In the Linux kernel, the following vulnerability has been resolved: s390/ptrace: handle setting of fpc register correctly If the content of the floating point control (fpc) register of a traced process is modified with the ptrace interface the new value is tested for validity by temporarily loading it into the fpc register. This may lead to corruption of the fpc register of the tracing process: if an interrupt happens while the value is temporarily loaded into the fpc register, and within interrupt context floating point or vector registers are used, the current fp/vx registers are saved with save_fpu_regs() assuming they belong to user space and will be loaded into fp/vx registers when returning to user space. test_fp_ctl() restores the original user space fpc register value, however it will be discarded, when returning to user space. In result the tracer will incorrectly continue to run with the value that was supposed to be used for the traced process. Fix this by saving fpu register contents with save_fpu_regs() before using test_fp_ctl().
In the Linux kernel, the following vulnerability has been resolved: HID: intel-ish-hid: ipc: Disable and reenable ACPI GPE bit The EHL (Elkhart Lake) based platforms provide a OOB (Out of band) service, which allows to wakup device when the system is in S5 (Soft-Off state). This OOB service can be enabled/disabled from BIOS settings. When enabled, the ISH device gets PME wake capability. To enable PME wakeup, driver also needs to enable ACPI GPE bit. On resume, BIOS will clear the wakeup bit. So driver need to re-enable it in resume function to keep the next wakeup capability. But this BIOS clearing of wakeup bit doesn't decrement internal OS GPE reference count, so this reenabling on every resume will cause reference count to overflow. So first disable and reenable ACPI GPE bit using acpi_disable_gpe().
In the Linux kernel, the following vulnerability has been resolved: wifi: mwifiex: Fix oob check condition in mwifiex_process_rx_packet Only skip the code path trying to access the rfc1042 headers when the buffer is too small, so the driver can still process packets without rfc1042 headers.
In the Linux kernel, the following vulnerability has been resolved: media: uvcvideo: Fix OOB read If the index provided by the user is bigger than the mask size, we might do an out of bound read.
In the Linux kernel, the following vulnerability has been resolved: x86/alternatives: Disable KASAN in apply_alternatives() Fei has reported that KASAN triggers during apply_alternatives() on a 5-level paging machine: BUG: KASAN: out-of-bounds in rcu_is_watching() Read of size 4 at addr ff110003ee6419a0 by task swapper/0/0 ... __asan_load4() rcu_is_watching() trace_hardirqs_on() text_poke_early() apply_alternatives() ... On machines with 5-level paging, cpu_feature_enabled(X86_FEATURE_LA57) gets patched. It includes KASAN code, where KASAN_SHADOW_START depends on __VIRTUAL_MASK_SHIFT, which is defined with cpu_feature_enabled(). KASAN gets confused when apply_alternatives() patches the KASAN_SHADOW_START users. A test patch that makes KASAN_SHADOW_START static, by replacing __VIRTUAL_MASK_SHIFT with 56, works around the issue. Fix it for real by disabling KASAN while the kernel is patching alternatives. [ mingo: updated the changelog ]
In the Linux kernel, the following vulnerability has been resolved: ubifs: Fix read out-of-bounds in ubifs_wbuf_write_nolock() Function ubifs_wbuf_write_nolock() may access buf out of bounds in following process: ubifs_wbuf_write_nolock(): aligned_len = ALIGN(len, 8); // Assume len = 4089, aligned_len = 4096 if (aligned_len <= wbuf->avail) ... // Not satisfy if (wbuf->used) { ubifs_leb_write() // Fill some data in avail wbuf len -= wbuf->avail; // len is still not 8-bytes aligned aligned_len -= wbuf->avail; } n = aligned_len >> c->max_write_shift; if (n) { n <<= c->max_write_shift; err = ubifs_leb_write(c, wbuf->lnum, buf + written, wbuf->offs, n); // n > len, read out of bounds less than 8(n-len) bytes } , which can be catched by KASAN: ========================================================= BUG: KASAN: slab-out-of-bounds in ecc_sw_hamming_calculate+0x1dc/0x7d0 Read of size 4 at addr ffff888105594ff8 by task kworker/u8:4/128 Workqueue: writeback wb_workfn (flush-ubifs_0_0) Call Trace: kasan_report.cold+0x81/0x165 nand_write_page_swecc+0xa9/0x160 ubifs_leb_write+0xf2/0x1b0 [ubifs] ubifs_wbuf_write_nolock+0x421/0x12c0 [ubifs] write_head+0xdc/0x1c0 [ubifs] ubifs_jnl_write_inode+0x627/0x960 [ubifs] wb_workfn+0x8af/0xb80 Function ubifs_wbuf_write_nolock() accepts that parameter 'len' is not 8 bytes aligned, the 'len' represents the true length of buf (which is allocated in 'ubifs_jnl_xxx', eg. ubifs_jnl_write_inode), so ubifs_wbuf_write_nolock() must handle the length read from 'buf' carefully to write leb safely. Fetch a reproducer in [Link].
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Fix stack-out-of-bounds memory access from ioapic_write_indirect() KASAN reports the following issue: BUG: KASAN: stack-out-of-bounds in kvm_make_vcpus_request_mask+0x174/0x440 [kvm] Read of size 8 at addr ffffc9001364f638 by task qemu-kvm/4798 CPU: 0 PID: 4798 Comm: qemu-kvm Tainted: G X --------- --- Hardware name: AMD Corporation DAYTONA_X/DAYTONA_X, BIOS RYM0081C 07/13/2020 Call Trace: dump_stack+0xa5/0xe6 print_address_description.constprop.0+0x18/0x130 ? kvm_make_vcpus_request_mask+0x174/0x440 [kvm] __kasan_report.cold+0x7f/0x114 ? kvm_make_vcpus_request_mask+0x174/0x440 [kvm] kasan_report+0x38/0x50 kasan_check_range+0xf5/0x1d0 kvm_make_vcpus_request_mask+0x174/0x440 [kvm] kvm_make_scan_ioapic_request_mask+0x84/0xc0 [kvm] ? kvm_arch_exit+0x110/0x110 [kvm] ? sched_clock+0x5/0x10 ioapic_write_indirect+0x59f/0x9e0 [kvm] ? static_obj+0xc0/0xc0 ? __lock_acquired+0x1d2/0x8c0 ? kvm_ioapic_eoi_inject_work+0x120/0x120 [kvm] The problem appears to be that 'vcpu_bitmap' is allocated as a single long on stack and it should really be KVM_MAX_VCPUS long. We also seem to clear the lower 16 bits of it with bitmap_zero() for no particular reason (my guess would be that 'bitmap' and 'vcpu_bitmap' variables in kvm_bitmap_or_dest_vcpus() caused the confusion: while the later is indeed 16-bit long, the later should accommodate all possible vCPUs).
In the Linux kernel, the following vulnerability has been resolved: vduse: check that offset is within bounds in get_config() This condition checks "len" but it does not check "offset" and that could result in an out of bounds read if "offset > dev->config_size". The problem is that since both variables are unsigned the "dev->config_size - offset" subtraction would result in a very high unsigned value. I think these checks might not be necessary because "len" and "offset" are supposed to already have been validated using the vhost_vdpa_config_validate() function. But I do not know the code perfectly, and I like to be safe.
In the Linux kernel, the following vulnerability has been resolved: ath5k: fix OOB in ath5k_eeprom_read_pcal_info_5111 The bug was found during fuzzing. Stacktrace locates it in ath5k_eeprom_convert_pcal_info_5111. When none of the curve is selected in the loop, idx can go up to AR5K_EEPROM_N_PD_CURVES. The line makes pd out of bound. pd = &chinfo[pier].pd_curves[idx]; There are many OOB writes using pd later in the code. So I added a sanity check for idx. Checks for other loops involving AR5K_EEPROM_N_PD_CURVES are not needed as the loop index is not used outside the loops. The patch is NOT tested with real device. The following is the fuzzing report BUG: KASAN: slab-out-of-bounds in ath5k_eeprom_read_pcal_info_5111+0x126a/0x1390 [ath5k] Write of size 1 at addr ffff8880174a4d60 by task modprobe/214 CPU: 0 PID: 214 Comm: modprobe Not tainted 5.6.0 #1 Call Trace: dump_stack+0x76/0xa0 print_address_description.constprop.0+0x16/0x200 ? ath5k_eeprom_read_pcal_info_5111+0x126a/0x1390 [ath5k] ? ath5k_eeprom_read_pcal_info_5111+0x126a/0x1390 [ath5k] __kasan_report.cold+0x37/0x7c ? ath5k_eeprom_read_pcal_info_5111+0x126a/0x1390 [ath5k] kasan_report+0xe/0x20 ath5k_eeprom_read_pcal_info_5111+0x126a/0x1390 [ath5k] ? apic_timer_interrupt+0xa/0x20 ? ath5k_eeprom_init_11a_pcal_freq+0xbc0/0xbc0 [ath5k] ? ath5k_pci_eeprom_read+0x228/0x3c0 [ath5k] ath5k_eeprom_init+0x2513/0x6290 [ath5k] ? ath5k_eeprom_init_11a_pcal_freq+0xbc0/0xbc0 [ath5k] ? usleep_range+0xb8/0x100 ? apic_timer_interrupt+0xa/0x20 ? ath5k_eeprom_read_pcal_info_2413+0x2f20/0x2f20 [ath5k] ath5k_hw_init+0xb60/0x1970 [ath5k] ath5k_init_ah+0x6fe/0x2530 [ath5k] ? kasprintf+0xa6/0xe0 ? ath5k_stop+0x140/0x140 [ath5k] ? _dev_notice+0xf6/0xf6 ? apic_timer_interrupt+0xa/0x20 ath5k_pci_probe.cold+0x29a/0x3d6 [ath5k] ? ath5k_pci_eeprom_read+0x3c0/0x3c0 [ath5k] ? mutex_lock+0x89/0xd0 ? ath5k_pci_eeprom_read+0x3c0/0x3c0 [ath5k] local_pci_probe+0xd3/0x160 pci_device_probe+0x23f/0x3e0 ? pci_device_remove+0x280/0x280 ? pci_device_remove+0x280/0x280 really_probe+0x209/0x5d0
In the Linux kernel, the following vulnerability has been resolved: kvm: avoid speculation-based attacks from out-of-range memslot accesses KVM's mechanism for accessing guest memory translates a guest physical address (gpa) to a host virtual address using the right-shifted gpa (also known as gfn) and a struct kvm_memory_slot. The translation is performed in __gfn_to_hva_memslot using the following formula: hva = slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE It is expected that gfn falls within the boundaries of the guest's physical memory. However, a guest can access invalid physical addresses in such a way that the gfn is invalid. __gfn_to_hva_memslot is called from kvm_vcpu_gfn_to_hva_prot, which first retrieves a memslot through __gfn_to_memslot. While __gfn_to_memslot does check that the gfn falls within the boundaries of the guest's physical memory or not, a CPU can speculate the result of the check and continue execution speculatively using an illegal gfn. The speculation can result in calculating an out-of-bounds hva. If the resulting host virtual address is used to load another guest physical address, this is effectively a Spectre gadget consisting of two consecutive reads, the second of which is data dependent on the first. Right now it's not clear if there are any cases in which this is exploitable. One interesting case was reported by the original author of this patch, and involves visiting guest page tables on x86. Right now these are not vulnerable because the hva read goes through get_user(), which contains an LFENCE speculation barrier. However, there are patches in progress for x86 uaccess.h to mask kernel addresses instead of using LFENCE; once these land, a guest could use speculation to read from the VMM's ring 3 address space. Other architectures such as ARM already use the address masking method, and would be susceptible to this same kind of data-dependent access gadgets. Therefore, this patch proactively protects from these attacks by masking out-of-bounds gfns in __gfn_to_hva_memslot, which blocks speculation of invalid hvas. Sean Christopherson noted that this patch does not cover kvm_read_guest_offset_cached. This however is limited to a few bytes past the end of the cache, and therefore it is unlikely to be useful in the context of building a chain of data dependent accesses.
In the Linux kernel, the following vulnerability has been resolved: i2c: i801: Don't generate an interrupt on bus reset Now that the i2c-i801 driver supports interrupts, setting the KILL bit in a attempt to recover from a timed out transaction triggers an interrupt. Unfortunately, the interrupt handler (i801_isr) is not prepared for this situation and will try to process the interrupt as if it was signaling the end of a successful transaction. In the case of a block transaction, this can result in an out-of-range memory access. This condition was reproduced several times by syzbot: https://syzkaller.appspot.com/bug?extid=ed71512d469895b5b34e https://syzkaller.appspot.com/bug?extid=8c8dedc0ba9e03f6c79e https://syzkaller.appspot.com/bug?extid=c8ff0b6d6c73d81b610e https://syzkaller.appspot.com/bug?extid=33f6c360821c399d69eb https://syzkaller.appspot.com/bug?extid=be15dc0b1933f04b043a https://syzkaller.appspot.com/bug?extid=b4d3fd1dfd53e90afd79 So disable interrupts while trying to reset the bus. Interrupts will be enabled again for the following transaction.
In the Linux kernel, the following vulnerability has been resolved: NFS: fs_context: validate UDP retrans to prevent shift out-of-bounds Fix shift out-of-bounds in xprt_calc_majortimeo(). This is caused by a garbage timeout (retrans) mount option being passed to nfs mount, in this case from syzkaller. If the protocol is XPRT_TRANSPORT_UDP, then 'retrans' is a shift value for a 64-bit long integer, so 'retrans' cannot be >= 64. If it is >= 64, fail the mount and return an error.
In the Linux kernel, the following vulnerability has been resolved: net: qrtr: fix OOB Read in qrtr_endpoint_post Syzbot reported slab-out-of-bounds Read in qrtr_endpoint_post. The problem was in wrong _size_ type: if (len != ALIGN(size, 4) + hdrlen) goto err; If size from qrtr_hdr is 4294967293 (0xfffffffd), the result of ALIGN(size, 4) will be 0. In case of len == hdrlen and size == 4294967293 in header this check won't fail and skb_put_data(skb, data + hdrlen, size); will read out of bound from data, which is hdrlen allocated block.
In the Linux kernel, the following vulnerability has been resolved: ipv6: fix another slab-out-of-bounds in fib6_nh_flush_exceptions While running the self-tests on a KASAN enabled kernel, I observed a slab-out-of-bounds splat very similar to the one reported in commit 821bbf79fe46 ("ipv6: Fix KASAN: slab-out-of-bounds Read in fib6_nh_flush_exceptions"). We additionally need to take care of fib6_metrics initialization failure when the caller provides an nh. The fix is similar, explicitly free the route instead of calling fib6_info_release on a half-initialized object.
In the Linux kernel, the following vulnerability has been resolved: sch_cake: Fix out of bounds when parsing TCP options and header The TCP option parser in cake qdisc (cake_get_tcpopt and cake_tcph_may_drop) could read one byte out of bounds. When the length is 1, the execution flow gets into the loop, reads one byte of the opcode, and if the opcode is neither TCPOPT_EOL nor TCPOPT_NOP, it reads one more byte, which exceeds the length of 1. This fix is inspired by commit 9609dad263f8 ("ipv4: tcp_input: fix stack out of bounds when parsing TCP options."). v2 changes: Added doff validation in cake_get_tcphdr to avoid parsing garbage as TCP header. Although it wasn't strictly an out-of-bounds access (memory was allocated), garbage values could be read where CAKE expected the TCP header if doff was smaller than 5.
In the Linux kernel, the following vulnerability has been resolved: scsi: scsi_debug: Fix out-of-bound read in resp_readcap16() The following warning was observed running syzkaller: [ 3813.830724] sg_write: data in/out 65466/242 bytes for SCSI command 0x9e-- guessing data in; [ 3813.830724] program syz-executor not setting count and/or reply_len properly [ 3813.836956] ================================================================== [ 3813.839465] BUG: KASAN: stack-out-of-bounds in sg_copy_buffer+0x157/0x1e0 [ 3813.841773] Read of size 4096 at addr ffff8883cf80f540 by task syz-executor/1549 [ 3813.846612] Call Trace: [ 3813.846995] dump_stack+0x108/0x15f [ 3813.847524] print_address_description+0xa5/0x372 [ 3813.848243] kasan_report.cold+0x236/0x2a8 [ 3813.849439] check_memory_region+0x240/0x270 [ 3813.850094] memcpy+0x30/0x80 [ 3813.850553] sg_copy_buffer+0x157/0x1e0 [ 3813.853032] sg_copy_from_buffer+0x13/0x20 [ 3813.853660] fill_from_dev_buffer+0x135/0x370 [ 3813.854329] resp_readcap16+0x1ac/0x280 [ 3813.856917] schedule_resp+0x41f/0x1630 [ 3813.858203] scsi_debug_queuecommand+0xb32/0x17e0 [ 3813.862699] scsi_dispatch_cmd+0x330/0x950 [ 3813.863329] scsi_request_fn+0xd8e/0x1710 [ 3813.863946] __blk_run_queue+0x10b/0x230 [ 3813.864544] blk_execute_rq_nowait+0x1d8/0x400 [ 3813.865220] sg_common_write.isra.0+0xe61/0x2420 [ 3813.871637] sg_write+0x6c8/0xef0 [ 3813.878853] __vfs_write+0xe4/0x800 [ 3813.883487] vfs_write+0x17b/0x530 [ 3813.884008] ksys_write+0x103/0x270 [ 3813.886268] __x64_sys_write+0x77/0xc0 [ 3813.886841] do_syscall_64+0x106/0x360 [ 3813.887415] entry_SYSCALL_64_after_hwframe+0x44/0xa9 This issue can be reproduced with the following syzkaller log: r0 = openat(0xffffffffffffff9c, &(0x7f0000000040)='./file0\x00', 0x26e1, 0x0) r1 = syz_open_procfs(0xffffffffffffffff, &(0x7f0000000000)='fd/3\x00') open_by_handle_at(r1, &(0x7f00000003c0)=ANY=[@ANYRESHEX], 0x602000) r2 = syz_open_dev$sg(&(0x7f0000000000), 0x0, 0x40782) write$binfmt_aout(r2, &(0x7f0000000340)=ANY=[@ANYBLOB="00000000deff000000000000000000000000000000000000000000000000000047f007af9e107a41ec395f1bded7be24277a1501ff6196a83366f4e6362bc0ff2b247f68a972989b094b2da4fb3607fcf611a22dd04310d28c75039d"], 0x126) In resp_readcap16() we get "int alloc_len" value -1104926854, and then pass the huge arr_len to fill_from_dev_buffer(), but arr is only 32 bytes. This leads to OOB in sg_copy_buffer(). To solve this issue, define alloc_len as u32.
In the Linux kernel, the following vulnerability has been resolved: net: validate lwtstate->data before returning from skb_tunnel_info() skb_tunnel_info() returns pointer of lwtstate->data as ip_tunnel_info type without validation. lwtstate->data can have various types such as mpls_iptunnel_encap, etc and these are not compatible. So skb_tunnel_info() should validate before returning that pointer. Splat looks like: BUG: KASAN: slab-out-of-bounds in vxlan_get_route+0x418/0x4b0 [vxlan] Read of size 2 at addr ffff888106ec2698 by task ping/811 CPU: 1 PID: 811 Comm: ping Not tainted 5.13.0+ #1195 Call Trace: dump_stack_lvl+0x56/0x7b print_address_description.constprop.8.cold.13+0x13/0x2ee ? vxlan_get_route+0x418/0x4b0 [vxlan] ? vxlan_get_route+0x418/0x4b0 [vxlan] kasan_report.cold.14+0x83/0xdf ? vxlan_get_route+0x418/0x4b0 [vxlan] vxlan_get_route+0x418/0x4b0 [vxlan] [ ... ] vxlan_xmit_one+0x148b/0x32b0 [vxlan] [ ... ] vxlan_xmit+0x25c5/0x4780 [vxlan] [ ... ] dev_hard_start_xmit+0x1ae/0x6e0 __dev_queue_xmit+0x1f39/0x31a0 [ ... ] neigh_xmit+0x2f9/0x940 mpls_xmit+0x911/0x1600 [mpls_iptunnel] lwtunnel_xmit+0x18f/0x450 ip_finish_output2+0x867/0x2040 [ ... ]
In the Linux kernel, the following vulnerability has been resolved: coresight: tmc-etf: Fix global-out-of-bounds in tmc_update_etf_buffer() commit 6f755e85c332 ("coresight: Add helper for inserting synchronization packets") removed trailing '\0' from barrier_pkt array and updated the call sites like etb_update_buffer() to have proper checks for barrier_pkt size before read but missed updating tmc_update_etf_buffer() which still reads barrier_pkt past the array size resulting in KASAN out-of-bounds bug. Fix this by adding a check for barrier_pkt size before accessing like it is done in etb_update_buffer(). BUG: KASAN: global-out-of-bounds in tmc_update_etf_buffer+0x4b8/0x698 Read of size 4 at addr ffffffd05b7d1030 by task perf/2629 Call trace: dump_backtrace+0x0/0x27c show_stack+0x20/0x2c dump_stack+0x11c/0x188 print_address_description+0x3c/0x4a4 __kasan_report+0x140/0x164 kasan_report+0x10/0x18 __asan_report_load4_noabort+0x1c/0x24 tmc_update_etf_buffer+0x4b8/0x698 etm_event_stop+0x248/0x2d8 etm_event_del+0x20/0x2c event_sched_out+0x214/0x6f0 group_sched_out+0xd0/0x270 ctx_sched_out+0x2ec/0x518 __perf_event_task_sched_out+0x4fc/0xe6c __schedule+0x1094/0x16a0 preempt_schedule_irq+0x88/0x170 arm64_preempt_schedule_irq+0xf0/0x18c el1_irq+0xe8/0x180 perf_event_exec+0x4d8/0x56c setup_new_exec+0x204/0x400 load_elf_binary+0x72c/0x18c0 search_binary_handler+0x13c/0x420 load_script+0x500/0x6c4 search_binary_handler+0x13c/0x420 exec_binprm+0x118/0x654 __do_execve_file+0x77c/0xba4 __arm64_compat_sys_execve+0x98/0xac el0_svc_common+0x1f8/0x5e0 el0_svc_compat_handler+0x84/0xb0 el0_svc_compat+0x10/0x50 The buggy address belongs to the variable: barrier_pkt+0x10/0x40 Memory state around the buggy address: ffffffd05b7d0f00: fa fa fa fa 04 fa fa fa fa fa fa fa 00 00 00 00 ffffffd05b7d0f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffffffd05b7d1000: 00 00 00 00 00 00 fa fa fa fa fa fa 00 00 00 03 ^ ffffffd05b7d1080: fa fa fa fa 00 02 fa fa fa fa fa fa 03 fa fa fa ffffffd05b7d1100: fa fa fa fa 00 00 00 00 05 fa fa fa fa fa fa fa ==================================================================
In the Linux kernel, the following vulnerability has been resolved: usb: typec: ucsi: Retrieve all the PDOs instead of just the first 4 commit 4dbc6a4ef06d ("usb: typec: ucsi: save power data objects in PD mode") introduced retrieval of the PDOs when connected to a PD-capable source. But only the first 4 PDOs are received since that is the maximum number that can be fetched at a time given the MESSAGE_IN length limitation (16 bytes). However, as per the PD spec a connected source may advertise up to a maximum of 7 PDOs. If such a source is connected it's possible the PPM could have negotiated a power contract with one of the PDOs at index greater than 4, and would be reflected in the request data object's (RDO) object position field. This would result in an out-of-bounds access when the rdo_index() is used to index into the src_pdos array in ucsi_psy_get_voltage_now(). With the help of the UBSAN -fsanitize=array-bounds checker enabled this exact issue is revealed when connecting to a PD source adapter that advertise 5 PDOs and the PPM enters a contract having selected the 5th one. [ 151.545106][ T70] Unexpected kernel BRK exception at EL1 [ 151.545112][ T70] Internal error: BRK handler: f2005512 [#1] PREEMPT SMP ... [ 151.545499][ T70] pc : ucsi_psy_get_prop+0x208/0x20c [ 151.545507][ T70] lr : power_supply_show_property+0xc0/0x328 ... [ 151.545542][ T70] Call trace: [ 151.545544][ T70] ucsi_psy_get_prop+0x208/0x20c [ 151.545546][ T70] power_supply_uevent+0x1a4/0x2f0 [ 151.545550][ T70] dev_uevent+0x200/0x384 [ 151.545555][ T70] kobject_uevent_env+0x1d4/0x7e8 [ 151.545557][ T70] power_supply_changed_work+0x174/0x31c [ 151.545562][ T70] process_one_work+0x244/0x6f0 [ 151.545564][ T70] worker_thread+0x3e0/0xa64 We can resolve this by instead retrieving and storing up to the maximum of 7 PDOs in the con->src_pdos array. This would involve two calls to the GET_PDOS command.
In the Linux kernel, the following vulnerability has been resolved: netfilter: synproxy: Fix out of bounds when parsing TCP options The TCP option parser in synproxy (synproxy_parse_options) could read one byte out of bounds. When the length is 1, the execution flow gets into the loop, reads one byte of the opcode, and if the opcode is neither TCPOPT_EOL nor TCPOPT_NOP, it reads one more byte, which exceeds the length of 1. This fix is inspired by commit 9609dad263f8 ("ipv4: tcp_input: fix stack out of bounds when parsing TCP options."). v2 changes: Added an early return when length < 0 to avoid calling skb_header_pointer with negative length.
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix UBSAN shift-out-of-bounds warning If get_num_sdma_queues or get_num_xgmi_sdma_queues is 0, we end up doing a shift operation where the number of bits shifted equals number of bits in the operand. This behaviour is undefined. Set num_sdma_queues or num_xgmi_sdma_queues to ULLONG_MAX, if the count is >= number of bits in the operand. Bug: https://gitlab.freedesktop.org/drm/amd/-/issues/1472
In the Linux kernel, the following vulnerability has been resolved: bpf: Add the missing BPF_LINK_TYPE invocation for sockmap There is an out-of-bounds read in bpf_link_show_fdinfo() for the sockmap link fd. Fix it by adding the missing BPF_LINK_TYPE invocation for sockmap link Also add comments for bpf_link_type to prevent missing updates in the future.
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Enhance the attribute size check This combines the overflow and boundary check so that all attribute size will be properly examined while enumerating them. [ 169.181521] BUG: KASAN: slab-out-of-bounds in run_unpack+0x2e3/0x570 [ 169.183161] Read of size 1 at addr ffff8880094b6240 by task mount/247 [ 169.184046] [ 169.184925] CPU: 0 PID: 247 Comm: mount Not tainted 6.0.0-rc7+ #3 [ 169.185908] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 169.187066] Call Trace: [ 169.187492] <TASK> [ 169.188049] dump_stack_lvl+0x49/0x63 [ 169.188495] print_report.cold+0xf5/0x689 [ 169.188964] ? run_unpack+0x2e3/0x570 [ 169.189331] kasan_report+0xa7/0x130 [ 169.189714] ? run_unpack+0x2e3/0x570 [ 169.190079] __asan_load1+0x51/0x60 [ 169.190634] run_unpack+0x2e3/0x570 [ 169.191290] ? run_pack+0x840/0x840 [ 169.191569] ? run_lookup_entry+0xb3/0x1f0 [ 169.192443] ? mi_enum_attr+0x20a/0x230 [ 169.192886] run_unpack_ex+0xad/0x3e0 [ 169.193276] ? run_unpack+0x570/0x570 [ 169.193557] ? ni_load_mi+0x80/0x80 [ 169.193889] ? debug_smp_processor_id+0x17/0x20 [ 169.194236] ? mi_init+0x4a/0x70 [ 169.194496] attr_load_runs_vcn+0x166/0x1c0 [ 169.194851] ? attr_data_write_resident+0x250/0x250 [ 169.195188] mi_read+0x133/0x2c0 [ 169.195481] ntfs_iget5+0x277/0x1780 [ 169.196017] ? call_rcu+0x1c7/0x330 [ 169.196392] ? ntfs_get_block_bmap+0x70/0x70 [ 169.196708] ? evict+0x223/0x280 [ 169.197014] ? __kmalloc+0x33/0x540 [ 169.197305] ? wnd_init+0x15b/0x1b0 [ 169.197599] ntfs_fill_super+0x1026/0x1ba0 [ 169.197994] ? put_ntfs+0x1d0/0x1d0 [ 169.198299] ? vsprintf+0x20/0x20 [ 169.198583] ? mutex_unlock+0x81/0xd0 [ 169.198930] ? set_blocksize+0x95/0x150 [ 169.199269] get_tree_bdev+0x232/0x370 [ 169.199750] ? put_ntfs+0x1d0/0x1d0 [ 169.200094] ntfs_fs_get_tree+0x15/0x20 [ 169.200431] vfs_get_tree+0x4c/0x130 [ 169.200714] path_mount+0x654/0xfe0 [ 169.201067] ? putname+0x80/0xa0 [ 169.201358] ? finish_automount+0x2e0/0x2e0 [ 169.201965] ? putname+0x80/0xa0 [ 169.202445] ? kmem_cache_free+0x1c4/0x440 [ 169.203075] ? putname+0x80/0xa0 [ 169.203414] do_mount+0xd6/0xf0 [ 169.203719] ? path_mount+0xfe0/0xfe0 [ 169.203977] ? __kasan_check_write+0x14/0x20 [ 169.204382] __x64_sys_mount+0xca/0x110 [ 169.204711] do_syscall_64+0x3b/0x90 [ 169.205059] entry_SYSCALL_64_after_hwframe+0x63/0xcd [ 169.205571] RIP: 0033:0x7f67a80e948a [ 169.206327] Code: 48 8b 0d 11 fa 2a 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 008 [ 169.208296] RSP: 002b:00007ffddf020f58 EFLAGS: 00000202 ORIG_RAX: 00000000000000a5 [ 169.209253] RAX: ffffffffffffffda RBX: 000055e2547a6060 RCX: 00007f67a80e948a [ 169.209777] RDX: 000055e2547a6260 RSI: 000055e2547a62e0 RDI: 000055e2547aeaf0 [ 169.210342] RBP: 0000000000000000 R08: 000055e2547a6280 R09: 0000000000000020 [ 169.210843] R10: 00000000c0ed0000 R11: 0000000000000202 R12: 000055e2547aeaf0 [ 169.211307] R13: 000055e2547a6260 R14: 0000000000000000 R15: 00000000ffffffff [ 169.211913] </TASK> [ 169.212304] [ 169.212680] Allocated by task 0: [ 169.212963] (stack is not available) [ 169.213200] [ 169.213472] The buggy address belongs to the object at ffff8880094b5e00 [ 169.213472] which belongs to the cache UDP of size 1152 [ 169.214095] The buggy address is located 1088 bytes inside of [ 169.214095] 1152-byte region [ffff8880094b5e00, ffff8880094b6280) [ 169.214639] [ 169.215004] The buggy address belongs to the physical page: [ 169.215766] page:000000002e324c8c refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x94b4 [ 169.218412] head:000000002e324c8c order:2 compound_mapcount:0 compound_pincount:0 [ 169.219078] flags: 0xfffffc0010200(slab|head|node=0|zone=1|lastcpupid=0x1fffff) [ 169.220272] raw: 000fffffc0010200 ---truncated---
In the Linux kernel, the following vulnerability has been resolved: netfilter: conntrack: dccp: copy entire header to stack buffer, not just basic one Eric Dumazet says: nf_conntrack_dccp_packet() has an unique: dh = skb_header_pointer(skb, dataoff, sizeof(_dh), &_dh); And nothing more is 'pulled' from the packet, depending on the content. dh->dccph_doff, and/or dh->dccph_x ...) So dccp_ack_seq() is happily reading stuff past the _dh buffer. BUG: KASAN: stack-out-of-bounds in nf_conntrack_dccp_packet+0x1134/0x11c0 Read of size 4 at addr ffff000128f66e0c by task syz-executor.2/29371 [..] Fix this by increasing the stack buffer to also include room for the extra sequence numbers and all the known dccp packet type headers, then pull again after the initial validation of the basic header. While at it, mark packets invalid that lack 48bit sequence bit but where RFC says the type MUST use them. Compile tested only. v2: first skb_header_pointer() now needs to adjust the size to only pull the generic header. (Eric) Heads-up: I intend to remove dccp conntrack support later this year.
In the Linux kernel, the following vulnerability has been resolved: iavf: Fix out-of-bounds when setting channels on remove If we set channels greater during iavf_remove(), and waiting reset done would be timeout, then returned with error but changed num_active_queues directly, that will lead to OOB like the following logs. Because the num_active_queues is greater than tx/rx_rings[] allocated actually. Reproducer: [root@host ~]# cat repro.sh #!/bin/bash pf_dbsf="0000:41:00.0" vf0_dbsf="0000:41:02.0" g_pids=() function do_set_numvf() { echo 2 >/sys/bus/pci/devices/${pf_dbsf}/sriov_numvfs sleep $((RANDOM%3+1)) echo 0 >/sys/bus/pci/devices/${pf_dbsf}/sriov_numvfs sleep $((RANDOM%3+1)) } function do_set_channel() { local nic=$(ls -1 --indicator-style=none /sys/bus/pci/devices/${vf0_dbsf}/net/) [ -z "$nic" ] && { sleep $((RANDOM%3)) ; return 1; } ifconfig $nic 192.168.18.5 netmask 255.255.255.0 ifconfig $nic up ethtool -L $nic combined 1 ethtool -L $nic combined 4 sleep $((RANDOM%3)) } function on_exit() { local pid for pid in "${g_pids[@]}"; do kill -0 "$pid" &>/dev/null && kill "$pid" &>/dev/null done g_pids=() } trap "on_exit; exit" EXIT while :; do do_set_numvf ; done & g_pids+=($!) while :; do do_set_channel ; done & g_pids+=($!) wait Result: [ 3506.152887] iavf 0000:41:02.0: Removing device [ 3510.400799] ================================================================== [ 3510.400820] BUG: KASAN: slab-out-of-bounds in iavf_free_all_tx_resources+0x156/0x160 [iavf] [ 3510.400823] Read of size 8 at addr ffff88b6f9311008 by task repro.sh/55536 [ 3510.400823] [ 3510.400830] CPU: 101 PID: 55536 Comm: repro.sh Kdump: loaded Tainted: G O --------- -t - 4.18.0 #1 [ 3510.400832] Hardware name: Powerleader PR2008AL/H12DSi-N6, BIOS 2.0 04/09/2021 [ 3510.400835] Call Trace: [ 3510.400851] dump_stack+0x71/0xab [ 3510.400860] print_address_description+0x6b/0x290 [ 3510.400865] ? iavf_free_all_tx_resources+0x156/0x160 [iavf] [ 3510.400868] kasan_report+0x14a/0x2b0 [ 3510.400873] iavf_free_all_tx_resources+0x156/0x160 [iavf] [ 3510.400880] iavf_remove+0x2b6/0xc70 [iavf] [ 3510.400884] ? iavf_free_all_rx_resources+0x160/0x160 [iavf] [ 3510.400891] ? wait_woken+0x1d0/0x1d0 [ 3510.400895] ? notifier_call_chain+0xc1/0x130 [ 3510.400903] pci_device_remove+0xa8/0x1f0 [ 3510.400910] device_release_driver_internal+0x1c6/0x460 [ 3510.400916] pci_stop_bus_device+0x101/0x150 [ 3510.400919] pci_stop_and_remove_bus_device+0xe/0x20 [ 3510.400924] pci_iov_remove_virtfn+0x187/0x420 [ 3510.400927] ? pci_iov_add_virtfn+0xe10/0xe10 [ 3510.400929] ? pci_get_subsys+0x90/0x90 [ 3510.400932] sriov_disable+0xed/0x3e0 [ 3510.400936] ? bus_find_device+0x12d/0x1a0 [ 3510.400953] i40e_free_vfs+0x754/0x1210 [i40e] [ 3510.400966] ? i40e_reset_all_vfs+0x880/0x880 [i40e] [ 3510.400968] ? pci_get_device+0x7c/0x90 [ 3510.400970] ? pci_get_subsys+0x90/0x90 [ 3510.400982] ? pci_vfs_assigned.part.7+0x144/0x210 [ 3510.400987] ? __mutex_lock_slowpath+0x10/0x10 [ 3510.400996] i40e_pci_sriov_configure+0x1fa/0x2e0 [i40e] [ 3510.401001] sriov_numvfs_store+0x214/0x290 [ 3510.401005] ? sriov_totalvfs_show+0x30/0x30 [ 3510.401007] ? __mutex_lock_slowpath+0x10/0x10 [ 3510.401011] ? __check_object_size+0x15a/0x350 [ 3510.401018] kernfs_fop_write+0x280/0x3f0 [ 3510.401022] vfs_write+0x145/0x440 [ 3510.401025] ksys_write+0xab/0x160 [ 3510.401028] ? __ia32_sys_read+0xb0/0xb0 [ 3510.401031] ? fput_many+0x1a/0x120 [ 3510.401032] ? filp_close+0xf0/0x130 [ 3510.401038] do_syscall_64+0xa0/0x370 [ 3510.401041] ? page_fault+0x8/0x30 [ 3510.401043] entry_SYSCALL_64_after_hwframe+0x65/0xca [ 3510.401073] RIP: 0033:0x7f3a9bb842c0 [ 3510.401079] Code: 73 01 c3 48 8b 0d d8 cb 2c 00 f7 d8 64 89 01 48 83 c8 ff c3 66 0f 1f 44 00 00 83 3d 89 24 2d 00 00 75 10 b8 01 00 00 00 0f 05 <48> 3d ---truncated---
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: fix potential array out of bounds access Account for IWL_SEC_WEP_KEY_OFFSET when needed while verifying key_len size in iwl_mvm_sec_key_add().
In the Linux kernel, the following vulnerability has been resolved: ring-buffer: Do not attempt to read past "commit" When iterating over the ring buffer while the ring buffer is active, the writer can corrupt the reader. There's barriers to help detect this and handle it, but that code missed the case where the last event was at the very end of the page and has only 4 bytes left. The checks to detect the corruption by the writer to reads needs to see the length of the event. If the length in the first 4 bytes is zero then the length is stored in the second 4 bytes. But if the writer is in the process of updating that code, there's a small window where the length in the first 4 bytes could be zero even though the length is only 4 bytes. That will cause rb_event_length() to read the next 4 bytes which could happen to be off the allocated page. To protect against this, fail immediately if the next event pointer is less than 8 bytes from the end of the commit (last byte of data), as all events must be a minimum of 8 bytes anyway.
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to wait on block writeback for post_read case If inode is compressed, but not encrypted, it missed to call f2fs_wait_on_block_writeback() to wait for GCed page writeback in IPU write path. Thread A GC-Thread - f2fs_gc - do_garbage_collect - gc_data_segment - move_data_block - f2fs_submit_page_write migrate normal cluster's block via meta_inode's page cache - f2fs_write_single_data_page - f2fs_do_write_data_page - f2fs_inplace_write_data - f2fs_submit_page_bio IRQ - f2fs_read_end_io IRQ old data overrides new data due to out-of-order GC and common IO. - f2fs_read_end_io
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix operation precedence bug in port timestamping napi_poll context Indirection (*) is of lower precedence than postfix increment (++). Logic in napi_poll context would cause an out-of-bound read by first increment the pointer address by byte address space and then dereference the value. Rather, the intended logic was to dereference first and then increment the underlying value.
An out-of-bounds (OOB) memory read flaw was found in the Qualcomm IPC router protocol in the Linux kernel. A missing sanity check allows a local attacker to gain access to out-of-bounds memory, leading to a system crash or a leak of internal kernel information. The highest threat from this vulnerability is to system availability.
An out-of-bounds (OOB) memory access flaw was found in fs/f2fs/node.c in the f2fs module in the Linux kernel in versions before 5.12.0-rc4. A bounds check failure allows a local attacker to gain access to out-of-bounds memory leading to a system crash or a leak of internal kernel information. The highest threat from this vulnerability is to system availability.
An Out-of-Bounds Read was discovered in arch/arm/mach-footbridge/personal-pci.c in the Linux kernel through 5.12.11 because of the lack of a check for a value that shouldn't be negative, e.g., access to element -2 of an array, aka CID-298a58e165e4.
In the Linux kernel, the following vulnerability has been resolved: net/sched: fq_pie: fix OOB access in the traffic path the following script: # tc qdisc add dev eth0 handle 0x1 root fq_pie flows 2 # tc qdisc add dev eth0 clsact # tc filter add dev eth0 egress matchall action skbedit priority 0x10002 # ping 192.0.2.2 -I eth0 -c2 -w1 -q produces the following splat: BUG: KASAN: slab-out-of-bounds in fq_pie_qdisc_enqueue+0x1314/0x19d0 [sch_fq_pie] Read of size 4 at addr ffff888171306924 by task ping/942 CPU: 3 PID: 942 Comm: ping Not tainted 5.12.0+ #441 Hardware name: Red Hat KVM, BIOS 1.11.1-4.module+el8.1.0+4066+0f1aadab 04/01/2014 Call Trace: dump_stack+0x92/0xc1 print_address_description.constprop.7+0x1a/0x150 kasan_report.cold.13+0x7f/0x111 fq_pie_qdisc_enqueue+0x1314/0x19d0 [sch_fq_pie] __dev_queue_xmit+0x1034/0x2b10 ip_finish_output2+0xc62/0x2120 __ip_finish_output+0x553/0xea0 ip_output+0x1ca/0x4d0 ip_send_skb+0x37/0xa0 raw_sendmsg+0x1c4b/0x2d00 sock_sendmsg+0xdb/0x110 __sys_sendto+0x1d7/0x2b0 __x64_sys_sendto+0xdd/0x1b0 do_syscall_64+0x3c/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7fe69735c3eb Code: 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 f3 0f 1e fa 48 8d 05 75 42 2c 00 41 89 ca 8b 00 85 c0 75 14 b8 2c 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 75 c3 0f 1f 40 00 41 57 4d 89 c7 41 56 41 89 RSP: 002b:00007fff06d7fb38 EFLAGS: 00000246 ORIG_RAX: 000000000000002c RAX: ffffffffffffffda RBX: 000055e961413700 RCX: 00007fe69735c3eb RDX: 0000000000000040 RSI: 000055e961413700 RDI: 0000000000000003 RBP: 0000000000000040 R08: 000055e961410500 R09: 0000000000000010 R10: 0000000000000000 R11: 0000000000000246 R12: 00007fff06d81260 R13: 00007fff06d7fb40 R14: 00007fff06d7fc30 R15: 000055e96140f0a0 Allocated by task 917: kasan_save_stack+0x19/0x40 __kasan_kmalloc+0x7f/0xa0 __kmalloc_node+0x139/0x280 fq_pie_init+0x555/0x8e8 [sch_fq_pie] qdisc_create+0x407/0x11b0 tc_modify_qdisc+0x3c2/0x17e0 rtnetlink_rcv_msg+0x346/0x8e0 netlink_rcv_skb+0x120/0x380 netlink_unicast+0x439/0x630 netlink_sendmsg+0x719/0xbf0 sock_sendmsg+0xe2/0x110 ____sys_sendmsg+0x5ba/0x890 ___sys_sendmsg+0xe9/0x160 __sys_sendmsg+0xd3/0x170 do_syscall_64+0x3c/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae The buggy address belongs to the object at ffff888171306800 which belongs to the cache kmalloc-256 of size 256 The buggy address is located 36 bytes to the right of 256-byte region [ffff888171306800, ffff888171306900) The buggy address belongs to the page: page:00000000bcfb624e refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x171306 head:00000000bcfb624e order:1 compound_mapcount:0 flags: 0x17ffffc0010200(slab|head|node=0|zone=2|lastcpupid=0x1fffff) raw: 0017ffffc0010200 dead000000000100 dead000000000122 ffff888100042b40 raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff888171306800: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff888171306880: 00 00 00 00 00 00 00 00 00 00 00 00 fc fc fc fc >ffff888171306900: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ^ ffff888171306980: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff888171306a00: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fix fq_pie traffic path to avoid selecting 'q->flows + q->flows_cnt' as a valid flow: it's an address beyond the allocated memory.
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to do sanity check on i_xattr_nid in sanity_check_inode() syzbot reports a kernel bug as below: F2FS-fs (loop0): Mounted with checkpoint version = 48b305e4 ================================================================== BUG: KASAN: slab-out-of-bounds in f2fs_test_bit fs/f2fs/f2fs.h:2933 [inline] BUG: KASAN: slab-out-of-bounds in current_nat_addr fs/f2fs/node.h:213 [inline] BUG: KASAN: slab-out-of-bounds in f2fs_get_node_info+0xece/0x1200 fs/f2fs/node.c:600 Read of size 1 at addr ffff88807a58c76c by task syz-executor280/5076 CPU: 1 PID: 5076 Comm: syz-executor280 Not tainted 6.9.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114 print_address_description mm/kasan/report.c:377 [inline] print_report+0x169/0x550 mm/kasan/report.c:488 kasan_report+0x143/0x180 mm/kasan/report.c:601 f2fs_test_bit fs/f2fs/f2fs.h:2933 [inline] current_nat_addr fs/f2fs/node.h:213 [inline] f2fs_get_node_info+0xece/0x1200 fs/f2fs/node.c:600 f2fs_xattr_fiemap fs/f2fs/data.c:1848 [inline] f2fs_fiemap+0x55d/0x1ee0 fs/f2fs/data.c:1925 ioctl_fiemap fs/ioctl.c:220 [inline] do_vfs_ioctl+0x1c07/0x2e50 fs/ioctl.c:838 __do_sys_ioctl fs/ioctl.c:902 [inline] __se_sys_ioctl+0x81/0x170 fs/ioctl.c:890 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f The root cause is we missed to do sanity check on i_xattr_nid during f2fs_iget(), so that in fiemap() path, current_nat_addr() will access nat_bitmap w/ offset from invalid i_xattr_nid, result in triggering kasan bug report, fix it.
In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: fix out-of-bound access of qmi_invoke_handler() Currently, there is no terminator entry for ath12k_qmi_msg_handlers hence facing below KASAN warning, ================================================================== BUG: KASAN: global-out-of-bounds in qmi_invoke_handler+0xa4/0x148 Read of size 8 at addr ffffffd00a6428d8 by task kworker/u8:2/1273 CPU: 0 PID: 1273 Comm: kworker/u8:2 Not tainted 5.4.213 #0 Workqueue: qmi_msg_handler qmi_data_ready_work Call trace: dump_backtrace+0x0/0x20c show_stack+0x14/0x1c dump_stack+0xe0/0x138 print_address_description.isra.5+0x30/0x330 __kasan_report+0x16c/0x1bc kasan_report+0xc/0x14 __asan_load8+0xa8/0xb0 qmi_invoke_handler+0xa4/0x148 qmi_handle_message+0x18c/0x1bc qmi_data_ready_work+0x4ec/0x528 process_one_work+0x2c0/0x440 worker_thread+0x324/0x4b8 kthread+0x210/0x228 ret_from_fork+0x10/0x18 The address belongs to the variable: ath12k_mac_mon_status_filter_default+0x4bd8/0xfffffffffffe2300 [ath12k] [...] ================================================================== Add a dummy terminator entry at the end to assist the qmi_invoke_handler() in traversing up to the terminator entry without accessing an out-of-boundary index. Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.0.1-00029-QCAHKSWPL_SILICONZ-1
In the Linux kernel, the following vulnerability has been resolved: scsi: bfa: Ensure the copied buf is NUL terminated Currently, we allocate a nbytes-sized kernel buffer and copy nbytes from userspace to that buffer. Later, we use sscanf on this buffer but we don't ensure that the string is terminated inside the buffer, this can lead to OOB read when using sscanf. Fix this issue by using memdup_user_nul instead of memdup_user.
An issue was discovered in the Linux kernel through 5.11.3. drivers/scsi/scsi_transport_iscsi.c is adversely affected by the ability of an unprivileged user to craft Netlink messages.
In the Linux kernel, the following vulnerability has been resolved: iommu/vt-d: avoid invalid memory access via node_online(NUMA_NO_NODE) KASAN reports: [ 4.668325][ T0] BUG: KASAN: wild-memory-access in dmar_parse_one_rhsa (arch/x86/include/asm/bitops.h:214 arch/x86/include/asm/bitops.h:226 include/asm-generic/bitops/instrumented-non-atomic.h:142 include/linux/nodemask.h:415 drivers/iommu/intel/dmar.c:497) [ 4.676149][ T0] Read of size 8 at addr 1fffffff85115558 by task swapper/0/0 [ 4.683454][ T0] [ 4.685638][ T0] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.19.0-rc3-00004-g0e862838f290 #1 [ 4.694331][ T0] Hardware name: Supermicro SYS-5018D-FN4T/X10SDV-8C-TLN4F, BIOS 1.1 03/02/2016 [ 4.703196][ T0] Call Trace: [ 4.706334][ T0] <TASK> [ 4.709133][ T0] ? dmar_parse_one_rhsa (arch/x86/include/asm/bitops.h:214 arch/x86/include/asm/bitops.h:226 include/asm-generic/bitops/instrumented-non-atomic.h:142 include/linux/nodemask.h:415 drivers/iommu/intel/dmar.c:497) after converting the type of the first argument (@nr, bit number) of arch_test_bit() from `long` to `unsigned long`[0]. Under certain conditions (for example, when ACPI NUMA is disabled via command line), pxm_to_node() can return %NUMA_NO_NODE (-1). It is valid 'magic' number of NUMA node, but not valid bit number to use in bitops. node_online() eventually descends to test_bit() without checking for the input, assuming it's on caller side (which might be good for perf-critical tasks). There, -1 becomes %ULONG_MAX which leads to an insane array index when calculating bit position in memory. For now, add an explicit check for @node being not %NUMA_NO_NODE before calling test_bit(). The actual logics didn't change here at all. [0] https://github.com/norov/linux/commit/0e862838f290147ea9c16db852d8d494b552d38d
In the Linux kernel, the following vulnerability has been resolved: sched, cpuset: Fix dl_cpu_busy() panic due to empty cs->cpus_allowed With cgroup v2, the cpuset's cpus_allowed mask can be empty indicating that the cpuset will just use the effective CPUs of its parent. So cpuset_can_attach() can call task_can_attach() with an empty mask. This can lead to cpumask_any_and() returns nr_cpu_ids causing the call to dl_bw_of() to crash due to percpu value access of an out of bound CPU value. For example: [80468.182258] BUG: unable to handle page fault for address: ffffffff8b6648b0 : [80468.191019] RIP: 0010:dl_cpu_busy+0x30/0x2b0 : [80468.207946] Call Trace: [80468.208947] cpuset_can_attach+0xa0/0x140 [80468.209953] cgroup_migrate_execute+0x8c/0x490 [80468.210931] cgroup_update_dfl_csses+0x254/0x270 [80468.211898] cgroup_subtree_control_write+0x322/0x400 [80468.212854] kernfs_fop_write_iter+0x11c/0x1b0 [80468.213777] new_sync_write+0x11f/0x1b0 [80468.214689] vfs_write+0x1eb/0x280 [80468.215592] ksys_write+0x5f/0xe0 [80468.216463] do_syscall_64+0x5c/0x80 [80468.224287] entry_SYSCALL_64_after_hwframe+0x44/0xae Fix that by using effective_cpus instead. For cgroup v1, effective_cpus is the same as cpus_allowed. For v2, effective_cpus is the real cpumask to be used by tasks within the cpuset anyway. Also update task_can_attach()'s 2nd argument name to cs_effective_cpus to reflect the change. In addition, a check is added to task_can_attach() to guard against the possibility that cpumask_any_and() may return a value >= nr_cpu_ids.
In the Linux kernel, the following vulnerability has been resolved: powerpc/xive/spapr: correct bitmap allocation size kasan detects access beyond the end of the xibm->bitmap allocation: BUG: KASAN: slab-out-of-bounds in _find_first_zero_bit+0x40/0x140 Read of size 8 at addr c00000001d1d0118 by task swapper/0/1 CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-rc2-00001-g90df023b36dd #28 Call Trace: [c00000001d98f770] [c0000000012baab8] dump_stack_lvl+0xac/0x108 (unreliable) [c00000001d98f7b0] [c00000000068faac] print_report+0x37c/0x710 [c00000001d98f880] [c0000000006902c0] kasan_report+0x110/0x354 [c00000001d98f950] [c000000000692324] __asan_load8+0xa4/0xe0 [c00000001d98f970] [c0000000011c6ed0] _find_first_zero_bit+0x40/0x140 [c00000001d98f9b0] [c0000000000dbfbc] xive_spapr_get_ipi+0xcc/0x260 [c00000001d98fa70] [c0000000000d6d28] xive_setup_cpu_ipi+0x1e8/0x450 [c00000001d98fb30] [c000000004032a20] pSeries_smp_probe+0x5c/0x118 [c00000001d98fb60] [c000000004018b44] smp_prepare_cpus+0x944/0x9ac [c00000001d98fc90] [c000000004009f9c] kernel_init_freeable+0x2d4/0x640 [c00000001d98fd90] [c0000000000131e8] kernel_init+0x28/0x1d0 [c00000001d98fe10] [c00000000000cd54] ret_from_kernel_thread+0x5c/0x64 Allocated by task 0: kasan_save_stack+0x34/0x70 __kasan_kmalloc+0xb4/0xf0 __kmalloc+0x268/0x540 xive_spapr_init+0x4d0/0x77c pseries_init_irq+0x40/0x27c init_IRQ+0x44/0x84 start_kernel+0x2a4/0x538 start_here_common+0x1c/0x20 The buggy address belongs to the object at c00000001d1d0118 which belongs to the cache kmalloc-8 of size 8 The buggy address is located 0 bytes inside of 8-byte region [c00000001d1d0118, c00000001d1d0120) The buggy address belongs to the physical page: page:c00c000000074740 refcount:1 mapcount:0 mapping:0000000000000000 index:0xc00000001d1d0558 pfn:0x1d1d flags: 0x7ffff000000200(slab|node=0|zone=0|lastcpupid=0x7ffff) raw: 007ffff000000200 c00000001d0003c8 c00000001d0003c8 c00000001d010480 raw: c00000001d1d0558 0000000001e1000a 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: c00000001d1d0000: fc 00 fc fc fc fc fc fc fc fc fc fc fc fc fc fc c00000001d1d0080: fc fc 00 fc fc fc fc fc fc fc fc fc fc fc fc fc >c00000001d1d0100: fc fc fc 02 fc fc fc fc fc fc fc fc fc fc fc fc ^ c00000001d1d0180: fc fc fc fc 04 fc fc fc fc fc fc fc fc fc fc fc c00000001d1d0200: fc fc fc fc fc 04 fc fc fc fc fc fc fc fc fc fc This happens because the allocation uses the wrong unit (bits) when it should pass (BITS_TO_LONGS(count) * sizeof(long)) or equivalent. With small numbers of bits, the allocated object can be smaller than sizeof(long), which results in invalid accesses. Use bitmap_zalloc() to allocate and initialize the irq bitmap, paired with bitmap_free() for consistency.
In the Linux kernel, the following vulnerability has been resolved: vt: Clear selection before changing the font When changing the console font with ioctl(KDFONTOP) the new font size can be bigger than the previous font. A previous selection may thus now be outside of the new screen size and thus trigger out-of-bounds accesses to graphics memory if the selection is removed in vc_do_resize(). Prevent such out-of-memory accesses by dropping the selection before the various con_font_set() console handlers are called.
In the Linux kernel, the following vulnerability has been resolved: spmi: trace: fix stack-out-of-bound access in SPMI tracing functions trace_spmi_write_begin() and trace_spmi_read_end() both call memcpy() with a length of "len + 1". This leads to one extra byte being read beyond the end of the specified buffer. Fix this out-of-bound memory access by using a length of "len" instead. Here is a KASAN log showing the issue: BUG: KASAN: stack-out-of-bounds in trace_event_raw_event_spmi_read_end+0x1d0/0x234 Read of size 2 at addr ffffffc0265b7540 by task thermal@2.0-ser/1314 ... Call trace: dump_backtrace+0x0/0x3e8 show_stack+0x2c/0x3c dump_stack_lvl+0xdc/0x11c print_address_description+0x74/0x384 kasan_report+0x188/0x268 kasan_check_range+0x270/0x2b0 memcpy+0x90/0xe8 trace_event_raw_event_spmi_read_end+0x1d0/0x234 spmi_read_cmd+0x294/0x3ac spmi_ext_register_readl+0x84/0x9c regmap_spmi_ext_read+0x144/0x1b0 [regmap_spmi] _regmap_raw_read+0x40c/0x754 regmap_raw_read+0x3a0/0x514 regmap_bulk_read+0x418/0x494 adc5_gen3_poll_wait_hs+0xe8/0x1e0 [qcom_spmi_adc5_gen3] ... __arm64_sys_read+0x4c/0x60 invoke_syscall+0x80/0x218 el0_svc_common+0xec/0x1c8 ... addr ffffffc0265b7540 is located in stack of task thermal@2.0-ser/1314 at offset 32 in frame: adc5_gen3_poll_wait_hs+0x0/0x1e0 [qcom_spmi_adc5_gen3] this frame has 1 object: [32, 33) 'status' Memory state around the buggy address: ffffffc0265b7400: 00 00 00 00 00 00 00 00 00 00 00 00 f1 f1 f1 f1 ffffffc0265b7480: 04 f3 f3 f3 00 00 00 00 00 00 00 00 00 00 00 00 >ffffffc0265b7500: 00 00 00 00 f1 f1 f1 f1 01 f3 f3 f3 00 00 00 00 ^ ffffffc0265b7580: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffffffc0265b7600: f1 f1 f1 f1 01 f2 07 f2 f2 f2 01 f3 00 00 00 00 ==================================================================
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix out of bounds read in smb2_sess_setup ksmbd does not consider the case of that smb2 session setup is in compound request. If this is the second payload of the compound, OOB read issue occurs while processing the first payload in the smb2_sess_setup().
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix out-of-bound read in smb2_write ksmbd_smb2_check_message doesn't validate hdr->NextCommand. If ->NextCommand is bigger than Offset + Length of smb2 write, It will allow oversized smb2 write length. It will cause OOB read in smb2_write.
In the Linux kernel, the following vulnerability has been resolved: bpf: Check validity of link->type in bpf_link_show_fdinfo() If a newly-added link type doesn't invoke BPF_LINK_TYPE(), accessing bpf_link_type_strs[link->type] may result in an out-of-bounds access. To spot such missed invocations early in the future, checking the validity of link->type in bpf_link_show_fdinfo() and emitting a warning when such invocations are missed.
In the Linux kernel, the following vulnerability has been resolved: security/keys: fix slab-out-of-bounds in key_task_permission KASAN reports an out of bounds read: BUG: KASAN: slab-out-of-bounds in __kuid_val include/linux/uidgid.h:36 BUG: KASAN: slab-out-of-bounds in uid_eq include/linux/uidgid.h:63 [inline] BUG: KASAN: slab-out-of-bounds in key_task_permission+0x394/0x410 security/keys/permission.c:54 Read of size 4 at addr ffff88813c3ab618 by task stress-ng/4362 CPU: 2 PID: 4362 Comm: stress-ng Not tainted 5.10.0-14930-gafbffd6c3ede #15 Call Trace: __dump_stack lib/dump_stack.c:82 [inline] dump_stack+0x107/0x167 lib/dump_stack.c:123 print_address_description.constprop.0+0x19/0x170 mm/kasan/report.c:400 __kasan_report.cold+0x6c/0x84 mm/kasan/report.c:560 kasan_report+0x3a/0x50 mm/kasan/report.c:585 __kuid_val include/linux/uidgid.h:36 [inline] uid_eq include/linux/uidgid.h:63 [inline] key_task_permission+0x394/0x410 security/keys/permission.c:54 search_nested_keyrings+0x90e/0xe90 security/keys/keyring.c:793 This issue was also reported by syzbot. It can be reproduced by following these steps(more details [1]): 1. Obtain more than 32 inputs that have similar hashes, which ends with the pattern '0xxxxxxxe6'. 2. Reboot and add the keys obtained in step 1. The reproducer demonstrates how this issue happened: 1. In the search_nested_keyrings function, when it iterates through the slots in a node(below tag ascend_to_node), if the slot pointer is meta and node->back_pointer != NULL(it means a root), it will proceed to descend_to_node. However, there is an exception. If node is the root, and one of the slots points to a shortcut, it will be treated as a keyring. 2. Whether the ptr is keyring decided by keyring_ptr_is_keyring function. However, KEYRING_PTR_SUBTYPE is 0x2UL, the same as ASSOC_ARRAY_PTR_SUBTYPE_MASK. 3. When 32 keys with the similar hashes are added to the tree, the ROOT has keys with hashes that are not similar (e.g. slot 0) and it splits NODE A without using a shortcut. When NODE A is filled with keys that all hashes are xxe6, the keys are similar, NODE A will split with a shortcut. Finally, it forms the tree as shown below, where slot 6 points to a shortcut. NODE A +------>+---+ ROOT | | 0 | xxe6 +---+ | +---+ xxxx | 0 | shortcut : : xxe6 +---+ | +---+ xxe6 : : | | | xxe6 +---+ | +---+ | 6 |---+ : : xxe6 +---+ +---+ xxe6 : : | f | xxe6 +---+ +---+ xxe6 | f | +---+ 4. As mentioned above, If a slot(slot 6) of the root points to a shortcut, it may be mistakenly transferred to a key*, leading to a read out-of-bounds read. To fix this issue, one should jump to descend_to_node if the ptr is a shortcut, regardless of whether the node is root or not. [1] https://lore.kernel.org/linux-kernel/1cfa878e-8c7b-4570-8606-21daf5e13ce7@huaweicloud.com/ [jarkko: tweaked the commit message a bit to have an appropriate closes tag.]
In the Linux kernel, the following vulnerability has been resolved: ice: Fix increasing MSI-X on VF Increasing MSI-X value on a VF leads to invalid memory operations. This is caused by not reallocating some arrays. Reproducer: modprobe ice echo 0 > /sys/bus/pci/devices/$PF_PCI/sriov_drivers_autoprobe echo 1 > /sys/bus/pci/devices/$PF_PCI/sriov_numvfs echo 17 > /sys/bus/pci/devices/$VF0_PCI/sriov_vf_msix_count Default MSI-X is 16, so 17 and above triggers this issue. KASAN reports: BUG: KASAN: slab-out-of-bounds in ice_vsi_alloc_ring_stats+0x38d/0x4b0 [ice] Read of size 8 at addr ffff8888b937d180 by task bash/28433 (...) Call Trace: (...) ? ice_vsi_alloc_ring_stats+0x38d/0x4b0 [ice] kasan_report+0xed/0x120 ? ice_vsi_alloc_ring_stats+0x38d/0x4b0 [ice] ice_vsi_alloc_ring_stats+0x38d/0x4b0 [ice] ice_vsi_cfg_def+0x3360/0x4770 [ice] ? mutex_unlock+0x83/0xd0 ? __pfx_ice_vsi_cfg_def+0x10/0x10 [ice] ? __pfx_ice_remove_vsi_lkup_fltr+0x10/0x10 [ice] ice_vsi_cfg+0x7f/0x3b0 [ice] ice_vf_reconfig_vsi+0x114/0x210 [ice] ice_sriov_set_msix_vec_count+0x3d0/0x960 [ice] sriov_vf_msix_count_store+0x21c/0x300 (...) Allocated by task 28201: (...) ice_vsi_cfg_def+0x1c8e/0x4770 [ice] ice_vsi_cfg+0x7f/0x3b0 [ice] ice_vsi_setup+0x179/0xa30 [ice] ice_sriov_configure+0xcaa/0x1520 [ice] sriov_numvfs_store+0x212/0x390 (...) To fix it, use ice_vsi_rebuild() instead of ice_vf_reconfig_vsi(). This causes the required arrays to be reallocated taking the new queue count into account (ice_vsi_realloc_stat_arrays()). Set req_txq and req_rxq before ice_vsi_rebuild(), so that realloc uses the newly set queue count. Additionally, ice_vsi_rebuild() does not remove VSI filters (ice_fltr_remove_all()), so ice_vf_init_host_cfg() is no longer necessary.
In the Linux kernel, the following vulnerability has been resolved: HID: multitouch: fix slab out-of-bounds access in mt_report_fixup() A malicious HID device can trigger a slab out-of-bounds during mt_report_fixup() by passing in report descriptor smaller than 607 bytes. mt_report_fixup() attempts to patch byte offset 607 of the descriptor with 0x25 by first checking if byte offset 607 is 0x15 however it lacks bounds checks to verify if the descriptor is big enough before conducting this check. Fix this bug by ensuring the descriptor size is at least 608 bytes before accessing it. Below is the KASAN splat after the out of bounds access happens: [ 13.671954] ================================================================== [ 13.672667] BUG: KASAN: slab-out-of-bounds in mt_report_fixup+0x103/0x110 [ 13.673297] Read of size 1 at addr ffff888103df39df by task kworker/0:1/10 [ 13.673297] [ 13.673297] CPU: 0 UID: 0 PID: 10 Comm: kworker/0:1 Not tainted 6.15.0-00005-gec5d573d83f4-dirty #3 [ 13.673297] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/04 [ 13.673297] Call Trace: [ 13.673297] <TASK> [ 13.673297] dump_stack_lvl+0x5f/0x80 [ 13.673297] print_report+0xd1/0x660 [ 13.673297] kasan_report+0xe5/0x120 [ 13.673297] __asan_report_load1_noabort+0x18/0x20 [ 13.673297] mt_report_fixup+0x103/0x110 [ 13.673297] hid_open_report+0x1ef/0x810 [ 13.673297] mt_probe+0x422/0x960 [ 13.673297] hid_device_probe+0x2e2/0x6f0 [ 13.673297] really_probe+0x1c6/0x6b0 [ 13.673297] __driver_probe_device+0x24f/0x310 [ 13.673297] driver_probe_device+0x4e/0x220 [ 13.673297] __device_attach_driver+0x169/0x320 [ 13.673297] bus_for_each_drv+0x11d/0x1b0 [ 13.673297] __device_attach+0x1b8/0x3e0 [ 13.673297] device_initial_probe+0x12/0x20 [ 13.673297] bus_probe_device+0x13d/0x180 [ 13.673297] device_add+0xe3a/0x1670 [ 13.673297] hid_add_device+0x31d/0xa40 [...]
In the Linux kernel, the following vulnerability has been resolved: hfsplus: fix slab-out-of-bounds in hfsplus_bnode_read() The hfsplus_bnode_read() method can trigger the issue: [ 174.852007][ T9784] ================================================================== [ 174.852709][ T9784] BUG: KASAN: slab-out-of-bounds in hfsplus_bnode_read+0x2f4/0x360 [ 174.853412][ T9784] Read of size 8 at addr ffff88810b5fc6c0 by task repro/9784 [ 174.854059][ T9784] [ 174.854272][ T9784] CPU: 1 UID: 0 PID: 9784 Comm: repro Not tainted 6.16.0-rc3 #7 PREEMPT(full) [ 174.854281][ T9784] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 174.854286][ T9784] Call Trace: [ 174.854289][ T9784] <TASK> [ 174.854292][ T9784] dump_stack_lvl+0x10e/0x1f0 [ 174.854305][ T9784] print_report+0xd0/0x660 [ 174.854315][ T9784] ? __virt_addr_valid+0x81/0x610 [ 174.854323][ T9784] ? __phys_addr+0xe8/0x180 [ 174.854330][ T9784] ? hfsplus_bnode_read+0x2f4/0x360 [ 174.854337][ T9784] kasan_report+0xc6/0x100 [ 174.854346][ T9784] ? hfsplus_bnode_read+0x2f4/0x360 [ 174.854354][ T9784] hfsplus_bnode_read+0x2f4/0x360 [ 174.854362][ T9784] hfsplus_bnode_dump+0x2ec/0x380 [ 174.854370][ T9784] ? __pfx_hfsplus_bnode_dump+0x10/0x10 [ 174.854377][ T9784] ? hfsplus_bnode_write_u16+0x83/0xb0 [ 174.854385][ T9784] ? srcu_gp_start+0xd0/0x310 [ 174.854393][ T9784] ? __mark_inode_dirty+0x29e/0xe40 [ 174.854402][ T9784] hfsplus_brec_remove+0x3d2/0x4e0 [ 174.854411][ T9784] __hfsplus_delete_attr+0x290/0x3a0 [ 174.854419][ T9784] ? __pfx_hfs_find_1st_rec_by_cnid+0x10/0x10 [ 174.854427][ T9784] ? __pfx___hfsplus_delete_attr+0x10/0x10 [ 174.854436][ T9784] ? __asan_memset+0x23/0x50 [ 174.854450][ T9784] hfsplus_delete_all_attrs+0x262/0x320 [ 174.854459][ T9784] ? __pfx_hfsplus_delete_all_attrs+0x10/0x10 [ 174.854469][ T9784] ? rcu_is_watching+0x12/0xc0 [ 174.854476][ T9784] ? __mark_inode_dirty+0x29e/0xe40 [ 174.854483][ T9784] hfsplus_delete_cat+0x845/0xde0 [ 174.854493][ T9784] ? __pfx_hfsplus_delete_cat+0x10/0x10 [ 174.854507][ T9784] hfsplus_unlink+0x1ca/0x7c0 [ 174.854516][ T9784] ? __pfx_hfsplus_unlink+0x10/0x10 [ 174.854525][ T9784] ? down_write+0x148/0x200 [ 174.854532][ T9784] ? __pfx_down_write+0x10/0x10 [ 174.854540][ T9784] vfs_unlink+0x2fe/0x9b0 [ 174.854549][ T9784] do_unlinkat+0x490/0x670 [ 174.854557][ T9784] ? __pfx_do_unlinkat+0x10/0x10 [ 174.854565][ T9784] ? __might_fault+0xbc/0x130 [ 174.854576][ T9784] ? getname_flags.part.0+0x1c5/0x550 [ 174.854584][ T9784] __x64_sys_unlink+0xc5/0x110 [ 174.854592][ T9784] do_syscall_64+0xc9/0x480 [ 174.854600][ T9784] entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 174.854608][ T9784] RIP: 0033:0x7f6fdf4c3167 [ 174.854614][ T9784] Code: f0 ff ff 73 01 c3 48 8b 0d 26 0d 0e 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 08 [ 174.854622][ T9784] RSP: 002b:00007ffcb948bca8 EFLAGS: 00000206 ORIG_RAX: 0000000000000057 [ 174.854630][ T9784] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f6fdf4c3167 [ 174.854636][ T9784] RDX: 00007ffcb948bcc0 RSI: 00007ffcb948bcc0 RDI: 00007ffcb948bd50 [ 174.854641][ T9784] RBP: 00007ffcb948cd90 R08: 0000000000000001 R09: 00007ffcb948bb40 [ 174.854645][ T9784] R10: 00007f6fdf564fc0 R11: 0000000000000206 R12: 0000561e1bc9c2d0 [ 174.854650][ T9784] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [ 174.854658][ T9784] </TASK> [ 174.854661][ T9784] [ 174.879281][ T9784] Allocated by task 9784: [ 174.879664][ T9784] kasan_save_stack+0x20/0x40 [ 174.880082][ T9784] kasan_save_track+0x14/0x30 [ 174.880500][ T9784] __kasan_kmalloc+0xaa/0xb0 [ 174.880908][ T9784] __kmalloc_noprof+0x205/0x550 [ 174.881337][ T9784] __hfs_bnode_create+0x107/0x890 [ 174.881779][ T9784] hfsplus_bnode_find+0x2d0/0xd10 [ 174.882222][ T9784] hfsplus_brec_find+0x2b0/0x520 [ 174.882659][ T9784] hfsplus_delete_all_attrs+0x23b/0x3 ---truncated---
In the Linux kernel, the following vulnerability has been resolved: i40e: remove read access to debugfs files The 'command' and 'netdev_ops' debugfs files are a legacy debugging interface supported by the i40e driver since its early days by commit 02e9c290814c ("i40e: debugfs interface"). Both of these debugfs files provide a read handler which is mostly useless, and which is implemented with questionable logic. They both use a static 256 byte buffer which is initialized to the empty string. In the case of the 'command' file this buffer is literally never used and simply wastes space. In the case of the 'netdev_ops' file, the last command written is saved here. On read, the files contents are presented as the name of the device followed by a colon and then the contents of their respective static buffer. For 'command' this will always be "<device>: ". For 'netdev_ops', this will be "<device>: <last command written>". But note the buffer is shared between all devices operated by this module. At best, it is mostly meaningless information, and at worse it could be accessed simultaneously as there doesn't appear to be any locking mechanism. We have also recently received multiple reports for both read functions about their use of snprintf and potential overflow that could result in reading arbitrary kernel memory. For the 'command' file, this is definitely impossible, since the static buffer is always zero and never written to. For the 'netdev_ops' file, it does appear to be possible, if the user carefully crafts the command input, it will be copied into the buffer, which could be large enough to cause snprintf to truncate, which then causes the copy_to_user to read beyond the length of the buffer allocated by kzalloc. A minimal fix would be to replace snprintf() with scnprintf() which would cap the return to the number of bytes written, preventing an overflow. A more involved fix would be to drop the mostly useless static buffers, saving 512 bytes and modifying the read functions to stop needing those as input. Instead, lets just completely drop the read access to these files. These are debug interfaces exposed as part of debugfs, and I don't believe that dropping read access will break any script, as the provided output is pretty useless. You can find the netdev name through other more standard interfaces, and the 'netdev_ops' interface can easily result in garbage if you issue simultaneous writes to multiple devices at once. In order to properly remove the i40e_dbg_netdev_ops_buf, we need to refactor its write function to avoid using the static buffer. Instead, use the same logic as the i40e_dbg_command_write, with an allocated buffer. Update the code to use this instead of the static buffer, and ensure we free the buffer on exit. This fixes simultaneous writes to 'netdev_ops' on multiple devices, and allows us to remove the now unused static buffer along with removing the read access.