Source Machine Learning Framework. The implementation of `Dequantize` does not fully validate the value of `axis` and can result in heap OOB accesses. The `axis` argument can be `-1` (the default value for the optional argument) or any other positive value at most the number of dimensions of the input. Unfortunately, the upper bound is not checked and this results in reading past the end of the array containing the dimensions of the input tensor. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
In initiateVenueUrlAnqpQueryInternal of sta_iface.cpp, there is a possible out of bounds read due to unsafe deserialization. This could lead to local information disclosure with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-13Android ID: A-262245630
In CCCI, there is a possible out of bounds read due to a missing bounds check. This could lead to local information disclosure with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06641673; Issue ID: ALPS06641687.
In btm_read_link_quality_complete of btm_acl.cc, there is a possible out of bounds read due to a missing bounds check. This could lead to local information disclosure over Bluetooth with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-13Android ID: A-260569414
In xmlParseTryOrFinish of parser.c, there is a possible out of bounds read due to a heap buffer overflow. This could lead to remote information disclosure with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-13Android ID: A-261365944
In imgsys_cmdq, there is a possible out of bounds read due to a missing valid range checking. This could lead to local information disclosure with System execution privileges needed. User interaction is needed for exploitation. Patch ID: ALPS07340119; Issue ID: ALPS07340119.
In BuildSetConfig of protocolimsbuilder.cpp, there is a possible out of bounds read due to a missing null check. This could lead to local information disclosure with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-263783657References: N/A
In executeSetClientTarget of ComposerCommandEngine.h, there is a possible out of bounds read due to a missing bounds check. This could lead to local information disclosure with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-13Android ID: A-252764410