In the Linux kernel, the following vulnerability has been resolved: arm64/sme: Always exit sme_alloc() early with existing storage When sme_alloc() is called with existing storage and we are not flushing we will always allocate new storage, both leaking the existing storage and corrupting the state. Fix this by separating the checks for flushing and for existing storage as we do for SVE. Callers that reallocate (eg, due to changing the vector length) should call sme_free() themselves.
In the Linux kernel, the following vulnerability has been resolved: ppp_async: limit MRU to 64K syzbot triggered a warning [1] in __alloc_pages(): WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp) Willem fixed a similar issue in commit c0a2a1b0d631 ("ppp: limit MRU to 64K") Adopt the same sanity check for ppp_async_ioctl(PPPIOCSMRU) [1]: WARNING: CPU: 1 PID: 11 at mm/page_alloc.c:4543 __alloc_pages+0x308/0x698 mm/page_alloc.c:4543 Modules linked in: CPU: 1 PID: 11 Comm: kworker/u4:0 Not tainted 6.8.0-rc2-syzkaller-g41bccc98fb79 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/17/2023 Workqueue: events_unbound flush_to_ldisc pstate: 204000c5 (nzCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __alloc_pages+0x308/0x698 mm/page_alloc.c:4543 lr : __alloc_pages+0xc8/0x698 mm/page_alloc.c:4537 sp : ffff800093967580 x29: ffff800093967660 x28: ffff8000939675a0 x27: dfff800000000000 x26: ffff70001272ceb4 x25: 0000000000000000 x24: ffff8000939675c0 x23: 0000000000000000 x22: 0000000000060820 x21: 1ffff0001272ceb8 x20: ffff8000939675e0 x19: 0000000000000010 x18: ffff800093967120 x17: ffff800083bded5c x16: ffff80008ac97500 x15: 0000000000000005 x14: 1ffff0001272cebc x13: 0000000000000000 x12: 0000000000000000 x11: ffff70001272cec1 x10: 1ffff0001272cec0 x9 : 0000000000000001 x8 : ffff800091c91000 x7 : 0000000000000000 x6 : 000000000000003f x5 : 00000000ffffffff x4 : 0000000000000000 x3 : 0000000000000020 x2 : 0000000000000008 x1 : 0000000000000000 x0 : ffff8000939675e0 Call trace: __alloc_pages+0x308/0x698 mm/page_alloc.c:4543 __alloc_pages_node include/linux/gfp.h:238 [inline] alloc_pages_node include/linux/gfp.h:261 [inline] __kmalloc_large_node+0xbc/0x1fc mm/slub.c:3926 __do_kmalloc_node mm/slub.c:3969 [inline] __kmalloc_node_track_caller+0x418/0x620 mm/slub.c:4001 kmalloc_reserve+0x17c/0x23c net/core/skbuff.c:590 __alloc_skb+0x1c8/0x3d8 net/core/skbuff.c:651 __netdev_alloc_skb+0xb8/0x3e8 net/core/skbuff.c:715 netdev_alloc_skb include/linux/skbuff.h:3235 [inline] dev_alloc_skb include/linux/skbuff.h:3248 [inline] ppp_async_input drivers/net/ppp/ppp_async.c:863 [inline] ppp_asynctty_receive+0x588/0x186c drivers/net/ppp/ppp_async.c:341 tty_ldisc_receive_buf+0x12c/0x15c drivers/tty/tty_buffer.c:390 tty_port_default_receive_buf+0x74/0xac drivers/tty/tty_port.c:37 receive_buf drivers/tty/tty_buffer.c:444 [inline] flush_to_ldisc+0x284/0x6e4 drivers/tty/tty_buffer.c:494 process_one_work+0x694/0x1204 kernel/workqueue.c:2633 process_scheduled_works kernel/workqueue.c:2706 [inline] worker_thread+0x938/0xef4 kernel/workqueue.c:2787 kthread+0x288/0x310 kernel/kthread.c:388 ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:860
In the Linux kernel, the following vulnerability has been resolved: tun: limit printing rate when illegal packet received by tun dev vhost_worker will call tun call backs to receive packets. If too many illegal packets arrives, tun_do_read will keep dumping packet contents. When console is enabled, it will costs much more cpu time to dump packet and soft lockup will be detected. net_ratelimit mechanism can be used to limit the dumping rate. PID: 33036 TASK: ffff949da6f20000 CPU: 23 COMMAND: "vhost-32980" #0 [fffffe00003fce50] crash_nmi_callback at ffffffff89249253 #1 [fffffe00003fce58] nmi_handle at ffffffff89225fa3 #2 [fffffe00003fceb0] default_do_nmi at ffffffff8922642e #3 [fffffe00003fced0] do_nmi at ffffffff8922660d #4 [fffffe00003fcef0] end_repeat_nmi at ffffffff89c01663 [exception RIP: io_serial_in+20] RIP: ffffffff89792594 RSP: ffffa655314979e8 RFLAGS: 00000002 RAX: ffffffff89792500 RBX: ffffffff8af428a0 RCX: 0000000000000000 RDX: 00000000000003fd RSI: 0000000000000005 RDI: ffffffff8af428a0 RBP: 0000000000002710 R8: 0000000000000004 R9: 000000000000000f R10: 0000000000000000 R11: ffffffff8acbf64f R12: 0000000000000020 R13: ffffffff8acbf698 R14: 0000000000000058 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #5 [ffffa655314979e8] io_serial_in at ffffffff89792594 #6 [ffffa655314979e8] wait_for_xmitr at ffffffff89793470 #7 [ffffa65531497a08] serial8250_console_putchar at ffffffff897934f6 #8 [ffffa65531497a20] uart_console_write at ffffffff8978b605 #9 [ffffa65531497a48] serial8250_console_write at ffffffff89796558 #10 [ffffa65531497ac8] console_unlock at ffffffff89316124 #11 [ffffa65531497b10] vprintk_emit at ffffffff89317c07 #12 [ffffa65531497b68] printk at ffffffff89318306 #13 [ffffa65531497bc8] print_hex_dump at ffffffff89650765 #14 [ffffa65531497ca8] tun_do_read at ffffffffc0b06c27 [tun] #15 [ffffa65531497d38] tun_recvmsg at ffffffffc0b06e34 [tun] #16 [ffffa65531497d68] handle_rx at ffffffffc0c5d682 [vhost_net] #17 [ffffa65531497ed0] vhost_worker at ffffffffc0c644dc [vhost] #18 [ffffa65531497f10] kthread at ffffffff892d2e72 #19 [ffffa65531497f50] ret_from_fork at ffffffff89c0022f
In the Linux kernel, the following vulnerability has been resolved: thermal: intel: hfi: Add syscore callbacks for system-wide PM The kernel allocates a memory buffer and provides its location to the hardware, which uses it to update the HFI table. This allocation occurs during boot and remains constant throughout runtime. When resuming from hibernation, the restore kernel allocates a second memory buffer and reprograms the HFI hardware with the new location as part of a normal boot. The location of the second memory buffer may differ from the one allocated by the image kernel. When the restore kernel transfers control to the image kernel, its HFI buffer becomes invalid, potentially leading to memory corruption if the hardware writes to it (the hardware continues to use the buffer from the restore kernel). It is also possible that the hardware "forgets" the address of the memory buffer when resuming from "deep" suspend. Memory corruption may also occur in such a scenario. To prevent the described memory corruption, disable HFI when preparing to suspend or hibernate. Enable it when resuming. Add syscore callbacks to handle the package of the boot CPU (packages of non-boot CPUs are handled via CPU offline). Syscore ops always run on the boot CPU. Additionally, HFI only needs to be disabled during "deep" suspend and hibernation. Syscore ops only run in these cases. [ rjw: Comment adjustment, subject and changelog edits ]
In the Linux kernel, the following vulnerability has been resolved: powerpc/kasan: Limit KASAN thread size increase to 32KB KASAN is seen to increase stack usage, to the point that it was reported to lead to stack overflow on some 32-bit machines (see link). To avoid overflows the stack size was doubled for KASAN builds in commit 3e8635fb2e07 ("powerpc/kasan: Force thread size increase with KASAN"). However with a 32KB stack size to begin with, the doubling leads to a 64KB stack, which causes build errors: arch/powerpc/kernel/switch.S:249: Error: operand out of range (0x000000000000fe50 is not between 0xffffffffffff8000 and 0x0000000000007fff) Although the asm could be reworked, in practice a 32KB stack seems sufficient even for KASAN builds - the additional usage seems to be in the 2-3KB range for a 64-bit KASAN build. So only increase the stack for KASAN if the stack size is < 32KB.
In the Linux kernel, the following vulnerability has been resolved: ACPI: processor_idle: Fix memory leak in acpi_processor_power_exit() After unregistering the CPU idle device, the memory associated with it is not freed, leading to a memory leak: unreferenced object 0xffff896282f6c000 (size 1024): comm "swapper/0", pid 1, jiffies 4294893170 hex dump (first 32 bytes): 00 00 00 00 0b 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace (crc 8836a742): [<ffffffff993495ed>] kmalloc_trace+0x29d/0x340 [<ffffffff9972f3b3>] acpi_processor_power_init+0xf3/0x1c0 [<ffffffff9972d263>] __acpi_processor_start+0xd3/0xf0 [<ffffffff9972d2bc>] acpi_processor_start+0x2c/0x50 [<ffffffff99805872>] really_probe+0xe2/0x480 [<ffffffff99805c98>] __driver_probe_device+0x78/0x160 [<ffffffff99805daf>] driver_probe_device+0x1f/0x90 [<ffffffff9980601e>] __driver_attach+0xce/0x1c0 [<ffffffff99803170>] bus_for_each_dev+0x70/0xc0 [<ffffffff99804822>] bus_add_driver+0x112/0x210 [<ffffffff99807245>] driver_register+0x55/0x100 [<ffffffff9aee4acb>] acpi_processor_driver_init+0x3b/0xc0 [<ffffffff990012d1>] do_one_initcall+0x41/0x300 [<ffffffff9ae7c4b0>] kernel_init_freeable+0x320/0x470 [<ffffffff99b231f6>] kernel_init+0x16/0x1b0 [<ffffffff99042e6d>] ret_from_fork+0x2d/0x50 Fix this by freeing the CPU idle device after unregistering it.
In the Linux kernel, the following vulnerability has been resolved: x86, relocs: Ignore relocations in .notes section When building with CONFIG_XEN_PV=y, .text symbols are emitted into the .notes section so that Xen can find the "startup_xen" entry point. This information is used prior to booting the kernel, so relocations are not useful. In fact, performing relocations against the .notes section means that the KASLR base is exposed since /sys/kernel/notes is world-readable. To avoid leaking the KASLR base without breaking unprivileged tools that are expecting to read /sys/kernel/notes, skip performing relocations in the .notes section. The values readable in .notes are then identical to those found in System.map.
A flaw was found in the filelock_init in fs/locks.c function in the Linux kernel. This issue can lead to host memory exhaustion due to memcg not limiting the number of Portable Operating System Interface (POSIX) file locks.
IBM WebSphere Application Server Liberty 17.0.0.3 through 24.0.0.4 is vulnerable to a denial of service, caused by sending a specially crafted request. A remote attacker could exploit this vulnerability to cause the server to consume memory resources. IBM X-Force ID: 280400.
Vulnerability in the Java VM component of Oracle Database Server. Supported versions that are affected are 19.3-19.23, 21.3-21.14 and 23.4. Difficult to exploit vulnerability allows low privileged attacker having Create Session, Create Procedure privilege with network access via Oracle Net to compromise Java VM. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java VM. CVSS 3.1 Base Score 3.1 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L).
IBM CICS TX 11.1 could allow a local user to cause a denial of service due to improper load handling. IBM X-Force ID: 229437.
In the Linux kernel, the following vulnerability has been resolved: nvmet: fix freeing unallocated p2pmem In case p2p device was found but the p2p pool is empty, the nvme target is still trying to free the sgl from the p2p pool instead of the regular sgl pool and causing a crash (BUG() is called). Instead, assign the p2p_dev for the request only if it was allocated from p2p pool. This is the crash that was caused: [Sun May 30 19:13:53 2021] ------------[ cut here ]------------ [Sun May 30 19:13:53 2021] kernel BUG at lib/genalloc.c:518! [Sun May 30 19:13:53 2021] invalid opcode: 0000 [#1] SMP PTI ... [Sun May 30 19:13:53 2021] kernel BUG at lib/genalloc.c:518! ... [Sun May 30 19:13:53 2021] RIP: 0010:gen_pool_free_owner+0xa8/0xb0 ... [Sun May 30 19:13:53 2021] Call Trace: [Sun May 30 19:13:53 2021] ------------[ cut here ]------------ [Sun May 30 19:13:53 2021] pci_free_p2pmem+0x2b/0x70 [Sun May 30 19:13:53 2021] pci_p2pmem_free_sgl+0x4f/0x80 [Sun May 30 19:13:53 2021] nvmet_req_free_sgls+0x1e/0x80 [nvmet] [Sun May 30 19:13:53 2021] kernel BUG at lib/genalloc.c:518! [Sun May 30 19:13:53 2021] nvmet_rdma_release_rsp+0x4e/0x1f0 [nvmet_rdma] [Sun May 30 19:13:53 2021] nvmet_rdma_send_done+0x1c/0x60 [nvmet_rdma]
In the Linux kernel, the following vulnerability has been resolved: net: lantiq: fix memory corruption in RX ring In a situation where memory allocation or dma mapping fails, an invalid address is programmed into the descriptor. This can lead to memory corruption. If the memory allocation fails, DMA should reuse the previous skb and mapping and drop the packet. This patch also increments rx drop counter.
In the Linux kernel, the following vulnerability has been resolved: ext4: avoid online resizing failures due to oversized flex bg When we online resize an ext4 filesystem with a oversized flexbg_size, mkfs.ext4 -F -G 67108864 $dev -b 4096 100M mount $dev $dir resize2fs $dev 16G the following WARN_ON is triggered: ================================================================== WARNING: CPU: 0 PID: 427 at mm/page_alloc.c:4402 __alloc_pages+0x411/0x550 Modules linked in: sg(E) CPU: 0 PID: 427 Comm: resize2fs Tainted: G E 6.6.0-rc5+ #314 RIP: 0010:__alloc_pages+0x411/0x550 Call Trace: <TASK> __kmalloc_large_node+0xa2/0x200 __kmalloc+0x16e/0x290 ext4_resize_fs+0x481/0xd80 __ext4_ioctl+0x1616/0x1d90 ext4_ioctl+0x12/0x20 __x64_sys_ioctl+0xf0/0x150 do_syscall_64+0x3b/0x90 ================================================================== This is because flexbg_size is too large and the size of the new_group_data array to be allocated exceeds MAX_ORDER. Currently, the minimum value of MAX_ORDER is 8, the minimum value of PAGE_SIZE is 4096, the corresponding maximum number of groups that can be allocated is: (PAGE_SIZE << MAX_ORDER) / sizeof(struct ext4_new_group_data) ≈ 21845 And the value that is down-aligned to the power of 2 is 16384. Therefore, this value is defined as MAX_RESIZE_BG, and the number of groups added each time does not exceed this value during resizing, and is added multiple times to complete the online resizing. The difference is that the metadata in a flex_bg may be more dispersed.
Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Options). Supported versions that are affected are 8.0.34 and prior and 8.1.0. Difficult to exploit vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.1 Base Score 4.4 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:H).
IBM Cognos Analytics 11.2.0, 11.2.1, 11.2.2, 11.2.3, 11.2.4, 12.0.0, 12.0.1, 12.0.2, 12.0.3, and 12.0.4 could allow an authenticated user to cause a denial of service by sending a specially crafted request that would exhaust memory resources.
Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Hotspot). Supported versions that are affected are Oracle Java SE: 8u401, 8u401-perf, 11.0.22, 17.0.10, 21.0.2, 22; Oracle GraalVM for JDK: 17.0.10, 21.0.2, 22; Oracle GraalVM Enterprise Edition: 20.3.13 and 21.3.9. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 3.7 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L).
When reading a specially crafted 7Z archive, Compress can be made to allocate large amounts of memory that finally leads to an out of memory error even for very small inputs. This could be used to mount a denial of service attack against services that use Compress' sevenz package.
When reading a specially crafted TAR archive, Compress can be made to allocate large amounts of memory that finally leads to an out of memory error even for very small inputs. This could be used to mount a denial of service attack against services that use Compress' tar package.
In the Linux kernel, the following vulnerability has been resolved: powerpc/lib: Validate size for vector operations Some of the fp/vmx code in sstep.c assume a certain maximum size for the instructions being emulated. The size of those operations however is determined separately in analyse_instr(). Add a check to validate the assumption on the maximum size of the operations, so as to prevent any unintended kernel stack corruption.
A flaw was found in the Linux kernel. Measuring usage of the shared memory does not scale with large shared memory segment counts which could lead to resource exhaustion and DoS.
In the Linux kernel, the following vulnerability has been resolved: HID: sony: Fix a potential memory leak in sony_probe() If an error occurs after a successful usb_alloc_urb() call, usb_free_urb() should be called.
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_codec: Fix leaking content of local_codecs The following memory leak can be observed when the controller supports codecs which are stored in local_codecs list but the elements are never freed: unreferenced object 0xffff88800221d840 (size 32): comm "kworker/u3:0", pid 36, jiffies 4294898739 (age 127.060s) hex dump (first 32 bytes): f8 d3 02 03 80 88 ff ff 80 d8 21 02 80 88 ff ff ..........!..... 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffffb324f557>] __kmalloc+0x47/0x120 [<ffffffffb39ef37d>] hci_codec_list_add.isra.0+0x2d/0x160 [<ffffffffb39ef643>] hci_read_codec_capabilities+0x183/0x270 [<ffffffffb39ef9ab>] hci_read_supported_codecs+0x1bb/0x2d0 [<ffffffffb39f162e>] hci_read_local_codecs_sync+0x3e/0x60 [<ffffffffb39ff1b3>] hci_dev_open_sync+0x943/0x11e0 [<ffffffffb396d55d>] hci_power_on+0x10d/0x3f0 [<ffffffffb30c99b4>] process_one_work+0x404/0x800 [<ffffffffb30ca134>] worker_thread+0x374/0x670 [<ffffffffb30d9108>] kthread+0x188/0x1c0 [<ffffffffb304db6b>] ret_from_fork+0x2b/0x50 [<ffffffffb300206a>] ret_from_fork_asm+0x1a/0x30
Certain DNSSEC aspects of the DNS protocol (in RFC 4033, 4034, 4035, 6840, and related RFCs) allow remote attackers to cause a denial of service (CPU consumption) via one or more DNSSEC responses, aka the "KeyTrap" issue. One of the concerns is that, when there is a zone with many DNSKEY and RRSIG records, the protocol specification implies that an algorithm must evaluate all combinations of DNSKEY and RRSIG records.
Redis is an open source, in-memory database that persists on disk. When parsing an incoming Redis Standard Protocol (RESP) request, Redis allocates memory according to user-specified values which determine the number of elements (in the multi-bulk header) and size of each element (in the bulk header). An attacker delivering specially crafted requests over multiple connections can cause the server to allocate significant amount of memory. Because the same parsing mechanism is used to handle authentication requests, this vulnerability can also be exploited by unauthenticated users. The problem is fixed in Redis versions 6.2.6, 6.0.16 and 5.0.14. An additional workaround to mitigate this problem without patching the redis-server executable is to block access to prevent unauthenticated users from connecting to Redis. This can be done in different ways: Using network access control tools like firewalls, iptables, security groups, etc. or Enabling TLS and requiring users to authenticate using client side certificates.
IBM Db2 for Linux, UNIX and Windows (includes DB2 Connect Server) 11.5.0 through 11.5.9 and 12.1.0 through 12.1.1 could allow an authenticated user to cause a denial of service when using Q replication due to the improper allocation of CPU resources.
IBM Db2 for Linux, UNIX and Windows (includes Db2 Connect Server) 10.5, 11.1, and 11.5 could allow an authenticated user with CONNECT privileges to cause a denial of service using a specially crafted query. IBM X-Force ID: 272644.
A Denial-of-Service (DoS) vulnerability was discovered in F-Secure Atlant whereby the fsicapd component used in certain F-Secure products while scanning larger packages/fuzzed files consume too much memory eventually can crash the scanning engine. The exploit can be triggered remotely by an attacker.
IBM Security Guardium 12.0 could allow a privileged user to perform unauthorized actions that could lead to a denial of service. IBM X-Force ID: 271690.
IBM Secure External Authentication Server 2.4.3.2, 6.0.1, 6.0.2 and IBM Secure Proxy 3.4.3.2, 6.0.1, 6.0.2 could allow a remote user to consume resources causing a denial of service due to a resource leak.
An elevation of privilege vulnerability in the Qualcomm Secure Execution Environment Communicator driver could enable a local malicious application to execute arbitrary code within the context of the kernel. This issue is rated as High because it first requires compromising a privileged process. Product: Android. Versions: Kernel-3.18. Android ID: A-34389303. References: QC-CR#1061845.
The ZlibDecoders in Netty 4.1.x before 4.1.46 allow for unbounded memory allocation while decoding a ZlibEncoded byte stream. An attacker could send a large ZlibEncoded byte stream to the Netty server, forcing the server to allocate all of its free memory to a single decoder.
Vulnerability in the MySQL Enterprise Firewall product of Oracle MySQL (component: Firewall). Supported versions that are affected are 8.0.40 and prior, 8.4.3 and prior and 9.1.0 and prior. Difficult to exploit vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Enterprise Firewall. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Enterprise Firewall. CVSS 3.1 Base Score 4.4 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:H).
An issue was discovered in drivers/usb/storage/ene_ub6250.c for the ENE UB6250 reader driver in the Linux kernel before 6.2.5. An object could potentially extend beyond the end of an allocation.
Excessive memory consumption in MS-WSP dissector in Wireshark 3.4.0 to 3.4.4 and 3.2.0 to 3.2.12 allows denial of service via packet injection or crafted capture file
Crash in USB HID dissector in Wireshark 3.4.0 to 3.4.2 allows denial of service via packet injection or crafted capture file
Some Dahua software products have a vulnerability of unauthenticated un-throttled ICMP requests on remote DSS Server. After bypassing the firewall access control policy, by sending a specific crafted packet to the vulnerable interface, an attacker could exploit the victim server to launch ICMP request attack to the designated target host.
In the Linux kernel, the following vulnerability has been resolved: scsi: storvsc: Ratelimit warning logs to prevent VM denial of service If there's a persistent error in the hypervisor, the SCSI warning for failed I/O can flood the kernel log and max out CPU utilization, preventing troubleshooting from the VM side. Ratelimit the warning so it doesn't DoS the VM.
An issue was discovered in signotec signoPAD-API/Web (formerly Websocket Pad Server) before 3.1.1 on Windows. It is possible to perform a Denial of Service attack because the application doesn't limit the number of opened WebSocket sockets. If a victim visits an attacker-controlled website, this vulnerability can be exploited.
The BPG parser in versions of Apache Tika before 1.28.2 and 2.4.0 may allocate an unreasonable amount of memory on carefully crafted files.
In the Linux kernel, the following vulnerability has been resolved: powerpc/code-patching: Fix KASAN hit by not flagging text patching area as VM_ALLOC Erhard reported the following KASAN hit while booting his PowerMac G4 with a KASAN-enabled kernel 6.13-rc6: BUG: KASAN: vmalloc-out-of-bounds in copy_to_kernel_nofault+0xd8/0x1c8 Write of size 8 at addr f1000000 by task chronyd/1293 CPU: 0 UID: 123 PID: 1293 Comm: chronyd Tainted: G W 6.13.0-rc6-PMacG4 #2 Tainted: [W]=WARN Hardware name: PowerMac3,6 7455 0x80010303 PowerMac Call Trace: [c2437590] [c1631a84] dump_stack_lvl+0x70/0x8c (unreliable) [c24375b0] [c0504998] print_report+0xdc/0x504 [c2437610] [c050475c] kasan_report+0xf8/0x108 [c2437690] [c0505a3c] kasan_check_range+0x24/0x18c [c24376a0] [c03fb5e4] copy_to_kernel_nofault+0xd8/0x1c8 [c24376c0] [c004c014] patch_instructions+0x15c/0x16c [c2437710] [c00731a8] bpf_arch_text_copy+0x60/0x7c [c2437730] [c0281168] bpf_jit_binary_pack_finalize+0x50/0xac [c2437750] [c0073cf4] bpf_int_jit_compile+0xb30/0xdec [c2437880] [c0280394] bpf_prog_select_runtime+0x15c/0x478 [c24378d0] [c1263428] bpf_prepare_filter+0xbf8/0xc14 [c2437990] [c12677ec] bpf_prog_create_from_user+0x258/0x2b4 [c24379d0] [c027111c] do_seccomp+0x3dc/0x1890 [c2437ac0] [c001d8e0] system_call_exception+0x2dc/0x420 [c2437f30] [c00281ac] ret_from_syscall+0x0/0x2c --- interrupt: c00 at 0x5a1274 NIP: 005a1274 LR: 006a3b3c CTR: 005296c8 REGS: c2437f40 TRAP: 0c00 Tainted: G W (6.13.0-rc6-PMacG4) MSR: 0200f932 <VEC,EE,PR,FP,ME,IR,DR,RI> CR: 24004422 XER: 00000000 GPR00: 00000166 af8f3fa0 a7ee3540 00000001 00000000 013b6500 005a5858 0200f932 GPR08: 00000000 00001fe9 013d5fc8 005296c8 2822244c 00b2fcd8 00000000 af8f4b57 GPR16: 00000000 00000001 00000000 00000000 00000000 00000001 00000000 00000002 GPR24: 00afdbb0 00000000 00000000 00000000 006e0004 013ce060 006e7c1c 00000001 NIP [005a1274] 0x5a1274 LR [006a3b3c] 0x6a3b3c --- interrupt: c00 The buggy address belongs to the virtual mapping at [f1000000, f1002000) created by: text_area_cpu_up+0x20/0x190 The buggy address belongs to the physical page: page: refcount:1 mapcount:0 mapping:00000000 index:0x0 pfn:0x76e30 flags: 0x80000000(zone=2) raw: 80000000 00000000 00000122 00000000 00000000 00000000 ffffffff 00000001 raw: 00000000 page dumped because: kasan: bad access detected Memory state around the buggy address: f0ffff00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 f0ffff80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >f1000000: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ^ f1000080: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f1000100: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ================================================================== f8 corresponds to KASAN_VMALLOC_INVALID which means the area is not initialised hence not supposed to be used yet. Powerpc text patching infrastructure allocates a virtual memory area using get_vm_area() and flags it as VM_ALLOC. But that flag is meant to be used for vmalloc() and vmalloc() allocated memory is not supposed to be used before a call to __vmalloc_node_range() which is never called for that area. That went undetected until commit e4137f08816b ("mm, kasan, kmsan: instrument copy_from/to_kernel_nofault") The area allocated by text_area_cpu_up() is not vmalloc memory, it is mapped directly on demand when needed by map_kernel_page(). There is no VM flag corresponding to such usage, so just pass no flag. That way the area will be unpoisonned and usable immediately.
CiphertextHeader.java in Cryptacular 1.2.3, as used in Apereo CAS and other products, allows attackers to trigger excessive memory allocation during a decode operation, because the nonce array length associated with "new byte" may depend on untrusted input within the header of encoded data.
Allocation of resources without limits or throttling in Windows DirectX allows an authorized attacker to deny service over a network.
Allocation of Resources Without Limits or Throttling vulnerability in Hitachi Ops Center Common Services on Linux allows DoS.This issue affects Hitachi Ops Center Common Services: before 10.9.3-00.
This affects the package com.fasterxml.jackson.dataformat:jackson-dataformat-cbor from 0 and before 2.11.4, from 2.12.0-rc1 and before 2.12.1. Unchecked allocation of byte buffer can cause a java.lang.OutOfMemoryError exception.
IBM WebSphere Application Server Liberty 18.0.0.2 through 25.0.0.8 is vulnerable to a denial of service, caused by sending a specially-crafted request. A remote attacker could exploit this vulnerability to cause the server to consume memory resources.
IBM 4769 Developers Toolkit 7.0.0 through 7.5.52 could allow a remote attacker to cause a denial of service in the Hardware Security Module (HSM) due to improper memory allocation of an excessive size.
A flaw was found in the way NSS handled CCS (ChangeCipherSpec) messages in TLS 1.3. This flaw allows a remote attacker to send multiple CCS messages, causing a denial of service for servers compiled with the NSS library. The highest threat from this vulnerability is to system availability. This flaw affects NSS versions before 3.58.
IBM InfoSphere Information Server 11.7.0.0 through 11.7.1.6 could allow a remote attacker to cause a denial of service due to insufficient validation of incoming request resources.
Some HTTP/2 implementations are vulnerable to unconstrained interal data buffering, potentially leading to a denial of service. The attacker opens the HTTP/2 window so the peer can send without constraint; however, they leave the TCP window closed so the peer cannot actually write (many of) the bytes on the wire. The attacker then sends a stream of requests for a large response object. Depending on how the servers queue the responses, this can consume excess memory, CPU, or both.