A crafted NTFS image can cause a heap-based buffer overflow in ntfs_compressed_pwrite in NTFS-3G < 2021.8.22.
c-ares is an asynchronous resolver library. ares_inet_net_pton() is vulnerable to a buffer underflow for certain ipv6 addresses, in particular "0::00:00:00/2" was found to cause an issue. C-ares only uses this function internally for configuration purposes which would require an administrator to configure such an address via ares_set_sortlist(). However, users may externally use ares_inet_net_pton() for other purposes and thus be vulnerable to more severe issues. This issue has been fixed in 1.19.1.
There is a use-after-free in kernel versions before 5.5 due to a race condition between the release of ptp_clock and cdev while resource deallocation. When a (high privileged) process allocates a ptp device file (like /dev/ptpX) and voluntarily goes to sleep. During this time if the underlying device is removed, it can cause an exploitable condition as the process wakes up to terminate and clean all attached files. The system crashes due to the cdev structure being invalid (as already freed) which is pointed to by the inode.
PoD operations on misaligned GFNs T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] x86 HVM and PVH guests may be started in populate-on-demand (PoD) mode, to provide a way for them to later easily have more memory assigned. Guests are permitted to control certain P2M aspects of individual pages via hypercalls. These hypercalls may act on ranges of pages specified via page orders (resulting in a power-of-2 number of pages). The implementation of some of these hypercalls for PoD does not enforce the base page frame number to be suitably aligned for the specified order, yet some code involved in PoD handling actually makes such an assumption. These operations are XENMEM_decrease_reservation (CVE-2021-28704) and XENMEM_populate_physmap (CVE-2021-28707), the latter usable only by domains controlling the guest, i.e. a de-privileged qemu or a stub domain. (Patch 1, combining the fix to both these two issues.) In addition handling of XENMEM_decrease_reservation can also trigger a host crash when the specified page order is neither 4k nor 2M nor 1G (CVE-2021-28708, patch 2).
PostgreSQL 8.1 and probably later versions, when local trust authentication is enabled and the Database Link library (dblink) is installed, allows remote attackers to access arbitrary accounts and execute arbitrary SQL queries via a dblink host parameter that proxies the connection from 127.0.0.1.
libffi requests an executable stack allowing attackers to more easily trigger arbitrary code execution by overwriting the stack. Please note that libffi is used by a number of other libraries. It was previously stated that this affects libffi version 3.2.1 but this appears to be incorrect. libffi prior to version 3.1 on 32 bit x86 systems was vulnerable, and upstream is believed to have fixed this issue in version 3.1.
A use-after-free vulnerability was found in usbredir in versions prior to 0.11.0 in the usbredirparser_serialize() in usbredirparser/usbredirparser.c. This issue occurs when serializing large amounts of buffered write data in the case of a slow or blocked destination.
A race condition vulnerability was found in rpm. A local unprivileged user could use this flaw to bypass the checks that were introduced in response to CVE-2017-7500 and CVE-2017-7501, potentially gaining root privileges. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability.
Format string vulnerability in the b43_request_firmware function in drivers/net/wireless/b43/main.c in the Broadcom B43 wireless driver in the Linux kernel through 3.9.4 allows local users to gain privileges by leveraging root access and including format string specifiers in an fwpostfix modprobe parameter, leading to improper construction of an error message.
In NTFS-3G versions < 2021.8.22, when a specially crafted NTFS inode is loaded in the function ntfs_inode_real_open, a heap buffer overflow can occur allowing for code execution and escalation of privileges.
kernel/module.c in the Linux kernel before 5.12.14 mishandles Signature Verification, aka CID-0c18f29aae7c. Without CONFIG_MODULE_SIG, verification that a kernel module is signed, for loading via init_module, does not occur for a module.sig_enforce=1 command-line argument.
A crafted NTFS image can cause an out-of-bounds read in ntfs_runlists_merge_i in NTFS-3G < 2021.8.22.
In NTFS-3G versions < 2021.8.22, when a specially crafted NTFS inode pathname is supplied in an NTFS image a heap buffer overflow can occur resulting in memory disclosure, denial of service and even code execution.
A use-after-free vulnerability was found in the virtio-net device of QEMU. It could occur when the descriptor's address belongs to the non direct access region, due to num_buffers being set after the virtqueue elem has been unmapped. A malicious guest could use this flaw to crash QEMU, resulting in a denial of service condition, or potentially execute code on the host with the privileges of the QEMU process.
The fork implementation in the Linux kernel before 4.5 on s390 platforms mishandles the case of four page-table levels, which allows local users to cause a denial of service (system crash) or possibly have unspecified other impact via a crafted application, related to arch/s390/include/asm/mmu_context.h and arch/s390/include/asm/pgalloc.h.
Use-after-free vulnerability in hw/ide/ahci.c in QEMU, when built with IDE AHCI Emulation support, allows guest OS users to cause a denial of service (instance crash) or possibly execute arbitrary code via an invalid AHCI Native Command Queuing (NCQ) AIO command.
Multiple integer overflows in the Elf parser (libelf) in Xen 4.2.x and earlier allow local guest administrators with certain permissions to have an unspecified impact via a crafted kernel.
Multiple unspecified vulnerabilities in the Elf parser (libelf) in Xen 4.2.x and earlier allow local guest administrators with certain permissions to have an unspecified impact via a crafted kernel, related to "other problems" that are not CVE-2013-2194 or CVE-2013-2195.
The do_tmem_destroy_pool function in the Transcendent Memory (TMEM) in Xen 4.0, 4.1, and 4.2 does not properly validate pool ids, which allows local guest OS users to cause a denial of service (memory corruption and host crash) or execute arbitrary code via unspecified vectors. NOTE: this issue was originally published as part of CVE-2012-3497, which was too general; CVE-2012-3497 has been SPLIT into this ID and others.
The GNTTABOP_swap_grant_ref sub-operation in the grant table hypercall in Xen 4.2 and Citrix XenServer 6.0.2 allows local guest kernels or administrators to cause a denial of service (host crash) and possibly gain privileges via a crafted grant reference that triggers a write to an arbitrary hypervisor memory location.
An issue was discovered in the Linux kernel before 5.0.5. There is a use-after-free issue when hci_uart_register_dev() fails in hci_uart_set_proto() in drivers/bluetooth/hci_ldisc.c.
NTFS-3G versions < 2021.8.22, a stack buffer overflow can occur when correcting differences in the MFT and MFTMirror allowing for code execution or escalation of privileges when setuid-root.
In NTFS-3G versions < 2021.8.22, when specially crafted NTFS attributes are read in the function ntfs_attr_pread_i, a heap buffer overflow can occur and allow for writing to arbitrary memory or denial of service of the application.
NTFS-3G versions < 2021.8.22, when a specially crafted NTFS attribute from the MFT is setup in the function ntfs_attr_setup_flag, a heap buffer overflow can occur allowing for code execution and escalation of privileges.
arch/powerpc/mm/mmu_context_book3s64.c in the Linux kernel before 5.1.15 for powerpc has a bug where unrelated processes may be able to read/write to one another's virtual memory under certain conditions via an mmap above 512 TB. Only a subset of powerpc systems are affected.
soffice in OpenOffice.org (OOo) 3.x before 3.3 places a zero-length directory name in the LD_LIBRARY_PATH, which allows local users to gain privileges via a Trojan horse shared library in the current working directory.
An issue was discovered in Xen through 4.9.x allowing PV guest OS users to cause a denial of service (host OS crash) or gain host OS privileges in shadow mode by mapping a certain auxiliary page.
In NTFS-3G versions < 2021.8.22, when a specially crafted MFT section is supplied in an NTFS image a heap buffer overflow can occur and allow for code execution.
In NTFS-3G versions < 2021.8.22, when a specially crafted unicode string is supplied in an NTFS image a heap buffer overflow can occur and allow for code execution.
PoD operations on misaligned GFNs T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] x86 HVM and PVH guests may be started in populate-on-demand (PoD) mode, to provide a way for them to later easily have more memory assigned. Guests are permitted to control certain P2M aspects of individual pages via hypercalls. These hypercalls may act on ranges of pages specified via page orders (resulting in a power-of-2 number of pages). The implementation of some of these hypercalls for PoD does not enforce the base page frame number to be suitably aligned for the specified order, yet some code involved in PoD handling actually makes such an assumption. These operations are XENMEM_decrease_reservation (CVE-2021-28704) and XENMEM_populate_physmap (CVE-2021-28707), the latter usable only by domains controlling the guest, i.e. a de-privileged qemu or a stub domain. (Patch 1, combining the fix to both these two issues.) In addition handling of XENMEM_decrease_reservation can also trigger a host crash when the specified page order is neither 4k nor 2M nor 1G (CVE-2021-28708, patch 2).
PoD operations on misaligned GFNs T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] x86 HVM and PVH guests may be started in populate-on-demand (PoD) mode, to provide a way for them to later easily have more memory assigned. Guests are permitted to control certain P2M aspects of individual pages via hypercalls. These hypercalls may act on ranges of pages specified via page orders (resulting in a power-of-2 number of pages). The implementation of some of these hypercalls for PoD does not enforce the base page frame number to be suitably aligned for the specified order, yet some code involved in PoD handling actually makes such an assumption. These operations are XENMEM_decrease_reservation (CVE-2021-28704) and XENMEM_populate_physmap (CVE-2021-28707), the latter usable only by domains controlling the guest, i.e. a de-privileged qemu or a stub domain. (Patch 1, combining the fix to both these two issues.) In addition handling of XENMEM_decrease_reservation can also trigger a host crash when the specified page order is neither 4k nor 2M nor 1G (CVE-2021-28708, patch 2).
In PHP versions 7.3.x up to and including 7.3.31, 7.4.x below 7.4.25 and 8.0.x below 8.0.12, when running PHP FPM SAPI with main FPM daemon process running as root and child worker processes running as lower-privileged users, it is possible for the child processes to access memory shared with the main process and write to it, modifying it in a way that would cause the root process to conduct invalid memory reads and writes, which can be used to escalate privileges from local unprivileged user to the root user.
certain VT-d IOMMUs may not work in shared page table mode For efficiency reasons, address translation control structures (page tables) may (and, on suitable hardware, by default will) be shared between CPUs, for second-level translation (EPT), and IOMMUs. These page tables are presently set up to always be 4 levels deep. However, an IOMMU may require the use of just 3 page table levels. In such a configuration the lop level table needs to be stripped before inserting the root table's address into the hardware pagetable base register. When sharing page tables, Xen erroneously skipped this stripping. Consequently, the guest is able to write to leaf page table entries.
Firejail before 0.9.64.4 allows attackers to bypass intended access restrictions because there is a TOCTOU race condition between a stat operation and an OverlayFS mount operation.
Stack-based buffer overflow in the econet_sendmsg function in net/econet/af_econet.c in the Linux kernel before 2.6.36.2, when an econet address is configured, allows local users to gain privileges by providing a large number of iovec structures.
A certain Red Hat modification to the ChrootDirectory feature in OpenSSH 4.8, as used in sshd in OpenSSH 4.3 in Red Hat Enterprise Linux (RHEL) 5.4 and Fedora 11, allows local users to gain privileges via hard links to setuid programs that use configuration files within the chroot directory, related to requirements for directory ownership.
An issue was discovered in Xen through 4.12.x allowing attackers to gain host OS privileges via DMA in a situation where an untrusted domain has access to a physical device. This occurs because passed through PCI devices may corrupt host memory after deassignment. When a PCI device is assigned to an untrusted domain, it is possible for that domain to program the device to DMA to an arbitrary address. The IOMMU is used to protect the host from malicious DMA by making sure that the device addresses can only target memory assigned to the guest. However, when the guest domain is torn down, or the device is deassigned, the device is assigned back to dom0, thus allowing any in-flight DMA to potentially target critical host data. An untrusted domain with access to a physical device can DMA into host memory, leading to privilege escalation. Only systems where guests are given direct access to physical devices capable of DMA (PCI pass-through) are vulnerable. Systems which do not use PCI pass-through are not vulnerable.
The pit_ioport_read in i8254.c in the Linux kernel before 2.6.33 and QEMU before 2.3.1 does not distinguish between read lengths and write lengths, which might allow guest OS users to execute arbitrary code on the host OS by triggering use of an invalid index.
Stack-based buffer overflow in the get_matching_model_microcode function in arch/x86/kernel/cpu/microcode/intel_early.c in the Linux kernel before 4.0 allows context-dependent attackers to gain privileges by constructing a crafted microcode header and leveraging root privileges for write access to the initrd.
The prepend_path function in fs/dcache.c in the Linux kernel before 4.2.4 does not properly handle rename actions inside a bind mount, which allows local users to bypass an intended container protection mechanism by renaming a directory, related to a "double-chroot attack."
An issue was discovered in Xen through 4.11.x on AMD x86 platforms, possibly allowing guest OS users to gain host OS privileges because small IOMMU mappings are unsafely combined into larger ones.
A crafted NTFS image can cause out-of-bounds reads in ntfs_attr_find and ntfs_external_attr_find in NTFS-3G < 2021.8.22.
In NTFS-3G versions < 2021.8.22, when a specially crafted NTFS attribute is supplied to the function ntfs_get_attribute_value, a heap buffer overflow can occur allowing for memory disclosure or denial of service. The vulnerability is caused by an out-of-bound buffer access which can be triggered by mounting a crafted ntfs partition. The root cause is a missing consistency check after reading an MFT record : the "bytes_in_use" field should be less than the "bytes_allocated" field. When it is not, the parsing of the records proceeds into the wild.
issues with partially successful P2M updates on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] x86 HVM and PVH guests may be started in populate-on-demand (PoD) mode, to provide a way for them to later easily have more memory assigned. Guests are permitted to control certain P2M aspects of individual pages via hypercalls. These hypercalls may act on ranges of pages specified via page orders (resulting in a power-of-2 number of pages). In some cases the hypervisor carries out the requests by splitting them into smaller chunks. Error handling in certain PoD cases has been insufficient in that in particular partial success of some operations was not properly accounted for. There are two code paths affected - page removal (CVE-2021-28705) and insertion of new pages (CVE-2021-28709). (We provide one patch which combines the fix to both issues.)
grant table v2 status pages may remain accessible after de-allocation (take two) Guest get permitted access to certain Xen-owned pages of memory. The majority of such pages remain allocated / associated with a guest for its entire lifetime. Grant table v2 status pages, however, get de-allocated when a guest switched (back) from v2 to v1. The freeing of such pages requires that the hypervisor know where in the guest these pages were mapped. The hypervisor tracks only one use within guest space, but racing requests from the guest to insert mappings of these pages may result in any of them to become mapped in multiple locations. Upon switching back from v2 to v1, the guest would then retain access to a page that was freed and perhaps re-used for other purposes. This bug was fortuitously fixed by code cleanup in Xen 4.14, and backported to security-supported Xen branches as a prerequisite of the fix for XSA-378.
The PV superpage functionality in arch/x86/mm.c in Xen 3.4.0, 3.4.1, and 4.1.x through 4.6.x allows local PV guests to obtain sensitive information, cause a denial of service, gain privileges, or have unspecified other impact via a crafted page identifier (MFN) to the (1) MMUEXT_MARK_SUPER or (2) MMUEXT_UNMARK_SUPER sub-op in the HYPERVISOR_mmuext_op hypercall or (3) unknown vectors related to page table updates.
The package `node-cli` before 1.0.0 insecurely uses the lock_file and log_file. Both of these are temporary, but it allows the starting user to overwrite any file they have access to.
An issue was discovered in the Linux kernel before 4.20. There is a race condition in smp_task_timedout() and smp_task_done() in drivers/scsi/libsas/sas_expander.c, leading to a use-after-free.
xcfa before 5.0.1 creates temporary files insecurely which could allow local users to launch a symlink attack and overwrite arbitrary files. Note: A different vulnerability than CVE-2014-5254.
Data race in audio in Google Chrome prior to 89.0.4389.72 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.