An elevation of privilege vulnerability exists when an attacker establishes a vulnerable Netlogon secure channel connection to a domain controller, using the Netlogon Remote Protocol (MS-NRPC). An attacker who successfully exploited the vulnerability could run a specially crafted application on a device on the network. To exploit the vulnerability, an unauthenticated attacker would be required to use MS-NRPC to connect to a domain controller to obtain domain administrator access. Microsoft is addressing the vulnerability in a phased two-part rollout. These updates address the vulnerability by modifying how Netlogon handles the usage of Netlogon secure channels. For guidelines on how to manage the changes required for this vulnerability and more information on the phased rollout, see How to manage the changes in Netlogon secure channel connections associated with CVE-2020-1472 (updated September 28, 2020). When the second phase of Windows updates become available in Q1 2021, customers will be notified via a revision to this security vulnerability. If you wish to be notified when these updates are released, we recommend that you register for the security notifications mailer to be alerted of content changes to this advisory. See Microsoft Technical Security Notifications.
Incomplete cleanup of multi-core shared buffers for some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access.
In Samba, GnuTLS gnutls_rnd() can fail and give predictable random values.
Out-of-bounds read in some Intel(R) oneVPL GPU software before version 22.6.5 may allow an authenticated user to potentially enable information disclosure via local access.
An issue was discovered in xenoprof in Xen through 4.13.x, allowing guest OS users (without active profiling) to obtain sensitive information about other guests. Unprivileged guests can request to map xenoprof buffers, even if profiling has not been enabled for those guests. These buffers were not scrubbed.
In certain Red Hat packages for Grafana 6.x through 6.3.6, the configuration files /etc/grafana/grafana.ini and /etc/grafana/ldap.toml (which contain a secret_key and a bind_password) are world readable.
Sensitive data could be exposed in logs of cloud-init before version 23.1.2. An attacker could use this information to find hashed passwords and possibly escalate their privilege.
Incomplete cleanup from specific special register read operations in some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access.
Cleanup errors in some data cache evictions for some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access.
The KVM implementation in the Linux kernel through 4.20.5 has an Information Leak.
A directory traversal problem in the URL decoder of librsvg before 2.56.3 could be used by local or remote attackers to disclose files (on the local filesystem outside of the expected area), as demonstrated by href=".?../../../../../../../../../../etc/passwd" in an xi:include element.
A flaw was found in the Linux kernel’s IP framework for transforming packets (XFRM subsystem). This issue may allow a malicious user with CAP_NET_ADMIN privileges to cause a 4 byte out-of-bounds read of XFRMA_MTIMER_THRESH when parsing netlink attributes, leading to potential leakage of sensitive heap data to userspace.
In the Linux kernel through 5.13.7, an unprivileged BPF program can obtain sensitive information from kernel memory via a Speculative Store Bypass side-channel attack because a certain preempting store operation does not necessarily occur before a store operation that has an attacker-controlled value.
PVH guests have their ACPI tables constructed by the toolstack. The construction involves building the tables in local memory, which are then copied into guest memory. While actually used parts of the local memory are filled in correctly, excess space that is being allocated is left with its prior contents.
A flaw was found in several ansible modules, where parameters containing credentials, such as secrets, were being logged in plain-text on managed nodes, as well as being made visible on the controller node when run in verbose mode. These parameters were not protected by the no_log feature. An attacker can take advantage of this information to steal those credentials, provided when they have access to the log files containing them. The highest threat from this vulnerability is to data confidentiality. This flaw affects Red Hat Ansible Automation Platform in versions before 1.2.2 and Ansible Tower in versions before 3.8.2.
xen/arm: Boot modules are not scrubbed The bootloader will load boot modules (e.g. kernel, initramfs...) in a temporary area before they are copied by Xen to each domain memory. To ensure sensitive data is not leaked from the modules, Xen must "scrub" them before handing the page over to the allocator. Unfortunately, it was discovered that modules will not be scrubbed on Arm.
Potential floating point value injection in all supported CPU products, in conjunction with software vulnerabilities relating to speculative execution with incorrect floating point results, may cause the use of incorrect data from FPVI and may result in data leakage.
Potential speculative code store bypass in all supported CPU products, in conjunction with software vulnerabilities relating to speculative execution of overwritten instructions, may cause an incorrect speculation and could result in data leakage.
A flaw was found in s390 eBPF JIT in bpf_jit_insn in arch/s390/net/bpf_jit_comp.c in the Linux kernel. In this flaw, a local attacker with special user privilege can circumvent the verifier and may lead to a confidentiality problem.
Observable discrepancy in the RAPL interface for some Intel(R) Processors may allow a privileged user to potentially enable information disclosure via local access.