Tenda AC15 WiFi Router V15.03.05.19_multi and AC18 WiFi Router V15.03.05.19_multi were discovered to contain a buffer overflow via the filePath parameter at /goform/expandDlnaFile.
Tenda AC23 v16.03.07.44 is vulnerable to Stack Overflow that will allow for the execution of arbitrary code (remote).
Tenda AC23 v16.03.07.44 was discovered to contain a stack overflow via the AdvSetMacMtuWan function.
A vulnerability, which was classified as critical, has been found in Tenda AC10U 15.03.06.49_multi_TDE01. Affected by this issue is the function formSetDeviceName. The manipulation of the argument devName leads to stack-based buffer overflow. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. The identifier of this vulnerability is VDB-252128. NOTE: The vendor was contacted early about this disclosure but did not respond in any way.
Tenda AC18 router V15.03.05.19 and V15.03.05.05 was discovered to contain a remote code execution (RCE) vulnerability via the Mac parameter at ip/goform/WriteFacMac.
An issue was discovered on Tenda AC6 V1.0 V15.03.05.19_multi_TD01, AC9 V1.0 V15.03.05.19(6318)_CN, AC9 V3.0 V15.03.06.42_multi, AC15 V1.0 V15.03.05.19_multi_TD01, and AC18 V15.03.05.19(6318_)_CN devices. There is a buffer overflow vulnerability in the router's web server -- httpd. While processing the /goform/addressNat entrys and mitInterface parameters for a POST request, a value is directly used in a sprintf to a local variable placed on the stack, which overwrites the return address of a function. An attacker can construct a payload to carry out arbitrary code execution attacks.
Tenda AC18 Router through V15.03.05.05_EN and through V15.03.05.19(6318) CN devices could cause a remote code execution due to incorrect authentication handling of vulnerable logincheck() function in /usr/lib/lua/ngx_authserver/ngx_wdas.lua file if the administrator UI Interface is set to "radius".
Tenda AC15 WiFi Router V15.03.05.19_multi and AC18 WiFi Router V15.03.05.19_multi were discovered to contain a buffer overflow via the page parameter at /goform/NatStaticSetting.
Stack-based buffer overflow in Tenda AC-10U AC1200 Router US_AC10UV1.0RTL_V15.03.06.48_multi_TDE01 allows remote attackers to execute arbitrary code via the timeZone parameter to goform/SetSysTimeCfg.
Tenda AC23 v16.03.07.44 was discovered to contain a buffer overflow via fromAdvSetMacMtuWan.
Tenda AC10U v1.0 US_AC10UV1.0RTL_V15.03.06.49_multi_TDE01 was discovered to contain a stack overflow via the list parameter in the fromSetIpMacBind function.
Tenda AC10U v1.0 US_AC10UV1.0RTL_V15.03.06.49_multi_TDE01 was discovered to contain a stack overflow via the mac parameter in the GetParentControlInfo function.
Tenda AC10U v1.0 US_AC10UV1.0RTL_V15.03.06.49_multi_TDE01 was discovered to contain a stack overflow via the security parameter in the formWifiBasicSet function.
Tenda AC10U v1.0 US_AC10UV1.0RTL_V15.03.06.49_multi_TDE01 was discovered to contain a stack overflow via the formSetClientState function.
A vulnerability, which was classified as critical, has been found in Tenda G3 15.11.0.20. This issue affects the function formSetDebugCfg of the file /goform/setDebugCfg. The manipulation of the argument enable/level/module leads to stack-based buffer overflow. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. NOTE: The vendor was contacted early about this disclosure but did not respond in any way.
An issue was discovered on Tenda AC6 V1.0 V15.03.05.19_multi_TD01, AC9 V1.0 V15.03.05.19(6318)_CN, AC9 V3.0 V15.03.06.42_multi, AC15 V1.0 V15.03.05.19_multi_TD01, and AC18 V15.03.05.19(6318_)_CN devices. There is a buffer overflow vulnerability in the router's web server -- httpd. While processing the /goform/SetNetControlList list parameter for a POST request, a value is directly used in a strcpy to a local variable placed on the stack, which overwrites the return address of a function. An attacker can construct a payload to carry out arbitrary code execution attacks.
An issue was discovered on Tenda AC6 V1.0 V15.03.05.19_multi_TD01, AC9 V1.0 V15.03.05.19(6318)_CN, AC9 V3.0 V15.03.06.42_multi, AC15 V1.0 V15.03.05.19_multi_TD01, and AC18 V15.03.05.19(6318_)_CN devices. There is a buffer overflow vulnerability in the router's web server -- httpd. While processing the /goform/SetSpeedWan speed_dir parameter for a POST request, a value is directly used in a sprintf to a local variable placed on the stack, which overwrites the return address of a function. An attacker can construct a payload to carry out arbitrary code execution attacks.
An issue was discovered on Tenda AC6 V1.0 V15.03.05.19_multi_TD01, AC9 V1.0 V15.03.05.19(6318)_CN, AC9 V3.0 V15.03.06.42_multi, AC15 V1.0 V15.03.05.19_multi_TD01, and AC18 V15.03.05.19(6318_)_CN devices. There is a buffer overflow vulnerability in the router's web server -- httpd. While processing the /goform/setcfm funcpara1 parameter for a POST request, a value is directly used in a sprintf to a local variable placed on the stack, which overwrites the return address of a function. An attacker can construct a payload to carry out arbitrary code execution attacks.
A vulnerability classified as critical has been found in Tenda A301 15.13.08.12. This affects the function formWifiBasicSet of the file /goform/WifiBasicSet. The manipulation of the argument security leads to stack-based buffer overflow. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. NOTE: The vendor was contacted early about this disclosure but did not respond in any way.
A vulnerability, which was classified as critical, has been found in Tenda A301 15.13.08.12. Affected by this issue is the function formWifiBasicSet of the file /goform/SetOnlineDevName. The manipulation of the argument devName leads to stack-based buffer overflow. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. The identifier of this vulnerability is VDB-269948. NOTE: The vendor was contacted early about this disclosure but did not respond in any way.
A vulnerability classified as critical was found in Tenda A301 15.13.08.12. Affected by this vulnerability is the function fromSetWirelessRepeat of the file /goform/SetOnlineDevName. The manipulation of the argument devName leads to stack-based buffer overflow. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. The associated identifier of this vulnerability is VDB-269947. NOTE: The vendor was contacted early about this disclosure but did not respond in any way.
Tenda G3 Router firmware v15.03.05.05 was discovered to contain a remote code execution (RCE) vulnerability via the usbPartitionName parameter in the formSetUSBPartitionUmount function.
An issue was discovered on Tenda AC6 V1.0 V15.03.05.19_multi_TD01, AC9 V1.0 V15.03.05.19(6318)_CN, AC9 V3.0 V15.03.06.42_multi, AC15 V1.0 V15.03.05.19_multi_TD01, and AC18 V15.03.05.19(6318_)_CN devices. There is a buffer overflow vulnerability in the router's web server -- httpd. While processing the /goform/saveParentControlInfo deviceId and time parameters for a POST request, a value is directly used in a strcpy to a local variable placed on the stack, which overwrites the return address of a function. An attacker can construct a payload to carry out arbitrary code execution attacks.
Tenda G3 v3.0 v15.11.0.20 was discovered to contain a command injection vulnerability via the formSetDebugCfg function.
Tenda G3 v3.0 v15.11.0.20 was discovered to contain a command injection vulnerability via the formSetUSBPartitionUmount function.
Certain NETGEAR devices are affected by command injection by an unauthenticated attacker. This affects R7800 before 1.0.2.74, R9000 before 1.0.5.2, and XR500 before 2.3.2.66.
TOTOLINK X6000R v9.4.0cu.652_B20230116 was discovered to contain a command execution vulnerability via the sub_415258 function.
NETGEAR RAX5 (AX1600 WiFi Router) V1.0.2.26 was discovered to contain a command injection vulnerability via the ifname parameter in the apcli_cancel_wps function.
Certain NETGEAR devices are affected by command injection by an unauthenticated attacker. This affects CBR40 before 2.5.0.24, CBR750 before 4.6.3.6, EAX20 before 1.0.0.58, EAX80 before 1.0.1.68, EX7500 before 1.0.0.74, LAX20 before 1.1.6.28, MK62 before 1.0.6.116, MR60 before 1.0.6.116, MS60 before 1.0.6.116, R6400 before 1.0.1.70, R6400v2 before 1.0.4.118, R6700v3 before 1.0.4.118, R6900P before 1.3.3.140, R7000 before 1.0.11.116, R7000P before 1.3.3.140, R7850 before 1.0.5.68, R7900 before 1.0.4.38, R7900P before 1.4.2.84, R7960P before 1.4.2.84, R8000 before 1.0.4.68, R8000P before 1.4.2.84, RAX15 before 1.0.3.96, RAX20 before 1.0.3.96, RAX200 before 1.0.4.120, RAX35v2 before 1.0.3.96, RAX40v2 before 1.0.3.96, RAX43 before 1.0.3.96, RAX45 before 1.0.3.96, RAX50 before 1.0.3.96, RAX75 before 1.0.4.120, RAX80 before 1.0.4.120, RBK752 before 3.2.17.12, RBK852 before 3.2.17.12, RBR750 before 3.2.17.12, RBR850 before 3.2.17.12, RBS750 before 3.2.17.12, RBS850 before 3.2.17.12, RS400 before 1.5.1.80, XR1000 before 1.0.0.58, and XR300 before 1.0.3.68.
D-Link device DI-7200GV2.E1 v21.04.09E1 was discovered to contain a command injection vulnerability in the function upgrade_filter. This vulnerability allows attackers to execute arbitrary commands via the path and time parameters.
D-Link device DIR_878_FW1.30B08_Hotfix_02 was discovered to contain a command injection vulnerability in the twsystem function. This vulnerability allows attackers to execute arbitrary commands via a crafted HNAP1 POST request.
Certain NETGEAR devices are affected by command injection by an unauthenticated attacker. This affects CBR40 before 2.5.0.24, CBR750 before 4.6.3.6, EAX20 before 1.0.0.58, EAX80 before 1.0.1.68, EX7500 before 1.0.0.74, LAX20 before 1.1.6.28, MK62 before 1.0.6.116, MR60 before 1.0.6.116, MS60 before 1.0.6.116, R6400v2 before 1.0.4.118, R6700v3 before 1.0.4.118, R6900P before 1.3.3.140, R7000 before 1.0.11.126, R7000P before 1.3.3.140, R7850 before 1.0.5.74, R7900 before 1.0.4.46, R7900P before 1.4.2.84, R7960P before 1.4.2.84, R8000 before 1.0.4.74, R8000P before 1.4.2.84, RAX15 before 1.0.3.96, RAX20 before 1.0.3.96, RAX200 before 1.0.4.120, RAX35v2 before 1.0.3.96, RAX40v2 before 1.0.3.96, RAX43 before 1.0.3.96, RAX45 before 1.0.3.96, RAX50 before 1.0.3.96, RAX75 before 1.0.4.120, RAX80 before 1.0.4.120, RBK752 before 3.2.17.12, RBK852 before 3.2.17.12, RBR750 before 3.2.17.12, RBR850 before 3.2.17.12, RBS750 before 3.2.17.12, RBS850 before 3.2.17.12, RS400 before 1.5.1.80, XR1000 before 1.0.0.58, and XR300 before 1.0.3.68.
tinyfiledialogs (aka tiny file dialogs) before 3.15.0 allows shell metacharacters (such as a backquote or a dollar sign) in titles, messages, and other input data. NOTE: this issue exists because of an incomplete fix for CVE-2020-36767, which only considered single and double quote characters.
Code Injection vulnerability in EasyVirt DCScope <= 8.6.0 and CO2Scope <= 1.3.0 allows remote unauthenticated attackers to execute arbitrary code to /api/license/sendlicense/.
A command injection vulnerability in the Command Dispatcher Service of NASA Fprime v3.4.3 allows attackers to execute arbitrary commands.
SeaCMS <=13.0 is vulnerable to command execution in phome.php via the function Ebak_RepPathFiletext().
D-Link device D-Link DIR-823-Pro v1.0.2 was discovered to contain a command injection vulnerability in the function SetNetworkTomographySettings. This vulnerability allows attackers to execute arbitrary commands via the tomography_ping_address, tomography_ping_number, tomography_ping_size, tomography_ping_timeout, and tomography_ping_ttl parameters.
Certain NETGEAR devices are affected by command injection by an unauthenticated attacker. This affects D7000v2 before 1.0.0.66, D8500 before 1.0.3.58, R7000 before 1.0.11.110, R7100LG before 1.0.0.72, R7900 before 1.0.4.30, R8000 before 1.0.4.62, XR300 before 1.0.3.56, R7000P before 1.3.2.132, R8500 before 1.0.2.144, R6900P before 1.3.2.132, and R8300 before 1.0.2.144.
D-Link device DIR_882 DIR_882_FW1.30B06_Hotfix_02 was discovered to contain a command injection vulnerability in the LocalIPAddress parameter. This vulnerability allows attackers to execute arbitrary commands via a crafted HNAP1 POST request.
Certain NETGEAR devices are affected by command injection by an unauthenticated attacker. This affects XR300 before 1.0.3.68, R7000P before 1.3.3.140, and R6900P before 1.3.3.140.
TOTOLINK X5000R v9.1.0u.6118_B20201102 was discovered to contain a command injection vulnerability in the function NTPSyncWithHost. This vulnerability allows attackers to execute arbitrary commands via the parameter host_time.
Certain NETGEAR devices are affected by command injection by an unauthenticated attacker. This affects CBR40 before 2.5.0.24, CBR750 before 4.6.3.6, D7000v2 before 1.0.0.74, LAX20 before 1.1.6.28, MK62 before 1.0.6.116, MR60 before 1.0.6.116, MS60 before 1.0.6.116, MR80 before 1.1.2.20, MS80 before 1.1.2.20, RAX15 before 1.0.3.96, RAX20 before 1.0.3.96, RAX200 before 1.0.4.120, RAX45 before 1.0.3.96, RAX50 before 1.0.3.96, RAX43 before 1.0.3.96, RAX40v2 before 1.0.3.96, RAX35v2 before 1.0.3.96, RAX75 before 1.0.4.120, RAX80 before 1.0.4.120, RBK752 before 3.2.17.12, RBR750 before 3.2.17.12, RBS750 before 3.2.17.12, RBK852 before 3.2.17.12, RBR850 before 3.2.17.12, RBS850 before 3.2.17.12, and XR1000 before 1.0.0.58.
D-Link device DIR_882 DIR_882_FW1.30B06_Hotfix_02 was discovered to contain a command injection vulnerability in the twsystem function. This vulnerability allows attackers to execute arbitrary commands via a crafted HNAP1 POST request.
Certain NETGEAR devices are affected by command injection by an unauthenticated attacker. This affects EX6200v2 before 1.0.1.86, EX6250 before 1.0.0.134, EX7700 before 1.0.0.216, EX8000 before 1.0.1.232, LBR1020 before 2.6.3.58, LBR20 before 2.6.3.50, R7800 before 1.0.2.80, R8900 before 1.0.5.26, R9000 before 1.0.5.26, RBS50Y before 2.7.3.22, WNR2000v5 before 1.0.0.76, XR700 before 1.0.1.36, EX6150v2 before 1.0.1.98, EX7300 before 1.0.2.158, EX7320 before 1.0.0.134, RAX10 before 1.0.2.88, RAX120 before 1.2.0.16, RAX70 before 1.0.2.88, EX6100v2 before 1.0.1.98, EX6400 before 1.0.2.158, EX7300v2 before 1.0.0.134, R6700AX before 1.0.2.88, RAX120v2 before 1.2.0.16, RAX78 before 1.0.2.88, EX6410 before 1.0.0.134, RBR10 before 2.7.3.22, RBR20 before 2.7.3.22, RBR350 before 4.3.4.7, RBR40 before 2.7.3.22, RBR50 before 2.7.3.22, EX6420 before 1.0.0.134, RBS10 before 2.7.3.22, RBS20 before 2.7.3.22, RBS350 before 4.3.4.7, RBS40 before 2.7.3.22, RBS50 before 2.7.3.22, EX6400v2 before 1.0.0.134, RBK12 before 2.7.3.22, RBK20 before 2.7.3.22, RBK352 before 4.3.4.7, RBK40 before 2.7.3.22, and RBK50 before 2.7.3.22.
Apache kylin checks the legitimacy of the project before executing some commands with the project name passed in by the user. There is a mismatch between what is being checked and what is being used as the shell command argument in DiagnosisService. This may cause an illegal project name to pass the check and perform the following steps, resulting in a command injection vulnerability. This issue affects Apache Kylin 4.0.0.
A Command Injection vulnerability in Schneider Electric homeLYnk Controller exists in all versions before 1.5.0.
D-Link device DI-7200GV2.E1 v21.04.09E1 was discovered to contain a command injection vulnerability in the function msp_info.htm. This vulnerability allows attackers to execute arbitrary commands via the cmd parameter.
The Screensavercc component in eLux RP before 5.5.0 allows attackers to bypass intended configuration restrictions and execute arbitrary commands with root privileges by inserting commands in a local configuration dialog in the control panel.
Certain NETGEAR devices are affected by command injection by an unauthenticated attacker. This affects D7800 before 1.0.1.64, EX6200v2 before 1.0.1.86, EX6250 before 1.0.0.134, EX7700 before 1.0.0.216, EX8000 before 1.0.1.232, LBR20 before 2.6.3.50, R7800 before 1.0.2.80, R8900 before 1.0.5.26, R9000 before 1.0.5.26, RAX120 before 1.2.0.16, RBS50Y before 1.0.0.56, WNR2000v5 before 1.0.0.76, XR450 before 2.3.2.114, XR500 before 2.3.2.114, XR700 before 1.0.1.36, EX6150v2 before 1.0.1.98, EX7300 before 1.0.2.158, EX7320 before 1.0.0.134, EX6100v2 before 1.0.1.98, EX6400 before 1.0.2.158, EX7300v2 before 1.0.0.134, EX6410 before 1.0.0.134, RBR10 before 2.6.1.44, RBR20 before 2.6.2.104, RBR40 before 2.6.2.104, RBR50 before 2.7.2.102, EX6420 before 1.0.0.134, RBS10 before 2.6.1.44, RBS20 before 2.6.2.104, RBS40 before 2.6.2.104, RBS50 before 2.7.2.102, EX6400v2 before 1.0.0.134, RBK12 before 2.6.1.44, RBK20 before 2.6.2.104, RBK40 before 2.6.2.104, and RBK50 before 2.7.2.102.
D-Link device D-Link DIR-823-Pro v1.0.2 was discovered to contain a command injection vulnerability in the function SetStaticRouteSettings. This vulnerability allows attackers to execute arbitrary commands via the staticroute_list parameter.