NVIDIA GeForce Experience, all versions prior to 3.20.5.70, contains a vulnerability in its services in which a folder is created by nvcontainer.exe under normal user login with LOCAL_SYSTEM privileges which may lead to a denial of service or escalation of privileges.
NVIDIA CUDA Toolkit, all versions prior to 11.1.1, contains a vulnerability in the NVJPEG library in which an out-of-bounds read or write operation may lead to code execution, denial of service, or information disclosure.
NVIDIA Windows GPU Display Driver, all versions, contains a vulnerability in multiple components in which a securely loaded system DLL will load its dependencies in an insecure fashion, which may lead to code execution or denial of service.
NVIDIA Virtual GPU Manager contains a vulnerability in the vGPU plugin, in which the software reads from a buffer by using buffer access mechanisms such as indexes or pointers that reference memory locations after the targeted buffer, which may lead to code execution, denial of service, escalation of privileges, or information disclosure. This affects vGPU version 8.x (prior to 8.4), version 9.x (prior to 9.4) and version 10.x (prior to 10.3).
NVIDIA Virtual GPU Manager contains a vulnerability in the vGPU plugin in which it may have the use-after-free vulnerability while freeing some resources, which may lead to denial of service, code execution, and information disclosure. This affects vGPU version 8.x (prior to 8.5), version 10.x (prior to 10.4) and version 11.0.
NVIDIA Windows GPU Display Driver, all versions, contains a vulnerability in the NVIDIA Control Panel component in which a user is presented with a dialog box for input by a high-privilege process, which may lead to escalation of privileges.
NVIDIA JetPack SDK, version 4.2 and 4.3, contains a vulnerability in its installation scripts in which permissions are incorrectly set on certain directories, which can lead to escalation of privileges.
NVIDIA Windows GPU Display Driver, all versions, contains a vulnerability in the NVIDIA Control Panel component, in which an attacker with local system access can corrupt a system file, which may lead to denial of service or escalation of privileges.
NVIDIA Windows GPU Display Driver, all versions, contains a vulnerability in the service host component, in which the application resources integrity check may be missed. Such an attack may lead to code execution, denial of service or information disclosure.
NVIDIA GeForce Experience, all versions prior to 3.20.1, contains a vulnerability in the Downloader component in which a user with local system access can craft input that may allow malicious files to be downloaded and saved. This behavior may lead to code execution, denial of service, or information disclosure.
A Memory Corruption Vulnerability exists in NVIDIA Graphics Drivers 29549 due to an unknown function in the file proc/driver/nvidia/registry.
NVIDIA GPU Display Driver for Windows and Linux contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape, where an unprivileged regular user can access administrator- privileged registers, which may lead to denial of service, information disclosure, and data tampering.
NVIDIA GeForce Experience contains a vulnerability in all versions prior to 3.16 on Windows in which an attacker who has access to a local user account can plant a malicious dynamic link library (DLL) during application installation, which may lead to escalation of privileges.
NVIDIA Jetson TX2 contains a vulnerability in the kernel driver where input/output control (IOCTL) handling for user mode requests could create a non-trusted pointer dereference, which may lead to information disclosure, denial of service, escalation of privileges, or code execution. The updates apply to all versions prior to R28.3.
NVIDIA GeForce Experience contains a vulnerability in all versions prior to 3.16 during application installation on Windows 7 in elevated privilege mode, where a local user who initiates a browser session may obtain escalation of privileges on the browser.
NVIDIA distributions of Jetson Linux contain a vulnerability where an error in the IOMMU configuration may allow an unprivileged attacker with physical access to the board direct read/write access to the entire system address space through the PCI bus. Such an attack could result in denial of service, code execution, escalation of privileges, and impact to data integrity and confidentiality. The scope impact may extend to other components.
NVIDIA Tegra kernel contains a vulnerability in the CORE DVFS Thermal driver where there is the potential to read or write a buffer using an index or pointer that references a memory location after the end of the buffer, which may lead to a denial of service or possible escalation of privileges.
NVIDIA ADSP Firmware contains a vulnerability in the ADSP Loader component where there is the potential to write to a memory location that is outside the intended boundary of the buffer, which may lead to denial of service or possible escalation of privileges.
NVIDIA GeForce Experience contains a vulnerability in NVIDIA Web Helper.exe, where untrusted script execution may lead to violation of application execution policy and local code execution.
NVIDIA Linux kernel distributions contain a vulnerability in nvmap NVGPU_IOCTL_CHANNEL_SET_ERROR_NOTIFIER, where improper access control may lead to code execution, compromised integrity, or denial of service.
Bootloader contains a vulnerability in NVIDIA MB2 where a potential heap overflow might lead to denial of service or escalation of privileges.
Bootloader contains a vulnerability in NVIDIA MB2 where a potential heap overflow could cause memory corruption, which might lead to denial of service or code execution.
Trusty contains a vulnerability in the HDCP service TA where bounds checking in command 10 is missing. The length of an I/O buffer parameter is not checked, which might lead to memory corruption.
Trusty contains a vulnerability in the HDCP service TA where bounds checking in command 9 is missing. Improper restriction of operations within the bounds of a memory buffer might lead to escalation of privileges, information disclosure, and denial of service.
Trusty contains a vulnerability in the HDCP service TA where bounds checking in command 11 is missing. Improper restriction of operations within the bounds of a memory buffer might lead to information disclosure, denial of service, or escalation of privileges.
Bootloader contains a vulnerability in NVIDIA TegraBoot where a potential heap overflow might allow an attacker to control all the RAM after the heap block, leading to denial of service or code execution.
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where it doesn't release some resources during driver unload requests from guests. This flaw allows a malicious guest to perform operations by reusing those resources, which may lead to information disclosure, data tampering, or denial of service. This affects vGPU version 12.x (prior to 12.3), version 11.x (prior to 11.5) and version 8.x (prior 8.8).
NVIDIA GPU Display Driver for Windows contains a vulnerability in nvidia-smi where an uncontrolled DLL loading path may lead to arbitrary code execution, denial of service, information disclosure, and data tampering.
NVIDIA GPU Display Driver for Windows, all versions, contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape in which improper access control may lead to denial of service and information disclosure.
NVIDIA Linux kernel distributions contain a vulnerability in FuSa Capture (VI/ISP), where integer underflow due to lack of input validation may lead to complete denial of service, partial integrity, and serious confidentiality loss for all processes in the system.
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where there is the potential to execute privileged operations by the guest OS, which may lead to information disclosure, data tampering, escalation of privileges, and denial of service
NVIDIA vGPU software contains a vulnerability in the guest kernel mode driver and Virtual GPU Manager (vGPU plugin), in which an input length is not validated, which may lead to information disclosure, tampering of data, or denial of service. This affects vGPU version 12.x (prior to 12.2) and version 11.x (prior to 11.4).
NVIDIA Windows GPU Display Driver, all versions, contains a vulnerability in the NVIDIA Control Panel component in which an attacker with local system access can corrupt a system file, which may lead to denial of service or escalation of privileges.
NVIDIA DGX A100/A800 contains a vulnerability in SBIOS where an attacker may cause improper input validation by providing configuration information in an unexpected format. A successful exploit of this vulnerability may lead to denial of service, information disclosure, and data tampering.
NVIDIA Jetson Linux Driver Package contains a vulnerability in nvbootctrl, where a privileged local attacker can configure invalid settings, resulting in denial of service.
NVIDIA DGX H100 BMC contains a vulnerability in IPMI, where an attacker may cause improper input validation. A successful exploit of this vulnerability may lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
NVIDIA GPU Display Driver for Linux contains a vulnerability in the kernel mode layer, where an unprivileged user can cause an integer overflow, which may lead to information disclosure and denial of service.
NVIDIA DGX H100 BMC contains a vulnerability in the KVM service, where an attacker may cause improper input validation. A successful exploit of this vulnerability may lead to code execution, denial of service, escalation of privileges, and information disclosure.
NVIDIA CUDA Toolkit SDK contains an integer overflow vulnerability in cuobjdump.To exploit this vulnerability, a remote attacker would require a local user to download a specially crafted, corrupted file and locally execute cuobjdump against the file. Such an attack may lead to remote code execution that causes complete denial of service and an impact on data confidentiality and integrity.
NVIDIA GPU Display Driver for Linux contains a vulnerability in the kernel mode layer (nvidia.ko), where an integer overflow may lead to information disclosure, data tampering or denial of service.
NVIDIA GPU Display Driver for Linux contains a vulnerability in the kernel mode layer (nvidia.ko), where an integer overflow may lead to denial of service.
NVIDIA Trusted OS contains a vulnerability in an SMC call handler, where failure to validate untrusted input may allow a highly privileged local attacker to cause information disclosure and compromise integrity. The scope of the impact can extend to other components.
NVIDIA GPU Display Driver for Linux contains a vulnerability in the kernel mode layer handler, where an Integer overflow may lead to denial of service or information disclosure.
All versions of the NVIDIA Windows GPU Display Driver contain a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape where the size of an input buffer is not validated, leading to denial of service or potential escalation of privileges.
NVIDIA GPU Display Driver for Linux contains a vulnerability in the kernel mode layer (nvidia.ko), where an integer overflow may lead to denial of service, data tampering, or information disclosure.
NVIDIA GPU Display Driver for Linux contains a vulnerability in the kernel mode layer (nvidia.ko), where an integer overflow in index validation may lead to denial of service, information disclosure, or data tampering.
All versions of NVIDIA Windows GPU Display Driver contain a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscapeID 0x100008b where user provided input is used as the limit for a loop may lead to denial of service or potential escalation of privileges
All versions of the NVIDIA GPU Display Driver contain a vulnerability in the kernel mode layer handler where a value passed from a user to the driver is not correctly validated and used in an offset calculation may lead to denial of service or potential escalation of privileges.
All versions of NVIDIA Windows GPU Display contain a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgDdiEscape where a pointer passed from a user to the driver is used without validation, leading to denial of service or potential escalation of privileges.
All versions of NVIDIA GPU Display Driver contain a vulnerability in the kernel mode layer handler where multiple integer overflows may cause improper memory allocation leading to a denial of service or potential escalation of privileges.