Cisco ASR 1000 devices with software before 3.8S, when BDI routing is enabled, allow remote attackers to cause a denial of service (device reload) via crafted (1) broadcast or (2) multicast ICMP packets with fragmentation, aka Bug ID CSCub55948.
Cisco NX-OS 5.2 and 6.1 on Nexus 7000 series switches allows remote attackers to cause a denial of service (process crash or packet loss) via a large number of ARP packets, aka Bug ID CSCtr44822.
dot11t/t_if_dot11_hal_ath.c in Cisco IOS 12.3, 12.4, 15.0, and 15.1 allows remote attackers to cause a denial of service (assertion failure and reboot) via 802.11 wireless traffic, as demonstrated by a video call from Apple iOS 5.0 on an iPhone 4S, aka Bug ID CSCtt94391.
Cisco IOS before 15.1(1)SY on ASR 1000 devices, when Multicast Listener Discovery (MLD) tracking is enabled for IPv6, allows remote attackers to cause a denial of service (device reload) via crafted MLD packets, aka Bug ID CSCtz28544.
Unspecified vulnerability in Cisco IOS 12.2SRE before 12.2(33)SRE4, 15.0, and 15.1, and IOS XE 2.1.x through 3.3.x, when an MPLS domain is configured, allows remote attackers to cause a denial of service (device crash) via a crafted IPv6 packet, related to an expired MPLS TTL, aka Bug ID CSCto07919.
A vulnerability in the wireless controller manager of Cisco IOS XE could allow an unauthenticated, adjacent attacker to cause a restart of the switch and result in a denial of service (DoS) condition. The vulnerability is due to insufficient input validation. An attacker could exploit this vulnerability by submitting a crafted association request. An exploit could allow the attacker to cause the switch to restart. This vulnerability affects Cisco Catalyst 3650 and 3850 switches running IOS XE Software versions 16.1 through 16.3.3, and acting as wireless LAN controllers (WLC). Cisco Bug IDs: CSCvd45069.
The Adaptive Wireless Intrusion Prevention System (wIPS) feature on Cisco Wireless LAN Controller (WLC) devices before 8.0.140.0, 8.1.x and 8.2.x before 8.2.121.0, and 8.3.x before 8.3.102.0 allows remote attackers to cause a denial of service (device restart) via a malformed wIPS packet, aka Bug ID CSCuz40263.
The rate-limit feature in the 802.11 protocol implementation on Cisco Aironet 1800, 2800, and 3800 devices with software before 8.2.121.0 and 8.3.x before 8.3.102.0 allows remote attackers to cause a denial of service (device reload) via crafted 802.11 frames, aka Bug ID CSCva06192.
Cisco Nexus 1000v Application Virtual Switch (AVS) devices before 5.2(1)SV3(1.5i) allow remote attackers to cause a denial of service (ESXi hypervisor crash and purple screen) via a crafted Cisco Discovery Protocol packet that triggers an out-of-bounds memory access, aka Bug ID CSCuw57985.
Cisco IOS 15.2(1)T1.11 and 15.2(2)TST allows remote attackers to cause a denial of service (device crash) via a crafted LLDP packet, aka Bug ID CSCun63132.
The Neighbor Discovery (ND) protocol implementation in the IPv6 stack in Cisco IOS 15.3(3)S0.1 on ASR devices mishandles internal tables, which allows remote attackers to cause a denial of service (memory consumption or device crash) via a flood of crafted ND messages, aka Bug ID CSCup28217.
The ARP implementation in Cisco NX-OS on Nexus 1000V devices for VMware vSphere 5.2(1)SV3(1.4), Nexus 3000 devices 7.3(0)ZD(0.47), Nexus 4000 devices 4.1(2)E1, Nexus 9000 devices 7.3(0)ZD(0.61), and MDS 9000 devices 7.0(0)HSK(0.353) and SAN-OS NX-OS on MDS 9000 devices 7.0(0)HSK(0.353) allows remote attackers to cause a denial of service (ARP process restart) via crafted packet-header fields, aka Bug ID CSCut25292.
Cisco IOS 15.2(3)E and earlier and IOS XE 3.6(2)E and earlier allow remote attackers to cause a denial of service (functionality loss) via crafted Cisco Discovery Protocol (CDP) packets, aka Bug ID CSCuu25770.
Cisco IOS XE 16.1.1 allows remote attackers to cause a denial of service (device reload) via a packet with the 00-00-00-00-00-00 source MAC address, aka Bug ID CSCux48405.
A vulnerability in the implementation of the Intermediate System–to–Intermediate System (IS–IS) routing protocol functionality in Cisco IOS XR Software could allow an unauthenticated attacker who is in the same IS–IS area to cause a denial of service (DoS) condition. The vulnerability is due to incorrect processing of crafted IS–IS link-state protocol data units (PDUs). An attacker could exploit this vulnerability by sending a crafted link-state PDU to an affected system to be processed. A successful exploit could allow the attacker to cause all routers within the IS–IS area to unexpectedly restart the IS–IS process, resulting in a DoS condition. This vulnerability affects Cisco devices if they are running a vulnerable release of Cisco IOS XR Software earlier than Release 6.6.3 and are configured with the IS–IS routing protocol. Cisco has confirmed that this vulnerability affects both Cisco IOS XR 32-bit Software and Cisco IOS XR 64-bit Software.
Buffer overflow in Cisco NX-OS on Nexus 1000V devices for VMware vSphere 7.3(0)ZN(0.9); Nexus 3000 devices 6.0(2)U5(1.41), 7.0(3)I2(0.373), and 7.3(0)ZN(0.83); Nexus 4000 devices 4.1(2)E1(1b); Nexus 7000 devices 6.2(14)S1; Nexus 9000 devices 7.3(0)ZN(0.9); and MDS 9000 devices 6.2 (13) and 7.1(0)ZN(91.99) and MDS SAN-OS 7.1(0)ZN(91.99) allows remote attackers to cause a denial of service (device outage) via a crafted ARP packet, related to incorrect MTU validation, aka Bug IDs CSCuv71933, CSCuv61341, CSCuv61321, CSCuu78074, CSCut37060, CSCuv61266, CSCuv61351, CSCuv61358, and CSCuv61366.
A vulnerability in Simple Network Management Protocol (SNMP) trap generation for wireless clients of Cisco IOS XE Wireless Controller Software for the Catalyst 9000 Family could allow an unauthenticated, adjacent attacker to cause an affected device to unexpectedly reload, resulting in a denial of service (DoS) condition on the device. This vulnerability is due to a lack of input validation of the information used to generate an SNMP trap related to a wireless client connection event. An attacker could exploit this vulnerability by sending an 802.1x packet with crafted parameters during the wireless authentication setup phase of a connection. A successful exploit could allow the attacker to cause the device to reload, resulting in a DoS condition.
Buffer overflow in Cisco NX-OS on Nexus 1000V devices for VMware vSphere 7.3(0)ZN(0.81), Nexus 3000 devices 7.3(0)ZN(0.81), Nexus 4000 devices 4.1(2)E1(1c), Nexus 7000 devices 7.2(0)N1(0.1), and Nexus 9000 devices 7.3(0)ZN(0.81) allows remote attackers to cause a denial of service (IGMP process restart) via a malformed IGMPv3 packet that is mishandled during memory allocation, aka Bug IDs CSCuv69713, CSCuv69717, CSCuv69723, CSCuv69732, and CSCuv48908.
A vulnerability in the Link Layer Discovery Protocol (LLDP) feature of Cisco Webex Room Phone and Cisco Webex Share devices could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to insufficient resource allocation. An attacker could exploit this vulnerability by sending crafted LLDP traffic to an affected device. A successful exploit could allow the attacker to exhaust the memory resources of the affected device, resulting in a crash of the LLDP process. If the affected device is configured to support LLDP only, this could cause an interruption to inbound and outbound calling. By default, these devices are configured to support both Cisco Discovery Protocol and LLDP. To recover operational state, the affected device needs a manual restart.
A vulnerability in the handling of Inter-Access Point Protocol (IAPP) messages by Cisco Wireless LAN Controller (WLC) Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition. The vulnerability exist because the software improperly validates input on fields within IAPP messages. An attacker could exploit the vulnerability by sending malicious IAPP messages to an affected device. A successful exploit could allow the attacker to cause the Cisco WLC Software to reload, resulting in a DoS condition. Software versions prior to 8.2.170.0, 8.5.150.0, and 8.8.100.0 are affected.
The Cisco Wireless LAN Controller (WLC), Cisco Catalyst 6500 Wireless Services Module (WiSM), and Cisco Catalyst 3750 Integrated Wireless LAN Controller with software 4.x before 4.2.176.0 and 5.x before 5.2 allow remote attackers to cause a denial of service (web authentication outage or device reload) via unspecified network traffic, as demonstrated by a vulnerability scanner.
A vulnerability in the Cisco Discovery Protocol of Cisco Unified Communications Manager (Unified CM) and Cisco Unified Communications Manager Session Management Edition (Unified CM SME) could allow an unauthenticated, adjacent attacker to cause a kernel panic on an affected system, resulting in a denial of service (DoS) condition. This vulnerability is due to incorrect processing of certain Cisco Discovery Protocol packets. An attacker could exploit this vulnerability by continuously sending certain Cisco Discovery Protocol packets to an affected device. A successful exploit could allow the attacker to cause a kernel panic on the system that is running the affected software, resulting in a DoS condition.
A vulnerability in the integrated wireless access point (AP) packet processing of the Cisco 1000 Series Connected Grid Router (CGR1K) could allow an unauthenticated, adjacent attacker to cause a denial of service condition on an affected device. This vulnerability is due to insufficient input validation of received traffic. An attacker could exploit this vulnerability by sending crafted traffic to an affected device. A successful exploit could allow the attacker to cause the integrated AP to stop processing traffic, resulting in a DoS condition. It may be necessary to manually reload the CGR1K to restore AP operation.
A vulnerability in the authentication functionality of Cisco Wireless LAN Controller (WLC) AireOS Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to insufficient error validation. An attacker could exploit this vulnerability by sending crafted packets to an affected device. A successful exploit could allow the attacker to cause the wireless LAN controller to crash, resulting in a DoS condition. Note: This vulnerability affects only devices that have Federal Information Processing Standards (FIPS) mode enabled.
A vulnerability in the Cisco Discovery Protocol service of Cisco FXOS Software and Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to cause the service to restart, resulting in a denial of service (DoS) condition. This vulnerability is due to improper handling of Cisco Discovery Protocol messages that are processed by the Cisco Discovery Protocol service. An attacker could exploit this vulnerability by sending a series of malicious Cisco Discovery Protocol messages to an affected device. A successful exploit could allow the attacker to cause the Cisco Discovery Protocol service to fail and restart. In rare conditions, repeated failures of the process could occur, which could cause the entire device to restart.
A vulnerability in the 802.11 association frame validation of Cisco Catalyst 9100 Series Access Points (APs) could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to insufficient input validation of certain parameters within association request frames received by the AP. An attacker could exploit this vulnerability by sending a crafted 802.11 association request to a nearby device. An exploit could allow the attacker to unexpectedly reload the device, resulting in a DoS condition.
A vulnerability in the Cisco Discovery Protocol functionality of Cisco ATA 190 Series Adaptive Telephone Adapter firmware could allow an unauthenticated, adjacent attacker to cause a DoS condition of an affected device. This vulnerability is due to missing length validation of certain Cisco Discovery Protocol packet header fields. An attacker could exploit this vulnerability by sending crafted Cisco Discovery Protocol packets to an affected device. A successful exploit could allow the attacker to cause the device to exhaust available memory and cause the service to restart. Cisco has released firmware updates that address this vulnerability.
A vulnerability in 802.11 Wireless Multimedia Extensions (WME) action frame processing in Cisco Wireless LAN Controller (WLC) Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition. The vulnerability is due to incomplete input validation of the 802.11 WME packet header. An attacker could exploit this vulnerability by sending malformed 802.11 WME frames to a targeted device. A successful exploit could allow the attacker to cause the WLC to reload unexpectedly. The fixed versions are 8.0.140.0, 8.2.130.0, and 8.3.111.0. Cisco Bug IDs: CSCva86353.
A vulnerability in the Layer 2 punt code of Cisco IOS XR Software running on Cisco ASR 9000 Series Aggregation Services Routers could allow an unauthenticated, adjacent attacker to cause the affected line card to reboot. This vulnerability is due to incorrect handling of specific Ethernet frames that cause a spin loop that can make the network processors unresponsive. An attacker could exploit this vulnerability by sending specific types of Ethernet frames on the segment where the affected line cards are attached. A successful exploit could allow the attacker to cause the affected line card to reboot.
A vulnerability in the WLAN Control Protocol (WCP) implementation for Cisco Aironet Access Point (AP) software could allow an unauthenticated, adjacent attacker to cause a reload of an affected device, resulting in a denial of service (DoS) condition. This vulnerability is due to incorrect error handling when an affected device receives an unexpected 802.11 frame. An attacker could exploit this vulnerability by sending certain 802.11 frames over the wireless network to an interface on an affected AP. A successful exploit could allow the attacker to cause a packet buffer leak. This could eventually result in buffer allocation failures, which would trigger a reload of the affected device.
The ISDN implementation in Cisco IOS 15.3S allows remote attackers to cause a denial of service (device reload) via malformed Q931 SETUP messages, aka Bug ID CSCut37890.
A vulnerability in the ingress packet processing path of Cisco Firepower Threat Defense (FTD) Software for interfaces that are configured either as Inline Pair or in Passive mode could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition. The vulnerability is due to insufficient validation when Ethernet frames are processed. An attacker could exploit this vulnerability by sending malicious Ethernet frames through an affected device. A successful exploit could allow the attacker do either of the following: Fill the /ngfw partition on the device: A full /ngfw partition could result in administrators being unable to log in to the device (including logging in through the console port) or the device being unable to boot up correctly. Note: Manual intervention is required to recover from this situation. Customers are advised to contact the Cisco Technical Assistance Center (TAC) to help recover a device in this condition. Cause a process crash: The process crash would cause the device to reload. No manual intervention is necessary to recover the device after the reload.
Multiple vulnerabilities in the Link Layer Discovery Protocol (LLDP) implementation for Cisco Video Surveillance 7000 Series IP Cameras could allow an unauthenticated, adjacent attacker to cause a memory leak, which could lead to a denial of service (DoS) condition on an affected device. These vulnerabilities are due to incorrect processing of certain LLDP packets at ingress time. An attacker could exploit these vulnerabilities by sending crafted LLDP packets to an affected device. A successful exploit could allow the attacker to cause the affected device to continuously consume memory, which could cause the device to crash and reload, resulting in a DoS condition. Note: LLDP is a Layer 2 protocol. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
Multiple vulnerabilities in the Link Layer Discovery Protocol (LLDP) implementation for Cisco Video Surveillance 7000 Series IP Cameras could allow an unauthenticated, adjacent attacker to cause a memory leak, which could lead to a denial of service (DoS) condition on an affected device. These vulnerabilities are due to incorrect processing of certain LLDP packets at ingress time. An attacker could exploit these vulnerabilities by sending crafted LLDP packets to an affected device. A successful exploit could allow the attacker to cause the affected device to continuously consume memory, which could cause the device to crash and reload, resulting in a DoS condition. Note: LLDP is a Layer 2 protocol. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
Multiple vulnerabilities in the implementation of the Cisco Discovery Protocol and Link Layer Discovery Protocol (LLDP) for Cisco Video Surveillance 7000 Series IP Cameras could allow an unauthenticated, adjacent attacker to cause a memory leak, which could lead to a denial of service (DoS) condition on an affected device. These vulnerabilities are due to incorrect processing of certain Cisco Discovery Protocol and LLDP packets at ingress time. An attacker could exploit these vulnerabilities by sending crafted Cisco Discovery Protocol or LLDP packets to an affected device. A successful exploit could allow the attacker to cause the affected device to continuously consume memory, which could cause the device to crash and reload, resulting in a DoS condition. Note: Cisco Discovery Protocol and LLDP are Layer 2 protocols. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
A vulnerability in the Cisco Discovery Protocol implementation for Cisco Video Surveillance 8000 Series IP Cameras could allow an unauthenticated, adjacent attacker to cause an affected IP camera to reload. The vulnerability is due to missing checks when Cisco Discovery Protocol messages are processed. An attacker could exploit this vulnerability by sending a malicious Cisco Discovery Protocol packet to an affected IP camera. A successful exploit could allow the attacker to cause the affected IP camera to reload unexpectedly, resulting in a denial of service (DoS) condition. Note: Cisco Discovery Protocol is a Layer 2 protocol. To exploit this vulnerability, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
Multiple vulnerabilities exist in the Link Layer Discovery Protocol (LLDP) implementation for Cisco Small Business RV Series Routers. An unauthenticated, adjacent attacker could execute arbitrary code or cause an affected router to leak system memory or reload. A memory leak or device reload would cause a denial of service (DoS) condition on an affected device. For more information about these vulnerabilities, see the Details section of this advisory. Note: LLDP is a Layer 2 protocol. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
A vulnerability in the implementation of 802.11v Basic Service Set (BSS) Transition Management functionality in Cisco Wireless LAN Controllers could allow an unauthenticated, adjacent attacker to cause an affected device to reload unexpectedly, resulting in a denial of service (DoS) condition. The vulnerability is due to insufficient input validation of 802.11v BSS Transition Management Response packets that an affected device receives from wireless clients. An attacker could exploit this vulnerability by sending a malformed 802.11v BSS Transition Management Response packet to an affected device. A successful exploit could allow the attacker to cause the affected device to reload unexpectedly, resulting in a DoS condition. Cisco Bug IDs: CSCvb57803.
Multiple vulnerabilities in the Control and Provisioning of Wireless Access Points (CAPWAP) protocol processing of Cisco IOS XE Software for Cisco Catalyst 9800 Series Wireless Controllers could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition of an affected device. These vulnerabilities are due to insufficient validation of CAPWAP packets. An attacker could exploit these vulnerabilities by sending a malformed CAPWAP packet to an affected device. A successful exploit could allow the attacker to cause the affected device to crash and reload, resulting in a DoS condition on the affected device.
A vulnerability in the deep packet inspection (DPI) engine of Cisco SD-WAN vEdge Routers could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on an affected system. The vulnerability is due to insufficient handling of malformed packets. An attacker could exploit this vulnerability by sending crafted packets through an affected device. A successful exploit could allow the attacker to cause the device to reboot, resulting in a DoS condition.
A vulnerability in the ISDN subsystem of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, adjacent attacker to cause a reload of an affected device, resulting in a denial of service (DoS) condition. The vulnerability is due to insufficient input validation when the ISDN Q.931 messages are processed. An attacker could exploit this vulnerability by sending a malicious ISDN Q.931 message to an affected device. A successful exploit could allow the attacker to cause the process to crash, resulting in a reload of the affected device.
A vulnerability in the Secure Sockets Layer (SSL) VPN functionality of the Cisco Adaptive Security Appliance (ASA) Software could allow an unauthenticated, remote attacker to cause a reload of the affected system or to remotely execute code. The vulnerability is due to an attempt to double free a region of memory when the webvpn feature is enabled on the Cisco ASA device. An attacker could exploit this vulnerability by sending multiple, crafted XML packets to a webvpn-configured interface on the affected system. An exploit could allow the attacker to execute arbitrary code and obtain full control of the system, or cause a reload of the affected device. This vulnerability affects Cisco ASA Software that is running on the following Cisco products: 3000 Series Industrial Security Appliance (ISA), ASA 5500 Series Adaptive Security Appliances, ASA 5500-X Series Next-Generation Firewalls, ASA Services Module for Cisco Catalyst 6500 Series Switches and Cisco 7600 Series Routers, ASA 1000V Cloud Firewall, Adaptive Security Virtual Appliance (ASAv), Firepower 2100 Series Security Appliance, Firepower 4110 Security Appliance, Firepower 9300 ASA Security Module, Firepower Threat Defense Software (FTD). Cisco Bug IDs: CSCvg35618.
A vulnerability in Simple Network Management Protocol (SNMP) subsystem of Cisco IOS XE Software could allow an authenticated, remote attacker to cause a denial of service (DoS) condition. The vulnerability is due to improper management of memory resources, referred to as a double free. An attacker could exploit this vulnerability by sending crafted SNMP packets to an affected device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition. To exploit this vulnerability via SNMP Version 2c or earlier, the attacker must know the SNMP read-only community string for an affected system. To exploit this vulnerability via SNMP Version 3, the attacker must know the user credentials for the affected system. This vulnerability affects Cisco devices that are running a vulnerable release of Cisco IOS XE Software, have been configured to be queried over SNMP, and have Network Address Translation (NAT) enabled. Cisco Bug IDs: CSCve75818.
A vulnerability in the generic routing encapsulation (GRE) tunnel decapsulation feature of Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to a memory handling error when GRE over IPv6 traffic is processed. An attacker could exploit this vulnerability by sending crafted GRE over IPv6 packets with either IPv4 or IPv6 payload through an affected device. A successful exploit could allow the attacker to cause the device to crash, resulting in a DoS condition.
Multiple vulnerabilities in the Cisco AnyConnect VPN server of Cisco Meraki MX and Cisco Meraki Z Series Teleworker Gateway devices could allow an unauthenticated, remote attacker to cause a DoS condition in the AnyConnect service on an affected device. These vulnerabilities are due to insufficient validation of client-supplied parameters while establishing an SSL VPN session. An attacker could exploit these vulnerabilities by sending a crafted HTTPS request to the VPN server of an affected device. A successful exploit could allow the attacker to cause the Cisco AnyConnect VPN server to restart, resulting in the failure of the established SSL VPN connections and forcing remote users to initiate a new VPN connection and reauthenticate. A sustained attack could prevent new SSL VPN connections from being established. Note: When the attack traffic stops, the Cisco AnyConnect VPN server recovers gracefully without requiring manual intervention.
Multiple vulnerabilities in the Control and Provisioning of Wireless Access Points (CAPWAP) protocol processing of Cisco IOS XE Software for Cisco Catalyst 9000 Family Wireless Controllers could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. These vulnerabilities are due to insufficient validation of CAPWAP packets. An attacker could exploit the vulnerabilities by sending a malformed CAPWAP packet to an affected device. A successful exploit could allow the attacker to cause the affected device to crash and reload, resulting in a DoS condition.
A vulnerability in the web user interface of Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause an affected device to reload. The vulnerability is due to a double-free-in-memory handling by the affected software when specific HTTP requests are processed. An attacker could exploit this vulnerability by sending specific HTTP requests to the web user interface of the affected software. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a denial of service (DoS) condition on an affected device. To exploit this vulnerability, the attacker must have access to the management interface of the affected software, which is typically connected to a restricted management network.
A vulnerability in the certificate processing of Cisco Secure Firewall Adaptive Security Appliance (ASA) Software and Cisco Secure Firewall Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause the device to reload unexpectedly, resulting in a denial of service (DoS) condition. This vulnerability is due to improper parsing of SSL/TLS certificates. An attacker could exploit this vulnerability by sending crafted DNS packets that match a static Network Address Translation (NAT) rule with DNS inspection enabled through an affected device. A successful exploit could allow the attacker to cause the device to reload, resulting in a DoS condition.
A vulnerability in the OLE2 file parser of Clam AntiVirus (ClamAV) versions 0.104.0 through 0.104.2 could allow an unauthenticated, remote attacker to cause a denial of service condition on an affected device.The vulnerability is due to incorrect use of the realloc function that may result in a double-free. An attacker could exploit this vulnerability by submitting a crafted OLE2 file to be scanned by ClamAV on the affected device. An exploit could allow the attacker to cause the ClamAV scanning process to crash, resulting in a denial of service condition.
Multiple vulnerabilities in the Control and Provisioning of Wireless Access Points (CAPWAP) protocol processing of Cisco IOS XE Software for Cisco Catalyst 9000 Family Wireless Controllers could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. These vulnerabilities are due to insufficient validation of CAPWAP packets. An attacker could exploit the vulnerabilities by sending a malformed CAPWAP packet to an affected device. A successful exploit could allow the attacker to cause the affected device to crash and reload, resulting in a DoS condition.