SQL Server for Linux Containers Elevation of Privilege Vulnerability
In the Linux kernel, the following vulnerability has been resolved: ftrace: Fix possible use-after-free issue in ftrace_location() KASAN reports a bug: BUG: KASAN: use-after-free in ftrace_location+0x90/0x120 Read of size 8 at addr ffff888141d40010 by task insmod/424 CPU: 8 PID: 424 Comm: insmod Tainted: G W 6.9.0-rc2+ [...] Call Trace: <TASK> dump_stack_lvl+0x68/0xa0 print_report+0xcf/0x610 kasan_report+0xb5/0xe0 ftrace_location+0x90/0x120 register_kprobe+0x14b/0xa40 kprobe_init+0x2d/0xff0 [kprobe_example] do_one_initcall+0x8f/0x2d0 do_init_module+0x13a/0x3c0 load_module+0x3082/0x33d0 init_module_from_file+0xd2/0x130 __x64_sys_finit_module+0x306/0x440 do_syscall_64+0x68/0x140 entry_SYSCALL_64_after_hwframe+0x71/0x79 The root cause is that, in lookup_rec(), ftrace record of some address is being searched in ftrace pages of some module, but those ftrace pages at the same time is being freed in ftrace_release_mod() as the corresponding module is being deleted: CPU1 | CPU2 register_kprobes() { | delete_module() { check_kprobe_address_safe() { | arch_check_ftrace_location() { | ftrace_location() { | lookup_rec() // USE! | ftrace_release_mod() // Free! To fix this issue: 1. Hold rcu lock as accessing ftrace pages in ftrace_location_range(); 2. Use ftrace_location_range() instead of lookup_rec() in ftrace_location(); 3. Call synchronize_rcu() before freeing any ftrace pages both in ftrace_process_locs()/ftrace_release_mod()/ftrace_free_mem().
VMware Horizon Agent for Linux (prior to 22.x) contains a local privilege escalation as a user is able to change the default shared folder location due to a vulnerable symbolic link. Successful exploitation can result in linking to a root owned file.
In the Linux kernel, the following vulnerability has been resolved: bpf: Protect against int overflow for stack access size This patch re-introduces protection against the size of access to stack memory being negative; the access size can appear negative as a result of overflowing its signed int representation. This should not actually happen, as there are other protections along the way, but we should protect against it anyway. One code path was missing such protections (fixed in the previous patch in the series), causing out-of-bounds array accesses in check_stack_range_initialized(). This patch causes the verification of a program with such a non-sensical access size to fail. This check used to exist in a more indirect way, but was inadvertendly removed in a833a17aeac7.
VMware Horizon Agent for Linux (prior to 22.x) contains a local privilege escalation that allows a user to escalate to root due to a vulnerable configuration file.
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in cifs_dump_full_key() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
In the Linux kernel, the following vulnerability has been resolved: ax25: fix use-after-free bugs caused by ax25_ds_del_timer When the ax25 device is detaching, the ax25_dev_device_down() calls ax25_ds_del_timer() to cleanup the slave_timer. When the timer handler is running, the ax25_ds_del_timer() that calls del_timer() in it will return directly. As a result, the use-after-free bugs could happen, one of the scenarios is shown below: (Thread 1) | (Thread 2) | ax25_ds_timeout() ax25_dev_device_down() | ax25_ds_del_timer() | del_timer() | ax25_dev_put() //FREE | | ax25_dev-> //USE In order to mitigate bugs, when the device is detaching, use timer_shutdown_sync() to stop the timer.
A code injection vulnerability in Trend Micro Deep Security and Cloud One - Workload Security Agent for Linux version 20 and below could allow an attacker to escalate privileges and run arbitrary code in the context of root. Please note: an attacker must first obtain access to the target agent in an un-activated and unconfigured state in order to exploit this vulnerability.
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: msft: fix slab-use-after-free in msft_do_close() Tying the msft->data lifetime to hdev by freeing it in hci_release_dev() to fix the following case: [use] msft_do_close() msft = hdev->msft_data; if (!msft) ...(1) <- passed. return; mutex_lock(&msft->filter_lock); ...(4) <- used after freed. [free] msft_unregister() msft = hdev->msft_data; hdev->msft_data = NULL; ...(2) kfree(msft); ...(3) <- msft is freed. ================================================================== BUG: KASAN: slab-use-after-free in __mutex_lock_common kernel/locking/mutex.c:587 [inline] BUG: KASAN: slab-use-after-free in __mutex_lock+0x8f/0xc30 kernel/locking/mutex.c:752 Read of size 8 at addr ffff888106cbbca8 by task kworker/u5:2/309
A use-after-free vulnerability in the Linux kernel's af_unix component can be exploited to achieve local privilege escalation. The unix_stream_sendpage() function tries to add data to the last skb in the peer's recv queue without locking the queue. Thus there is a race where unix_stream_sendpage() could access an skb locklessly that is being released by garbage collection, resulting in use-after-free. We recommend upgrading past commit 790c2f9d15b594350ae9bca7b236f2b1859de02c.
The vmw_surface_define_ioctl function in drivers/gpu/drm/vmwgfx/vmwgfx_surface.c in the Linux kernel through 4.10.6 does not validate addition of certain levels data, which allows local users to trigger an integer overflow and out-of-bounds write, and cause a denial of service (system hang or crash) or possibly gain privileges, via a crafted ioctl call for a /dev/dri/renderD* device.
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in cifs_signal_cifsd_for_reconnect() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btusb: mediatek: Fix double free of skb in coredump hci_devcd_append() would free the skb on error so the caller don't have to free it again otherwise it would cause the double free of skb. Reported-by : Dan Carpenter <dan.carpenter@linaro.org>
In the Linux kernel, the following vulnerability has been resolved: net: sched: sch_multiq: fix possible OOB write in multiq_tune() q->bands will be assigned to qopt->bands to execute subsequent code logic after kmalloc. So the old q->bands should not be used in kmalloc. Otherwise, an out-of-bounds write will occur.
The fix for XSA-423 added logic to Linux'es netback driver to deal with a frontend splitting a packet in a way such that not all of the headers would come in one piece. Unfortunately the logic introduced there didn't account for the extreme case of the entire packet being split into as many pieces as permitted by the protocol, yet still being smaller than the area that's specially dealt with to keep all (possible) headers together. Such an unusual packet would therefore trigger a buffer overrun in the driver.
The brcmf_cfg80211_mgmt_tx function in drivers/net/wireless/broadcom/brcm80211/brcmfmac/cfg80211.c in the Linux kernel before 4.12.3 allows local users to cause a denial of service (buffer overflow and system crash) or possibly gain privileges via a crafted NL80211_CMD_FRAME Netlink packet.
In the Linux kernel before 4.20.12, net/ipv4/netfilter/nf_nat_snmp_basic_main.c in the SNMP NAT module has insufficient ASN.1 length checks (aka an array index error), making out-of-bounds read and write operations possible, leading to an OOPS or local privilege escalation. This affects snmp_version and snmp_helper.
In the Linux kernel, the following vulnerability has been resolved: net: fix __dst_negative_advice() race __dst_negative_advice() does not enforce proper RCU rules when sk->dst_cache must be cleared, leading to possible UAF. RCU rules are that we must first clear sk->sk_dst_cache, then call dst_release(old_dst). Note that sk_dst_reset(sk) is implementing this protocol correctly, while __dst_negative_advice() uses the wrong order. Given that ip6_negative_advice() has special logic against RTF_CACHE, this means each of the three ->negative_advice() existing methods must perform the sk_dst_reset() themselves. Note the check against NULL dst is centralized in __dst_negative_advice(), there is no need to duplicate it in various callbacks. Many thanks to Clement Lecigne for tracking this issue. This old bug became visible after the blamed commit, using UDP sockets.
Integer Overflow or Wraparound vulnerability in io_uring of Linux Kernel allows local attacker to cause memory corruption and escalate privileges to root. This issue affects: Linux Kernel versions prior to 5.4.189; version 5.4.24 and later versions.
A vulnerability was found in Linux Kernel, where a refcount leak in llcp_sock_connect() causing use-after-free which might lead to privilege escalations.
The packet_set_ring function in net/packet/af_packet.c in the Linux kernel through 4.10.6 does not properly validate certain block-size data, which allows local users to cause a denial of service (integer signedness error and out-of-bounds write), or gain privileges (if the CAP_NET_RAW capability is held), via crafted system calls.
The sg_ioctl function in drivers/scsi/sg.c in the Linux kernel through 4.10.4 allows local users to cause a denial of service (stack-based buffer overflow) or possibly have unspecified other impact via a large command size in an SG_NEXT_CMD_LEN ioctl call, leading to out-of-bounds write access in the sg_write function.
Use-after-free vulnerability in fs/crypto/ in the Linux kernel before 4.10.7 allows local users to cause a denial of service (NULL pointer dereference) or possibly gain privileges by revoking keyring keys being used for ext4, f2fs, or ubifs encryption, causing cryptographic transform objects to be freed prematurely.
A flaw was found in KVM. When updating a guest's page table entry, vm_pgoff was improperly used as the offset to get the page's pfn. As vaddr and vm_pgoff are controllable by user-mode processes, this flaw allows unprivileged local users on the host to write outside the userspace region and potentially corrupt the kernel, resulting in a denial of service condition.
In the Linux Kernel before versions 4.20.8 and 4.19.21 a use-after-free error in the "sctp_sendmsg()" function (net/sctp/socket.c) when handling SCTP_SENDALL flag can be exploited to corrupt memory.
In the Linux kernel before version 4.12, Kerberos 5 tickets decoded when using the RXRPC keys incorrectly assumes the size of a field. This could lead to the size-remaining variable wrapping and the data pointer going over the end of the buffer. This could possibly lead to memory corruption and possible privilege escalation.
In the Linux kernel, the following vulnerability has been resolved: raid1: fix use-after-free for original bio in raid1_write_request() r1_bio->bios[] is used to record new bios that will be issued to underlying disks, however, in raid1_write_request(), r1_bio->bios[] will set to the original bio temporarily. Meanwhile, if blocked rdev is set, free_r1bio() will be called causing that all r1_bio->bios[] to be freed: raid1_write_request() r1_bio = alloc_r1bio(mddev, bio); -> r1_bio->bios[] is NULL for (i = 0; i < disks; i++) -> for each rdev in conf // first rdev is normal r1_bio->bios[0] = bio; -> set to original bio // second rdev is blocked if (test_bit(Blocked, &rdev->flags)) break if (blocked_rdev) free_r1bio() put_all_bios() bio_put(r1_bio->bios[0]) -> original bio is freed Test scripts: mdadm -CR /dev/md0 -l1 -n4 /dev/sd[abcd] --assume-clean fio -filename=/dev/md0 -ioengine=libaio -rw=write -bs=4k -numjobs=1 \ -iodepth=128 -name=test -direct=1 echo blocked > /sys/block/md0/md/rd2/state Test result: BUG bio-264 (Not tainted): Object already free ----------------------------------------------------------------------------- Allocated in mempool_alloc_slab+0x24/0x50 age=1 cpu=1 pid=869 kmem_cache_alloc+0x324/0x480 mempool_alloc_slab+0x24/0x50 mempool_alloc+0x6e/0x220 bio_alloc_bioset+0x1af/0x4d0 blkdev_direct_IO+0x164/0x8a0 blkdev_write_iter+0x309/0x440 aio_write+0x139/0x2f0 io_submit_one+0x5ca/0xb70 __do_sys_io_submit+0x86/0x270 __x64_sys_io_submit+0x22/0x30 do_syscall_64+0xb1/0x210 entry_SYSCALL_64_after_hwframe+0x6c/0x74 Freed in mempool_free_slab+0x1f/0x30 age=1 cpu=1 pid=869 kmem_cache_free+0x28c/0x550 mempool_free_slab+0x1f/0x30 mempool_free+0x40/0x100 bio_free+0x59/0x80 bio_put+0xf0/0x220 free_r1bio+0x74/0xb0 raid1_make_request+0xadf/0x1150 md_handle_request+0xc7/0x3b0 md_submit_bio+0x76/0x130 __submit_bio+0xd8/0x1d0 submit_bio_noacct_nocheck+0x1eb/0x5c0 submit_bio_noacct+0x169/0xd40 submit_bio+0xee/0x1d0 blkdev_direct_IO+0x322/0x8a0 blkdev_write_iter+0x309/0x440 aio_write+0x139/0x2f0 Since that bios for underlying disks are not allocated yet, fix this problem by using mempool_free() directly to free the r1_bio.
The root cause of this vulnerability is that the ioctl$DRM_IOCTL_MODE_DESTROY_DUMB can decrease refcount of *drm_vgem_gem_object *(created in *vgem_gem_dumb_create*) concurrently, and *vgem_gem_dumb_create *will access the freed drm_vgem_gem_object.
A flaw was found in the way the "flags" member of the new pipe buffer structure was lacking proper initialization in copy_page_to_iter_pipe and push_pipe functions in the Linux kernel and could thus contain stale values. An unprivileged local user could use this flaw to write to pages in the page cache backed by read only files and as such escalate their privileges on the system.
An out-of-bounds (OOB) memory write flaw was found in the Linux kernel’s watch_queue event notification subsystem. This flaw can overwrite parts of the kernel state, potentially allowing a local user to gain privileged access or cause a denial of service on the system.
In the Linux kernel, the following vulnerability has been resolved: watchdog: Fix possible use-after-free by calling del_timer_sync() This driver's remove path calls del_timer(). However, that function does not wait until the timer handler finishes. This means that the timer handler may still be running after the driver's remove function has finished, which would result in a use-after-free. Fix by calling del_timer_sync(), which makes sure the timer handler has finished, and unable to re-schedule itself.
In the Linux kernel, the following vulnerability has been resolved: net: sched: flower: protect fl_walk() with rcu Patch that refactored fl_walk() to use idr_for_each_entry_continue_ul() also removed rcu protection of individual filters which causes following use-after-free when filter is deleted concurrently. Fix fl_walk() to obtain rcu read lock while iterating and taking the filter reference and temporary release the lock while calling arg->fn() callback that can sleep. KASAN trace: [ 352.773640] ================================================================== [ 352.775041] BUG: KASAN: use-after-free in fl_walk+0x159/0x240 [cls_flower] [ 352.776304] Read of size 4 at addr ffff8881c8251480 by task tc/2987 [ 352.777862] CPU: 3 PID: 2987 Comm: tc Not tainted 5.15.0-rc2+ #2 [ 352.778980] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 352.781022] Call Trace: [ 352.781573] dump_stack_lvl+0x46/0x5a [ 352.782332] print_address_description.constprop.0+0x1f/0x140 [ 352.783400] ? fl_walk+0x159/0x240 [cls_flower] [ 352.784292] ? fl_walk+0x159/0x240 [cls_flower] [ 352.785138] kasan_report.cold+0x83/0xdf [ 352.785851] ? fl_walk+0x159/0x240 [cls_flower] [ 352.786587] kasan_check_range+0x145/0x1a0 [ 352.787337] fl_walk+0x159/0x240 [cls_flower] [ 352.788163] ? fl_put+0x10/0x10 [cls_flower] [ 352.789007] ? __mutex_unlock_slowpath.constprop.0+0x220/0x220 [ 352.790102] tcf_chain_dump+0x231/0x450 [ 352.790878] ? tcf_chain_tp_delete_empty+0x170/0x170 [ 352.791833] ? __might_sleep+0x2e/0xc0 [ 352.792594] ? tfilter_notify+0x170/0x170 [ 352.793400] ? __mutex_unlock_slowpath.constprop.0+0x220/0x220 [ 352.794477] tc_dump_tfilter+0x385/0x4b0 [ 352.795262] ? tc_new_tfilter+0x1180/0x1180 [ 352.796103] ? __mod_node_page_state+0x1f/0xc0 [ 352.796974] ? __build_skb_around+0x10e/0x130 [ 352.797826] netlink_dump+0x2c0/0x560 [ 352.798563] ? netlink_getsockopt+0x430/0x430 [ 352.799433] ? __mutex_unlock_slowpath.constprop.0+0x220/0x220 [ 352.800542] __netlink_dump_start+0x356/0x440 [ 352.801397] rtnetlink_rcv_msg+0x3ff/0x550 [ 352.802190] ? tc_new_tfilter+0x1180/0x1180 [ 352.802872] ? rtnl_calcit.isra.0+0x1f0/0x1f0 [ 352.803668] ? tc_new_tfilter+0x1180/0x1180 [ 352.804344] ? _copy_from_iter_nocache+0x800/0x800 [ 352.805202] ? kasan_set_track+0x1c/0x30 [ 352.805900] netlink_rcv_skb+0xc6/0x1f0 [ 352.806587] ? rht_deferred_worker+0x6b0/0x6b0 [ 352.807455] ? rtnl_calcit.isra.0+0x1f0/0x1f0 [ 352.808324] ? netlink_ack+0x4d0/0x4d0 [ 352.809086] ? netlink_deliver_tap+0x62/0x3d0 [ 352.809951] netlink_unicast+0x353/0x480 [ 352.810744] ? netlink_attachskb+0x430/0x430 [ 352.811586] ? __alloc_skb+0xd7/0x200 [ 352.812349] netlink_sendmsg+0x396/0x680 [ 352.813132] ? netlink_unicast+0x480/0x480 [ 352.813952] ? __import_iovec+0x192/0x210 [ 352.814759] ? netlink_unicast+0x480/0x480 [ 352.815580] sock_sendmsg+0x6c/0x80 [ 352.816299] ____sys_sendmsg+0x3a5/0x3c0 [ 352.817096] ? kernel_sendmsg+0x30/0x30 [ 352.817873] ? __ia32_sys_recvmmsg+0x150/0x150 [ 352.818753] ___sys_sendmsg+0xd8/0x140 [ 352.819518] ? sendmsg_copy_msghdr+0x110/0x110 [ 352.820402] ? ___sys_recvmsg+0xf4/0x1a0 [ 352.821110] ? __copy_msghdr_from_user+0x260/0x260 [ 352.821934] ? _raw_spin_lock+0x81/0xd0 [ 352.822680] ? __handle_mm_fault+0xef3/0x1b20 [ 352.823549] ? rb_insert_color+0x2a/0x270 [ 352.824373] ? copy_page_range+0x16b0/0x16b0 [ 352.825209] ? perf_event_update_userpage+0x2d0/0x2d0 [ 352.826190] ? __fget_light+0xd9/0xf0 [ 352.826941] __sys_sendmsg+0xb3/0x130 [ 352.827613] ? __sys_sendmsg_sock+0x20/0x20 [ 352.828377] ? do_user_addr_fault+0x2c5/0x8a0 [ 352.829184] ? fpregs_assert_state_consistent+0x52/0x60 [ 352.830001] ? exit_to_user_mode_prepare+0x32/0x160 [ 352.830845] do_syscall_64+0x35/0x80 [ 352.831445] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 352.832331] RIP: 0033:0x7f7bee973c17 [ ---truncated---
In the Linux kernel, the following vulnerability has been resolved: xen-netback: take a reference to the RX task thread Do this in order to prevent the task from being freed if the thread returns (which can be triggered by the frontend) before the call to kthread_stop done as part of the backend tear down. Not taking the reference will lead to a use-after-free in that scenario. Such reference was taken before but dropped as part of the rework done in 2ac061ce97f4. Reintroduce the reference taking and add a comment this time explaining why it's needed. This is XSA-374 / CVE-2021-28691.
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: fix use-after-free in nft_set_catchall_destroy() We need to use list_for_each_entry_safe() iterator because we can not access @catchall after kfree_rcu() call. syzbot reported: BUG: KASAN: use-after-free in nft_set_catchall_destroy net/netfilter/nf_tables_api.c:4486 [inline] BUG: KASAN: use-after-free in nft_set_destroy net/netfilter/nf_tables_api.c:4504 [inline] BUG: KASAN: use-after-free in nft_set_destroy+0x3fd/0x4f0 net/netfilter/nf_tables_api.c:4493 Read of size 8 at addr ffff8880716e5b80 by task syz-executor.3/8871 CPU: 1 PID: 8871 Comm: syz-executor.3 Not tainted 5.16.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description.constprop.0.cold+0x8d/0x2ed mm/kasan/report.c:247 __kasan_report mm/kasan/report.c:433 [inline] kasan_report.cold+0x83/0xdf mm/kasan/report.c:450 nft_set_catchall_destroy net/netfilter/nf_tables_api.c:4486 [inline] nft_set_destroy net/netfilter/nf_tables_api.c:4504 [inline] nft_set_destroy+0x3fd/0x4f0 net/netfilter/nf_tables_api.c:4493 __nft_release_table+0x79f/0xcd0 net/netfilter/nf_tables_api.c:9626 nft_rcv_nl_event+0x4f8/0x670 net/netfilter/nf_tables_api.c:9688 notifier_call_chain+0xb5/0x200 kernel/notifier.c:83 blocking_notifier_call_chain kernel/notifier.c:318 [inline] blocking_notifier_call_chain+0x67/0x90 kernel/notifier.c:306 netlink_release+0xcb6/0x1dd0 net/netlink/af_netlink.c:788 __sock_release+0xcd/0x280 net/socket.c:649 sock_close+0x18/0x20 net/socket.c:1314 __fput+0x286/0x9f0 fs/file_table.c:280 task_work_run+0xdd/0x1a0 kernel/task_work.c:164 tracehook_notify_resume include/linux/tracehook.h:189 [inline] exit_to_user_mode_loop kernel/entry/common.c:175 [inline] exit_to_user_mode_prepare+0x27e/0x290 kernel/entry/common.c:207 __syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline] syscall_exit_to_user_mode+0x19/0x60 kernel/entry/common.c:300 do_syscall_64+0x42/0xb0 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f75fbf28adb Code: 0f 05 48 3d 00 f0 ff ff 77 45 c3 0f 1f 40 00 48 83 ec 18 89 7c 24 0c e8 63 fc ff ff 8b 7c 24 0c 41 89 c0 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 35 44 89 c7 89 44 24 0c e8 a1 fc ff ff 8b 44 RSP: 002b:00007ffd8da7ec10 EFLAGS: 00000293 ORIG_RAX: 0000000000000003 RAX: 0000000000000000 RBX: 0000000000000004 RCX: 00007f75fbf28adb RDX: 00007f75fc08e828 RSI: ffffffffffffffff RDI: 0000000000000003 RBP: 00007f75fc08a960 R08: 0000000000000000 R09: 00007f75fc08e830 R10: 00007ffd8da7ed10 R11: 0000000000000293 R12: 00000000002067c3 R13: 00007ffd8da7ed10 R14: 00007f75fc088f60 R15: 0000000000000032 </TASK> Allocated by task 8886: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 kasan_set_track mm/kasan/common.c:46 [inline] set_alloc_info mm/kasan/common.c:434 [inline] ____kasan_kmalloc mm/kasan/common.c:513 [inline] ____kasan_kmalloc mm/kasan/common.c:472 [inline] __kasan_kmalloc+0xa6/0xd0 mm/kasan/common.c:522 kasan_kmalloc include/linux/kasan.h:269 [inline] kmem_cache_alloc_trace+0x1ea/0x4a0 mm/slab.c:3575 kmalloc include/linux/slab.h:590 [inline] nft_setelem_catchall_insert net/netfilter/nf_tables_api.c:5544 [inline] nft_setelem_insert net/netfilter/nf_tables_api.c:5562 [inline] nft_add_set_elem+0x232e/0x2f40 net/netfilter/nf_tables_api.c:5936 nf_tables_newsetelem+0x6ff/0xbb0 net/netfilter/nf_tables_api.c:6032 nfnetlink_rcv_batch+0x1710/0x25f0 net/netfilter/nfnetlink.c:513 nfnetlink_rcv_skb_batch net/netfilter/nfnetlink.c:634 [inline] nfnetlink_rcv+0x3af/0x420 net/netfilter/nfnetlink.c:652 netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline] netlink_unicast+0x533/0x7d0 net/netlink/af_netlink.c:1345 netlink_sendmsg+0x904/0xdf0 net/netlink/af_netlink.c:1921 sock_sendmsg_nosec net/ ---truncated---
In the Linux kernel, the following vulnerability has been resolved: igbvf: fix double free in `igbvf_probe` In `igbvf_probe`, if register_netdev() fails, the program will go to label err_hw_init, and then to label err_ioremap. In free_netdev() which is just below label err_ioremap, there is `list_for_each_entry_safe` and `netif_napi_del` which aims to delete all entries in `dev->napi_list`. The program has added an entry `adapter->rx_ring->napi` which is added by `netif_napi_add` in igbvf_alloc_queues(). However, adapter->rx_ring has been freed below label err_hw_init. So this a UAF. In terms of how to patch the problem, we can refer to igbvf_remove() and delete the entry before `adapter->rx_ring`. The KASAN logs are as follows: [ 35.126075] BUG: KASAN: use-after-free in free_netdev+0x1fd/0x450 [ 35.127170] Read of size 8 at addr ffff88810126d990 by task modprobe/366 [ 35.128360] [ 35.128643] CPU: 1 PID: 366 Comm: modprobe Not tainted 5.15.0-rc2+ #14 [ 35.129789] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 [ 35.131749] Call Trace: [ 35.132199] dump_stack_lvl+0x59/0x7b [ 35.132865] print_address_description+0x7c/0x3b0 [ 35.133707] ? free_netdev+0x1fd/0x450 [ 35.134378] __kasan_report+0x160/0x1c0 [ 35.135063] ? free_netdev+0x1fd/0x450 [ 35.135738] kasan_report+0x4b/0x70 [ 35.136367] free_netdev+0x1fd/0x450 [ 35.137006] igbvf_probe+0x121d/0x1a10 [igbvf] [ 35.137808] ? igbvf_vlan_rx_add_vid+0x100/0x100 [igbvf] [ 35.138751] local_pci_probe+0x13c/0x1f0 [ 35.139461] pci_device_probe+0x37e/0x6c0 [ 35.165526] [ 35.165806] Allocated by task 366: [ 35.166414] ____kasan_kmalloc+0xc4/0xf0 [ 35.167117] foo_kmem_cache_alloc_trace+0x3c/0x50 [igbvf] [ 35.168078] igbvf_probe+0x9c5/0x1a10 [igbvf] [ 35.168866] local_pci_probe+0x13c/0x1f0 [ 35.169565] pci_device_probe+0x37e/0x6c0 [ 35.179713] [ 35.179993] Freed by task 366: [ 35.180539] kasan_set_track+0x4c/0x80 [ 35.181211] kasan_set_free_info+0x1f/0x40 [ 35.181942] ____kasan_slab_free+0x103/0x140 [ 35.182703] kfree+0xe3/0x250 [ 35.183239] igbvf_probe+0x1173/0x1a10 [igbvf] [ 35.184040] local_pci_probe+0x13c/0x1f0
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix even more out of bound writes from debugfs CVE-2021-42327 was fixed by: commit f23750b5b3d98653b31d4469592935ef6364ad67 Author: Thelford Williams <tdwilliamsiv@gmail.com> Date: Wed Oct 13 16:04:13 2021 -0400 drm/amdgpu: fix out of bounds write but amdgpu_dm_debugfs.c contains more of the same issue so fix the remaining ones. v2: * Add missing fix in dp_max_bpc_write (Harry Wentland)
In the Linux kernel, the following vulnerability has been resolved: mac80211: fix skb length check in ieee80211_scan_rx() Replace hard-coded compile-time constants for header length check with dynamic determination based on the frame type. Otherwise, we hit a validation WARN_ON in cfg80211 later. [style fixes, reword commit message]
In the Linux kernel, the following vulnerability has been resolved: bus: mhi: pci_generic: Fix possible use-after-free in mhi_pci_remove() This driver's remove path calls del_timer(). However, that function does not wait until the timer handler finishes. This means that the timer handler may still be running after the driver's remove function has finished, which would result in a use-after-free. Fix by calling del_timer_sync(), which makes sure the timer handler has finished, and unable to re-schedule itself.
In the Linux kernel, the following vulnerability has been resolved: RDMA/irdma: Fix a user-after-free in add_pble_prm When irdma_hmc_sd_one fails, 'chunk' is freed while its still on the PBLE info list. Add the chunk entry to the PBLE info list only after successful setting of the SD in irdma_hmc_sd_one.
In the Linux kernel, the following vulnerability has been resolved: cfg80211: call cfg80211_stop_ap when switch from P2P_GO type If the userspace tools switch from NL80211_IFTYPE_P2P_GO to NL80211_IFTYPE_ADHOC via send_msg(NL80211_CMD_SET_INTERFACE), it does not call the cleanup cfg80211_stop_ap(), this leads to the initialization of in-use data. For example, this path re-init the sdata->assigned_chanctx_list while it is still an element of assigned_vifs list, and makes that linked list corrupt.
In the Linux kernel, the following vulnerability has been resolved: staging: rtl8192e: Fix use after free in _rtl92e_pci_disconnect() The free_rtllib() function frees the "dev" pointer so there is use after free on the next line. Re-arrange things to avoid that.
In the Linux kernel through 4.20.11, af_alg_release() in crypto/af_alg.c neglects to set a NULL value for a certain structure member, which leads to a use-after-free in sockfs_setattr.
In the Linux kernel, the following vulnerability has been resolved: net: ti: fix UAF in tlan_remove_one priv is netdev private data and it cannot be used after free_netdev() call. Using priv after free_netdev() can cause UAF bug. Fix it by moving free_netdev() at the end of the function.
In the Linux kernel, the following vulnerability has been resolved: NFSv4: Fix an Oops in pnfs_mark_request_commit() when doing O_DIRECT Fix an Oopsable condition in pnfs_mark_request_commit() when we're putting a set of writes on the commit list to reschedule them after a failed pNFS attempt.
In the Linux kernel, the following vulnerability has been resolved: net: fddi: fix UAF in fza_probe fp is netdev private data and it cannot be used after free_netdev() call. Using fp after free_netdev() can cause UAF bug. Fix it by moving free_netdev() after error message. TURBOchannel adapter")
In the Linux kernel, the following vulnerability has been resolved: ext4: fix possible UAF when remounting r/o a mmp-protected file system After commit 618f003199c6 ("ext4: fix memory leak in ext4_fill_super"), after the file system is remounted read-only, there is a race where the kmmpd thread can exit, causing sbi->s_mmp_tsk to point at freed memory, which the call to ext4_stop_mmpd() can trip over. Fix this by only allowing kmmpd() to exit when it is stopped via ext4_stop_mmpd(). Bug-Report-Link: <20210629143603.2166962-1-yebin10@huawei.com>
The sock_setsockopt function in net/core/sock.c in the Linux kernel before 3.5 mishandles negative values of sk_sndbuf and sk_rcvbuf, which allows local users to cause a denial of service (memory corruption and system crash) or possibly have unspecified other impact by leveraging the CAP_NET_ADMIN capability for a crafted setsockopt system call with the (1) SO_SNDBUF or (2) SO_RCVBUF option.
In the Linux kernel, the following vulnerability has been resolved: hwmon: (w83791d) Fix NULL pointer dereference by removing unnecessary structure field If driver read val value sufficient for (val & 0x08) && (!(val & 0x80)) && ((val & 0x7) == ((val >> 4) & 0x7)) from device then Null pointer dereference occurs. (It is possible if tmp = 0b0xyz1xyz, where same literals mean same numbers) Also lm75[] does not serve a purpose anymore after switching to devm_i2c_new_dummy_device() in w83791d_detect_subclients(). The patch fixes possible NULL pointer dereference by removing lm75[]. Found by Linux Driver Verification project (linuxtesting.org). [groeck: Dropped unnecessary continuation lines, fixed multi-line alignment]
In the Linux kernel, the following vulnerability has been resolved: drm/prime: Fix use after free in mmap with drm_gem_ttm_mmap drm_gem_ttm_mmap() drops a reference to the gem object on success. If the gem object's refcount == 1 on entry to drm_gem_prime_mmap(), that drop will free the gem object, and the subsequent drm_gem_object_get() will be a UAF. Fix by grabbing a reference before calling the mmap helper. This issue was forseen when the reference dropping was adding in commit 9786b65bc61ac ("drm/ttm: fix mmap refcounting"): "For that to work properly the drm_gem_object_get() call in drm_gem_ttm_mmap() must be moved so it happens before calling obj->funcs->mmap(), otherwise the gem refcount would go down to zero."
In the Linux kernel, the following vulnerability has been resolved: scsi: iscsi: Fix iscsi_task use after free Commit d39df158518c ("scsi: iscsi: Have abort handler get ref to conn") added iscsi_get_conn()/iscsi_put_conn() calls during abort handling but then also changed the handling of the case where we detect an already completed task where we now end up doing a goto to the common put/cleanup code. This results in a iscsi_task use after free, because the common cleanup code will do a put on the iscsi_task. This reverts the goto and moves the iscsi_get_conn() to after we've checked if the iscsi_task is valid.