Logo
-

Byte Open Security

(ByteOS Network)

Log In

Sign Up

ByteOS

Security
Vulnerability Details
Registries
Custom Views
Weaknesses
Attack Patterns
Filters & Tools
Vulnerability Details :

CVE-2022-50202

Summary
Assigner-Linux
Assigner Org ID-416baaa9-dc9f-4396-8d5f-8c081fb06d67
Published At-18 Jun, 2025 | 11:03
Updated At-23 Dec, 2025 | 13:26
Rejected At-
Credits

PM: hibernate: defer device probing when resuming from hibernation

In the Linux kernel, the following vulnerability has been resolved: PM: hibernate: defer device probing when resuming from hibernation syzbot is reporting hung task at misc_open() [1], for there is a race window of AB-BA deadlock which involves probe_count variable. Currently wait_for_device_probe() from snapshot_open() from misc_open() can sleep forever with misc_mtx held if probe_count cannot become 0. When a device is probed by hub_event() work function, probe_count is incremented before the probe function starts, and probe_count is decremented after the probe function completed. There are three cases that can prevent probe_count from dropping to 0. (a) A device being probed stopped responding (i.e. broken/malicious hardware). (b) A process emulating a USB device using /dev/raw-gadget interface stopped responding for some reason. (c) New device probe requests keeps coming in before existing device probe requests complete. The phenomenon syzbot is reporting is (b). A process which is holding system_transition_mutex and misc_mtx is waiting for probe_count to become 0 inside wait_for_device_probe(), but the probe function which is called from hub_event() work function is waiting for the processes which are blocked at mutex_lock(&misc_mtx) to respond via /dev/raw-gadget interface. This patch mitigates (b) by deferring wait_for_device_probe() from snapshot_open() to snapshot_write() and snapshot_ioctl(). Please note that the possibility of (b) remains as long as any thread which is emulating a USB device via /dev/raw-gadget interface can be blocked by uninterruptible blocking operations (e.g. mutex_lock()). Please also note that (a) and (c) are not addressed. Regarding (c), we should change the code to wait for only one device which contains the image for resuming from hibernation. I don't know how to address (a), for use of timeout for wait_for_device_probe() might result in loss of user data in the image. Maybe we should require the userland to wait for the image device before opening /dev/snapshot interface.

Vendors
-
Not available
Products
-
Metrics (CVSS)
VersionBase scoreBase severityVector
Weaknesses
Attack Patterns
Solution/Workaround
References
HyperlinkResource Type
EPSS History
Score
Latest Score
-
N/A
No data available for selected date range
Percentile
Latest Percentile
-
N/A
No data available for selected date range
Stakeholder-Specific Vulnerability Categorization (SSVC)
▼Common Vulnerabilities and Exposures (CVE)
cve.org
Assigner:Linux
Assigner Org ID:416baaa9-dc9f-4396-8d5f-8c081fb06d67
Published At:18 Jun, 2025 | 11:03
Updated At:23 Dec, 2025 | 13:26
Rejected At:
▼CVE Numbering Authority (CNA)
PM: hibernate: defer device probing when resuming from hibernation

In the Linux kernel, the following vulnerability has been resolved: PM: hibernate: defer device probing when resuming from hibernation syzbot is reporting hung task at misc_open() [1], for there is a race window of AB-BA deadlock which involves probe_count variable. Currently wait_for_device_probe() from snapshot_open() from misc_open() can sleep forever with misc_mtx held if probe_count cannot become 0. When a device is probed by hub_event() work function, probe_count is incremented before the probe function starts, and probe_count is decremented after the probe function completed. There are three cases that can prevent probe_count from dropping to 0. (a) A device being probed stopped responding (i.e. broken/malicious hardware). (b) A process emulating a USB device using /dev/raw-gadget interface stopped responding for some reason. (c) New device probe requests keeps coming in before existing device probe requests complete. The phenomenon syzbot is reporting is (b). A process which is holding system_transition_mutex and misc_mtx is waiting for probe_count to become 0 inside wait_for_device_probe(), but the probe function which is called from hub_event() work function is waiting for the processes which are blocked at mutex_lock(&misc_mtx) to respond via /dev/raw-gadget interface. This patch mitigates (b) by deferring wait_for_device_probe() from snapshot_open() to snapshot_write() and snapshot_ioctl(). Please note that the possibility of (b) remains as long as any thread which is emulating a USB device via /dev/raw-gadget interface can be blocked by uninterruptible blocking operations (e.g. mutex_lock()). Please also note that (a) and (c) are not addressed. Regarding (c), we should change the code to wait for only one device which contains the image for resuming from hibernation. I don't know how to address (a), for use of timeout for wait_for_device_probe() might result in loss of user data in the image. Maybe we should require the userland to wait for the image device before opening /dev/snapshot interface.

Affected Products
Vendor
Linux Kernel Organization, IncLinux
Product
Linux
Repo
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
Program Files
  • kernel/power/user.c
Default Status
unaffected
Versions
Affected
  • From c751085943362143f84346d274e0011419c84202 before 8c90947e5f1801e6c7120021c6ea0f3ad6a4eb91 (git)
  • From c751085943362143f84346d274e0011419c84202 before 5a283b59bce72c05c60e9f0fa92a28b5b850d8bb (git)
  • From c751085943362143f84346d274e0011419c84202 before 3c48d3067eaf878642276f053575a5c642600a50 (git)
  • From c751085943362143f84346d274e0011419c84202 before 003a456ae6f70bb97e436e02fc5105be577c1570 (git)
  • From c751085943362143f84346d274e0011419c84202 before 2f0e18e0db42f4f8bc87d3d98333680065ceeff8 (git)
  • From c751085943362143f84346d274e0011419c84202 before b8e1ae9433d7bd95f2dcc044a7a6f20a4c40d258 (git)
  • From c751085943362143f84346d274e0011419c84202 before f7042cf9dd40733f387b7cac021e626c74b8856f (git)
  • From c751085943362143f84346d274e0011419c84202 before 8386c414e27caba8501119948e9551e52b527f59 (git)
Vendor
Linux Kernel Organization, IncLinux
Product
Linux
Repo
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
Program Files
  • kernel/power/user.c
Default Status
affected
Versions
Affected
  • 2.6.30
Unaffected
  • From 0 before 2.6.30 (semver)
  • From 4.14.291 through 4.14.* (semver)
  • From 4.19.256 through 4.19.* (semver)
  • From 5.4.211 through 5.4.* (semver)
  • From 5.10.137 through 5.10.* (semver)
  • From 5.15.61 through 5.15.* (semver)
  • From 5.18.18 through 5.18.* (semver)
  • From 5.19.2 through 5.19.* (semver)
  • From 6.0 through * (original_commit_for_fix)
Metrics
VersionBase scoreBase severityVector
Metrics Other Info
Impacts
CAPEC IDDescription
Solutions

Configurations

Workarounds

Exploits

Credits

Timeline
EventDate
Replaced By

Rejected Reason

References
HyperlinkResource
https://git.kernel.org/stable/c/8c90947e5f1801e6c7120021c6ea0f3ad6a4eb91
N/A
https://git.kernel.org/stable/c/5a283b59bce72c05c60e9f0fa92a28b5b850d8bb
N/A
https://git.kernel.org/stable/c/3c48d3067eaf878642276f053575a5c642600a50
N/A
https://git.kernel.org/stable/c/003a456ae6f70bb97e436e02fc5105be577c1570
N/A
https://git.kernel.org/stable/c/2f0e18e0db42f4f8bc87d3d98333680065ceeff8
N/A
https://git.kernel.org/stable/c/b8e1ae9433d7bd95f2dcc044a7a6f20a4c40d258
N/A
https://git.kernel.org/stable/c/f7042cf9dd40733f387b7cac021e626c74b8856f
N/A
https://git.kernel.org/stable/c/8386c414e27caba8501119948e9551e52b527f59
N/A
Hyperlink: https://git.kernel.org/stable/c/8c90947e5f1801e6c7120021c6ea0f3ad6a4eb91
Resource: N/A
Hyperlink: https://git.kernel.org/stable/c/5a283b59bce72c05c60e9f0fa92a28b5b850d8bb
Resource: N/A
Hyperlink: https://git.kernel.org/stable/c/3c48d3067eaf878642276f053575a5c642600a50
Resource: N/A
Hyperlink: https://git.kernel.org/stable/c/003a456ae6f70bb97e436e02fc5105be577c1570
Resource: N/A
Hyperlink: https://git.kernel.org/stable/c/2f0e18e0db42f4f8bc87d3d98333680065ceeff8
Resource: N/A
Hyperlink: https://git.kernel.org/stable/c/b8e1ae9433d7bd95f2dcc044a7a6f20a4c40d258
Resource: N/A
Hyperlink: https://git.kernel.org/stable/c/f7042cf9dd40733f387b7cac021e626c74b8856f
Resource: N/A
Hyperlink: https://git.kernel.org/stable/c/8386c414e27caba8501119948e9551e52b527f59
Resource: N/A
Information is not available yet
▼National Vulnerability Database (NVD)
nvd.nist.gov
Source:416baaa9-dc9f-4396-8d5f-8c081fb06d67
Published At:18 Jun, 2025 | 11:15
Updated At:19 Nov, 2025 | 12:46

In the Linux kernel, the following vulnerability has been resolved: PM: hibernate: defer device probing when resuming from hibernation syzbot is reporting hung task at misc_open() [1], for there is a race window of AB-BA deadlock which involves probe_count variable. Currently wait_for_device_probe() from snapshot_open() from misc_open() can sleep forever with misc_mtx held if probe_count cannot become 0. When a device is probed by hub_event() work function, probe_count is incremented before the probe function starts, and probe_count is decremented after the probe function completed. There are three cases that can prevent probe_count from dropping to 0. (a) A device being probed stopped responding (i.e. broken/malicious hardware). (b) A process emulating a USB device using /dev/raw-gadget interface stopped responding for some reason. (c) New device probe requests keeps coming in before existing device probe requests complete. The phenomenon syzbot is reporting is (b). A process which is holding system_transition_mutex and misc_mtx is waiting for probe_count to become 0 inside wait_for_device_probe(), but the probe function which is called from hub_event() work function is waiting for the processes which are blocked at mutex_lock(&misc_mtx) to respond via /dev/raw-gadget interface. This patch mitigates (b) by deferring wait_for_device_probe() from snapshot_open() to snapshot_write() and snapshot_ioctl(). Please note that the possibility of (b) remains as long as any thread which is emulating a USB device via /dev/raw-gadget interface can be blocked by uninterruptible blocking operations (e.g. mutex_lock()). Please also note that (a) and (c) are not addressed. Regarding (c), we should change the code to wait for only one device which contains the image for resuming from hibernation. I don't know how to address (a), for use of timeout for wait_for_device_probe() might result in loss of user data in the image. Maybe we should require the userland to wait for the image device before opening /dev/snapshot interface.

CISA Catalog
Date AddedDue DateVulnerability NameRequired Action
N/A
Date Added: N/A
Due Date: N/A
Vulnerability Name: N/A
Required Action: N/A
Metrics
TypeVersionBase scoreBase severityVector
Primary3.15.5MEDIUM
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
Type: Primary
Version: 3.1
Base score: 5.5
Base severity: MEDIUM
Vector:
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
CPE Matches

Linux Kernel Organization, Inc
linux
>>linux_kernel>>Versions before 4.14.291(exclusive)
cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*
Linux Kernel Organization, Inc
linux
>>linux_kernel>>Versions from 4.15(inclusive) to 4.19.256(exclusive)
cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*
Linux Kernel Organization, Inc
linux
>>linux_kernel>>Versions from 4.20(inclusive) to 5.4.211(exclusive)
cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*
Linux Kernel Organization, Inc
linux
>>linux_kernel>>Versions from 5.5(inclusive) to 5.10.137(exclusive)
cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*
Linux Kernel Organization, Inc
linux
>>linux_kernel>>Versions from 5.11(inclusive) to 5.15.61(exclusive)
cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*
Linux Kernel Organization, Inc
linux
>>linux_kernel>>Versions from 5.16(inclusive) to 5.18.18(exclusive)
cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*
Linux Kernel Organization, Inc
linux
>>linux_kernel>>Versions from 5.19(inclusive) to 5.19.2(exclusive)
cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*
Weaknesses
CWE IDTypeSource
NVD-CWE-noinfoPrimarynvd@nist.gov
CWE ID: NVD-CWE-noinfo
Type: Primary
Source: nvd@nist.gov
Evaluator Description

Evaluator Impact

Evaluator Solution

Vendor Statements

References
HyperlinkSourceResource
https://git.kernel.org/stable/c/003a456ae6f70bb97e436e02fc5105be577c1570416baaa9-dc9f-4396-8d5f-8c081fb06d67
Patch
https://git.kernel.org/stable/c/2f0e18e0db42f4f8bc87d3d98333680065ceeff8416baaa9-dc9f-4396-8d5f-8c081fb06d67
Patch
https://git.kernel.org/stable/c/3c48d3067eaf878642276f053575a5c642600a50416baaa9-dc9f-4396-8d5f-8c081fb06d67
Patch
https://git.kernel.org/stable/c/5a283b59bce72c05c60e9f0fa92a28b5b850d8bb416baaa9-dc9f-4396-8d5f-8c081fb06d67
Patch
https://git.kernel.org/stable/c/8386c414e27caba8501119948e9551e52b527f59416baaa9-dc9f-4396-8d5f-8c081fb06d67
Patch
https://git.kernel.org/stable/c/8c90947e5f1801e6c7120021c6ea0f3ad6a4eb91416baaa9-dc9f-4396-8d5f-8c081fb06d67
Patch
https://git.kernel.org/stable/c/b8e1ae9433d7bd95f2dcc044a7a6f20a4c40d258416baaa9-dc9f-4396-8d5f-8c081fb06d67
Patch
https://git.kernel.org/stable/c/f7042cf9dd40733f387b7cac021e626c74b8856f416baaa9-dc9f-4396-8d5f-8c081fb06d67
Patch
Hyperlink: https://git.kernel.org/stable/c/003a456ae6f70bb97e436e02fc5105be577c1570
Source: 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Resource:
Patch
Hyperlink: https://git.kernel.org/stable/c/2f0e18e0db42f4f8bc87d3d98333680065ceeff8
Source: 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Resource:
Patch
Hyperlink: https://git.kernel.org/stable/c/3c48d3067eaf878642276f053575a5c642600a50
Source: 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Resource:
Patch
Hyperlink: https://git.kernel.org/stable/c/5a283b59bce72c05c60e9f0fa92a28b5b850d8bb
Source: 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Resource:
Patch
Hyperlink: https://git.kernel.org/stable/c/8386c414e27caba8501119948e9551e52b527f59
Source: 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Resource:
Patch
Hyperlink: https://git.kernel.org/stable/c/8c90947e5f1801e6c7120021c6ea0f3ad6a4eb91
Source: 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Resource:
Patch
Hyperlink: https://git.kernel.org/stable/c/b8e1ae9433d7bd95f2dcc044a7a6f20a4c40d258
Source: 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Resource:
Patch
Hyperlink: https://git.kernel.org/stable/c/f7042cf9dd40733f387b7cac021e626c74b8856f
Source: 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Resource:
Patch

Change History

0
Information is not available yet

Similar CVEs

6006Records found

CVE-2021-47290
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.08% / 24.15%
||
7 Day CHG~0.00%
Published-21 May, 2024 | 14:35
Updated-04 May, 2025 | 07:07
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
scsi: target: Fix NULL dereference on XCOPY completion

In the Linux kernel, the following vulnerability has been resolved: scsi: target: Fix NULL dereference on XCOPY completion CPU affinity control added with commit 39ae3edda325 ("scsi: target: core: Make completion affinity configurable") makes target_complete_cmd() queue work on a CPU based on se_tpg->se_tpg_wwn->cmd_compl_affinity state. LIO's EXTENDED COPY worker is a special case in that read/write cmds are dispatched using the global xcopy_pt_tpg, which carries a NULL se_tpg_wwn pointer following initialization in target_xcopy_setup_pt(). The NULL xcopy_pt_tpg->se_tpg_wwn pointer is dereferenced on completion of any EXTENDED COPY initiated read/write cmds. E.g using the libiscsi SCSI.ExtendedCopy.Simple test: BUG: kernel NULL pointer dereference, address: 00000000000001a8 RIP: 0010:target_complete_cmd+0x9d/0x130 [target_core_mod] Call Trace: fd_execute_rw+0x148/0x42a [target_core_file] ? __dynamic_pr_debug+0xa7/0xe0 ? target_check_reservation+0x5b/0x940 [target_core_mod] __target_execute_cmd+0x1e/0x90 [target_core_mod] transport_generic_new_cmd+0x17c/0x330 [target_core_mod] target_xcopy_issue_pt_cmd+0x9/0x60 [target_core_mod] target_xcopy_read_source.isra.7+0x10b/0x1b0 [target_core_mod] ? target_check_fua+0x40/0x40 [target_core_mod] ? transport_complete_task_attr+0x130/0x130 [target_core_mod] target_xcopy_do_work+0x61f/0xc00 [target_core_mod] This fix makes target_complete_cmd() queue work on se_cmd->cpuid if se_tpg_wwn is NULL.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2023-25949
Matching Score-8
Assigner-Intel Corporation
ShareView Details
Matching Score-8
Assigner-Intel Corporation
CVSS Score-5.5||MEDIUM
EPSS-0.06% / 17.66%
||
7 Day CHG~0.00%
Published-14 Nov, 2023 | 19:04
Updated-30 Aug, 2024 | 15:21
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available

Uncontrolled resource consumption in some Intel(R) Aptio* V UEFI Firmware Integrator Tools may allow an authenticated user to potentially enable denial of service via local access.

Action-Not Available
Vendor-n/aLinux Kernel Organization, IncIntel CorporationMicrosoft Corporation
Product-windowslinux_kernelaptio_v_uefi_firmware_integrator_toolsIntel(R) Aptio* V UEFI Firmware Integrator Tools
CWE ID-CWE-400
Uncontrolled Resource Consumption
CVE-2021-47631
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.03% / 10.40%
||
7 Day CHG~0.00%
Published-26 Feb, 2025 | 01:54
Updated-01 Oct, 2025 | 20:15
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
ARM: davinci: da850-evm: Avoid NULL pointer dereference

In the Linux kernel, the following vulnerability has been resolved: ARM: davinci: da850-evm: Avoid NULL pointer dereference With newer versions of GCC, there is a panic in da850_evm_config_emac() when booting multi_v5_defconfig in QEMU under the palmetto-bmc machine: Unable to handle kernel NULL pointer dereference at virtual address 00000020 pgd = (ptrval) [00000020] *pgd=00000000 Internal error: Oops: 5 [#1] PREEMPT ARM Modules linked in: CPU: 0 PID: 1 Comm: swapper Not tainted 5.15.0 #1 Hardware name: Generic DT based system PC is at da850_evm_config_emac+0x1c/0x120 LR is at do_one_initcall+0x50/0x1e0 The emac_pdata pointer in soc_info is NULL because davinci_soc_info only gets populated on davinci machines but da850_evm_config_emac() is called on all machines via device_initcall(). Move the rmii_en assignment below the machine check so that it is only dereferenced when running on a supported SoC.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2021-47644
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.03% / 7.98%
||
7 Day CHG~0.00%
Published-26 Feb, 2025 | 01:54
Updated-01 Oct, 2025 | 20:15
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
media: staging: media: zoran: move videodev alloc

In the Linux kernel, the following vulnerability has been resolved: media: staging: media: zoran: move videodev alloc Move some code out of zr36057_init() and create new functions for handling zr->video_dev. This permit to ease code reading and fix a zr->video_dev memory leak.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-401
Missing Release of Memory after Effective Lifetime
CVE-2021-47221
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.02% / 5.28%
||
7 Day CHG~0.00%
Published-21 May, 2024 | 14:19
Updated-04 May, 2025 | 07:06
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
mm/slub: actually fix freelist pointer vs redzoning

In the Linux kernel, the following vulnerability has been resolved: mm/slub: actually fix freelist pointer vs redzoning It turns out that SLUB redzoning ("slub_debug=Z") checks from s->object_size rather than from s->inuse (which is normally bumped to make room for the freelist pointer), so a cache created with an object size less than 24 would have the freelist pointer written beyond s->object_size, causing the redzone to be corrupted by the freelist pointer. This was very visible with "slub_debug=ZF": BUG test (Tainted: G B ): Right Redzone overwritten ----------------------------------------------------------------------------- INFO: 0xffff957ead1c05de-0xffff957ead1c05df @offset=1502. First byte 0x1a instead of 0xbb INFO: Slab 0xffffef3950b47000 objects=170 used=170 fp=0x0000000000000000 flags=0x8000000000000200 INFO: Object 0xffff957ead1c05d8 @offset=1496 fp=0xffff957ead1c0620 Redzone (____ptrval____): bb bb bb bb bb bb bb bb ........ Object (____ptrval____): 00 00 00 00 00 f6 f4 a5 ........ Redzone (____ptrval____): 40 1d e8 1a aa @.... Padding (____ptrval____): 00 00 00 00 00 00 00 00 ........ Adjust the offset to stay within s->object_size. (Note that no caches of in this size range are known to exist in the kernel currently.)

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-763
Release of Invalid Pointer or Reference
CVE-2021-47529
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.02% / 4.97%
||
7 Day CHG~0.00%
Published-24 May, 2024 | 15:09
Updated-04 May, 2025 | 07:12
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
iwlwifi: Fix memory leaks in error handling path

In the Linux kernel, the following vulnerability has been resolved: iwlwifi: Fix memory leaks in error handling path Should an error occur (invalid TLV len or memory allocation failure), the memory already allocated in 'reduce_power_data' should be freed before returning, otherwise it is leaking.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-401
Missing Release of Memory after Effective Lifetime
CVE-2021-47289
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 3.04%
||
7 Day CHG~0.00%
Published-21 May, 2024 | 14:35
Updated-18 Dec, 2025 | 11:36
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
ACPI: fix NULL pointer dereference

In the Linux kernel, the following vulnerability has been resolved: ACPI: fix NULL pointer dereference Commit 71f642833284 ("ACPI: utils: Fix reference counting in for_each_acpi_dev_match()") started doing "acpi_dev_put()" on a pointer that was possibly NULL. That fails miserably, because that helper inline function is not set up to handle that case. Just make acpi_dev_put() silently accept a NULL pointer, rather than calling down to put_device() with an invalid offset off that NULL pointer.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2021-47183
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 2.87%
||
7 Day CHG~0.00%
Published-10 Apr, 2024 | 18:56
Updated-18 Dec, 2025 | 11:35
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
scsi: lpfc: Fix link down processing to address NULL pointer dereference

In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Fix link down processing to address NULL pointer dereference If an FC link down transition while PLOGIs are outstanding to fabric well known addresses, outstanding ABTS requests may result in a NULL pointer dereference. Driver unload requests may hang with repeated "2878" log messages. The Link down processing results in ABTS requests for outstanding ELS requests. The Abort WQEs are sent for the ELSs before the driver had set the link state to down. Thus the driver is sending the Abort with the expectation that an ABTS will be sent on the wire. The Abort request is stalled waiting for the link to come up. In some conditions the driver may auto-complete the ELSs thus if the link does come up, the Abort completions may reference an invalid structure. Fix by ensuring that Abort set the flag to avoid link traffic if issued due to conditions where the link failed.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2021-47454
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.02% / 4.25%
||
7 Day CHG~0.00%
Published-22 May, 2024 | 06:19
Updated-29 Sep, 2025 | 16:48
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
powerpc/smp: do not decrement idle task preempt count in CPU offline

In the Linux kernel, the following vulnerability has been resolved: powerpc/smp: do not decrement idle task preempt count in CPU offline With PREEMPT_COUNT=y, when a CPU is offlined and then onlined again, we get: BUG: scheduling while atomic: swapper/1/0/0x00000000 no locks held by swapper/1/0. CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.15.0-rc2+ #100 Call Trace: dump_stack_lvl+0xac/0x108 __schedule_bug+0xac/0xe0 __schedule+0xcf8/0x10d0 schedule_idle+0x3c/0x70 do_idle+0x2d8/0x4a0 cpu_startup_entry+0x38/0x40 start_secondary+0x2ec/0x3a0 start_secondary_prolog+0x10/0x14 This is because powerpc's arch_cpu_idle_dead() decrements the idle task's preempt count, for reasons explained in commit a7c2bb8279d2 ("powerpc: Re-enable preemption before cpu_die()"), specifically "start_secondary() expects a preempt_count() of 0." However, since commit 2c669ef6979c ("powerpc/preempt: Don't touch the idle task's preempt_count during hotplug") and commit f1a0a376ca0c ("sched/core: Initialize the idle task with preemption disabled"), that justification no longer holds. The idle task isn't supposed to re-enable preemption, so remove the vestigial preempt_enable() from the CPU offline path. Tested with pseries and powernv in qemu, and pseries on PowerVM.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CVE-2021-47648
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.03% / 10.33%
||
7 Day CHG~0.00%
Published-26 Feb, 2025 | 01:54
Updated-01 Oct, 2025 | 20:15
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
gpu: host1x: Fix a memory leak in 'host1x_remove()'

In the Linux kernel, the following vulnerability has been resolved: gpu: host1x: Fix a memory leak in 'host1x_remove()' Add a missing 'host1x_channel_list_free()' call in the remove function, as already done in the error handling path of the probe function.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-401
Missing Release of Memory after Effective Lifetime
CVE-2021-47542
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 2.37%
||
7 Day CHG~0.00%
Published-24 May, 2024 | 15:09
Updated-04 May, 2025 | 07:13
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
net: qlogic: qlcnic: Fix a NULL pointer dereference in qlcnic_83xx_add_rings()

In the Linux kernel, the following vulnerability has been resolved: net: qlogic: qlcnic: Fix a NULL pointer dereference in qlcnic_83xx_add_rings() In qlcnic_83xx_add_rings(), the indirect function of ahw->hw_ops->alloc_mbx_args will be called to allocate memory for cmd.req.arg, and there is a dereference of it in qlcnic_83xx_add_rings(), which could lead to a NULL pointer dereference on failure of the indirect function like qlcnic_83xx_alloc_mbx_args(). Fix this bug by adding a check of alloc_mbx_args(), this patch imitates the logic of mbx_cmd()'s failure handling. This bug was found by a static analyzer. The analysis employs differential checking to identify inconsistent security operations (e.g., checks or kfrees) between two code paths and confirms that the inconsistent operations are not recovered in the current function or the callers, so they constitute bugs. Note that, as a bug found by static analysis, it can be a false positive or hard to trigger. Multiple researchers have cross-reviewed the bug. Builds with CONFIG_QLCNIC=m show no new warnings, and our static analyzer no longer warns about this code.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2021-47588
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 2.57%
||
7 Day CHG~0.00%
Published-19 Jun, 2024 | 14:53
Updated-01 Oct, 2025 | 13:42
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
sit: do not call ipip6_dev_free() from sit_init_net()

In the Linux kernel, the following vulnerability has been resolved: sit: do not call ipip6_dev_free() from sit_init_net() ipip6_dev_free is sit dev->priv_destructor, already called by register_netdevice() if something goes wrong. Alternative would be to make ipip6_dev_free() robust against multiple invocations, but other drivers do not implement this strategy. syzbot reported: dst_release underflow WARNING: CPU: 0 PID: 5059 at net/core/dst.c:173 dst_release+0xd8/0xe0 net/core/dst.c:173 Modules linked in: CPU: 1 PID: 5059 Comm: syz-executor.4 Not tainted 5.16.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:dst_release+0xd8/0xe0 net/core/dst.c:173 Code: 4c 89 f2 89 d9 31 c0 5b 41 5e 5d e9 da d5 44 f9 e8 1d 90 5f f9 c6 05 87 48 c6 05 01 48 c7 c7 80 44 99 8b 31 c0 e8 e8 67 29 f9 <0f> 0b eb 85 0f 1f 40 00 53 48 89 fb e8 f7 8f 5f f9 48 83 c3 a8 48 RSP: 0018:ffffc9000aa5faa0 EFLAGS: 00010246 RAX: d6894a925dd15a00 RBX: 00000000ffffffff RCX: 0000000000040000 RDX: ffffc90005e19000 RSI: 000000000003ffff RDI: 0000000000040000 RBP: 0000000000000000 R08: ffffffff816a1f42 R09: ffffed1017344f2c R10: ffffed1017344f2c R11: 0000000000000000 R12: 0000607f462b1358 R13: 1ffffffff1bfd305 R14: ffffe8ffffcb1358 R15: dffffc0000000000 FS: 00007f66c71a2700(0000) GS:ffff8880b9a00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f88aaed5058 CR3: 0000000023e0f000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> dst_cache_destroy+0x107/0x1e0 net/core/dst_cache.c:160 ipip6_dev_free net/ipv6/sit.c:1414 [inline] sit_init_net+0x229/0x550 net/ipv6/sit.c:1936 ops_init+0x313/0x430 net/core/net_namespace.c:140 setup_net+0x35b/0x9d0 net/core/net_namespace.c:326 copy_net_ns+0x359/0x5c0 net/core/net_namespace.c:470 create_new_namespaces+0x4ce/0xa00 kernel/nsproxy.c:110 unshare_nsproxy_namespaces+0x11e/0x180 kernel/nsproxy.c:226 ksys_unshare+0x57d/0xb50 kernel/fork.c:3075 __do_sys_unshare kernel/fork.c:3146 [inline] __se_sys_unshare kernel/fork.c:3144 [inline] __x64_sys_unshare+0x34/0x40 kernel/fork.c:3144 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x44/0xd0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f66c882ce99 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 bc ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f66c71a2168 EFLAGS: 00000246 ORIG_RAX: 0000000000000110 RAX: ffffffffffffffda RBX: 00007f66c893ff60 RCX: 00007f66c882ce99 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000048040200 RBP: 00007f66c8886ff1 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 00007fff6634832f R14: 00007f66c71a2300 R15: 0000000000022000 </TASK>

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CVE-2022-50039
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.02% / 3.98%
||
7 Day CHG~0.00%
Published-18 Jun, 2025 | 11:01
Updated-13 Nov, 2025 | 18:57
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
stmmac: intel: Add a missing clk_disable_unprepare() call in intel_eth_pci_remove()

In the Linux kernel, the following vulnerability has been resolved: stmmac: intel: Add a missing clk_disable_unprepare() call in intel_eth_pci_remove() Commit 09f012e64e4b ("stmmac: intel: Fix clock handling on error and remove paths") removed this clk_disable_unprepare() This was partly revert by commit ac322f86b56c ("net: stmmac: Fix clock handling on remove path") which removed this clk_disable_unprepare() because: " While unloading the dwmac-intel driver, clk_disable_unprepare() is being called twice in stmmac_dvr_remove() and intel_eth_pci_remove(). This causes kernel panic on the second call. " However later on, commit 5ec55823438e8 ("net: stmmac: add clocks management for gmac driver") has updated stmmac_dvr_remove() which do not call clk_disable_unprepare() anymore. So this call should now be called from intel_eth_pci_remove().

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CVE-2021-47421
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.08% / 23.71%
||
7 Day CHG~0.00%
Published-21 May, 2024 | 15:04
Updated-03 Nov, 2025 | 18:15
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
drm/amdgpu: handle the case of pci_channel_io_frozen only in amdgpu_pci_resume

In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: handle the case of pci_channel_io_frozen only in amdgpu_pci_resume In current code, when a PCI error state pci_channel_io_normal is detectd, it will report PCI_ERS_RESULT_CAN_RECOVER status to PCI driver, and PCI driver will continue the execution of PCI resume callback report_resume by pci_walk_bridge, and the callback will go into amdgpu_pci_resume finally, where write lock is releasd unconditionally without acquiring such lock first. In this case, a deadlock will happen when other threads start to acquire the read lock. To fix this, add a member in amdgpu_device strucutre to cache pci_channel_state, and only continue the execution in amdgpu_pci_resume when it's pci_channel_io_frozen.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-667
Improper Locking
CVE-2021-47237
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 2.30%
||
7 Day CHG~0.00%
Published-21 May, 2024 | 14:19
Updated-04 May, 2025 | 07:06
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
net: hamradio: fix memory leak in mkiss_close

In the Linux kernel, the following vulnerability has been resolved: net: hamradio: fix memory leak in mkiss_close My local syzbot instance hit memory leak in mkiss_open()[1]. The problem was in missing free_netdev() in mkiss_close(). In mkiss_open() netdevice is allocated and then registered, but in mkiss_close() netdevice was only unregistered, but not freed. Fail log: BUG: memory leak unreferenced object 0xffff8880281ba000 (size 4096): comm "syz-executor.1", pid 11443, jiffies 4295046091 (age 17.660s) hex dump (first 32 bytes): 61 78 30 00 00 00 00 00 00 00 00 00 00 00 00 00 ax0............. 00 27 fa 2a 80 88 ff ff 00 00 00 00 00 00 00 00 .'.*............ backtrace: [<ffffffff81a27201>] kvmalloc_node+0x61/0xf0 [<ffffffff8706e7e8>] alloc_netdev_mqs+0x98/0xe80 [<ffffffff84e64192>] mkiss_open+0xb2/0x6f0 [1] [<ffffffff842355db>] tty_ldisc_open+0x9b/0x110 [<ffffffff84236488>] tty_set_ldisc+0x2e8/0x670 [<ffffffff8421f7f3>] tty_ioctl+0xda3/0x1440 [<ffffffff81c9f273>] __x64_sys_ioctl+0x193/0x200 [<ffffffff8911263a>] do_syscall_64+0x3a/0xb0 [<ffffffff89200068>] entry_SYSCALL_64_after_hwframe+0x44/0xae BUG: memory leak unreferenced object 0xffff8880141a9a00 (size 96): comm "syz-executor.1", pid 11443, jiffies 4295046091 (age 17.660s) hex dump (first 32 bytes): e8 a2 1b 28 80 88 ff ff e8 a2 1b 28 80 88 ff ff ...(.......(.... 98 92 9c aa b0 40 02 00 00 00 00 00 00 00 00 00 .....@.......... backtrace: [<ffffffff8709f68b>] __hw_addr_create_ex+0x5b/0x310 [<ffffffff8709fb38>] __hw_addr_add_ex+0x1f8/0x2b0 [<ffffffff870a0c7b>] dev_addr_init+0x10b/0x1f0 [<ffffffff8706e88b>] alloc_netdev_mqs+0x13b/0xe80 [<ffffffff84e64192>] mkiss_open+0xb2/0x6f0 [1] [<ffffffff842355db>] tty_ldisc_open+0x9b/0x110 [<ffffffff84236488>] tty_set_ldisc+0x2e8/0x670 [<ffffffff8421f7f3>] tty_ioctl+0xda3/0x1440 [<ffffffff81c9f273>] __x64_sys_ioctl+0x193/0x200 [<ffffffff8911263a>] do_syscall_64+0x3a/0xb0 [<ffffffff89200068>] entry_SYSCALL_64_after_hwframe+0x44/0xae BUG: memory leak unreferenced object 0xffff8880219bfc00 (size 512): comm "syz-executor.1", pid 11443, jiffies 4295046091 (age 17.660s) hex dump (first 32 bytes): 00 a0 1b 28 80 88 ff ff 80 8f b1 8d ff ff ff ff ...(............ 80 8f b1 8d ff ff ff ff 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff81a27201>] kvmalloc_node+0x61/0xf0 [<ffffffff8706eec7>] alloc_netdev_mqs+0x777/0xe80 [<ffffffff84e64192>] mkiss_open+0xb2/0x6f0 [1] [<ffffffff842355db>] tty_ldisc_open+0x9b/0x110 [<ffffffff84236488>] tty_set_ldisc+0x2e8/0x670 [<ffffffff8421f7f3>] tty_ioctl+0xda3/0x1440 [<ffffffff81c9f273>] __x64_sys_ioctl+0x193/0x200 [<ffffffff8911263a>] do_syscall_64+0x3a/0xb0 [<ffffffff89200068>] entry_SYSCALL_64_after_hwframe+0x44/0xae BUG: memory leak unreferenced object 0xffff888029b2b200 (size 256): comm "syz-executor.1", pid 11443, jiffies 4295046091 (age 17.660s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff81a27201>] kvmalloc_node+0x61/0xf0 [<ffffffff8706f062>] alloc_netdev_mqs+0x912/0xe80 [<ffffffff84e64192>] mkiss_open+0xb2/0x6f0 [1] [<ffffffff842355db>] tty_ldisc_open+0x9b/0x110 [<ffffffff84236488>] tty_set_ldisc+0x2e8/0x670 [<ffffffff8421f7f3>] tty_ioctl+0xda3/0x1440 [<ffffffff81c9f273>] __x64_sys_ioctl+0x193/0x200 [<ffffffff8911263a>] do_syscall_64+0x3a/0xb0 [<ffffffff89200068>] entry_SYSCALL_64_after_hwframe+0x44/0xae

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-401
Missing Release of Memory after Effective Lifetime
CVE-2021-47556
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.02% / 4.32%
||
7 Day CHG~0.00%
Published-24 May, 2024 | 15:09
Updated-04 May, 2025 | 07:13
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
ethtool: ioctl: fix potential NULL deref in ethtool_set_coalesce()

In the Linux kernel, the following vulnerability has been resolved: ethtool: ioctl: fix potential NULL deref in ethtool_set_coalesce() ethtool_set_coalesce() now uses both the .get_coalesce() and .set_coalesce() callbacks. But the check for their availability is buggy, so changing the coalesce settings on a device where the driver provides only _one_ of the callbacks results in a NULL pointer dereference instead of an -EOPNOTSUPP. Fix the condition so that the availability of both callbacks is ensured. This also matches the netlink code. Note that reproducing this requires some effort - it only affects the legacy ioctl path, and needs a specific combination of driver options: - have .get_coalesce() and .coalesce_supported but no .set_coalesce(), or - have .set_coalesce() but no .get_coalesce(). Here eg. ethtool doesn't cause the crash as it first attempts to call ethtool_get_coalesce() and bails out on error.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2021-47420
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.03% / 7.08%
||
7 Day CHG~0.00%
Published-21 May, 2024 | 15:04
Updated-04 May, 2025 | 07:10
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
drm/amdkfd: fix a potential ttm->sg memory leak

In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: fix a potential ttm->sg memory leak Memory is allocated for ttm->sg by kmalloc in kfd_mem_dmamap_userptr, but isn't freed by kfree in kfd_mem_dmaunmap_userptr. Free it!

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-401
Missing Release of Memory after Effective Lifetime
CVE-2022-50528
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.02% / 5.67%
||
7 Day CHG~0.00%
Published-07 Oct, 2025 | 15:19
Updated-04 Feb, 2026 | 16:48
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
drm/amdkfd: Fix memory leakage

In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix memory leakage This patch fixes potential memory leakage and seg fault in _gpuvm_import_dmabuf() function

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-401
Missing Release of Memory after Effective Lifetime
CVE-2021-47526
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.02% / 3.81%
||
7 Day CHG~0.00%
Published-24 May, 2024 | 15:09
Updated-04 May, 2025 | 07:12
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
serial: liteuart: Fix NULL pointer dereference in ->remove()

In the Linux kernel, the following vulnerability has been resolved: serial: liteuart: Fix NULL pointer dereference in ->remove() drvdata has to be set in _probe() - otherwise platform_get_drvdata() causes null pointer dereference BUG in _remove().

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2021-47139
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 3.04%
||
7 Day CHG~0.00%
Published-25 Mar, 2024 | 09:07
Updated-04 May, 2025 | 07:04
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
net: hns3: put off calling register_netdev() until client initialize complete

In the Linux kernel, the following vulnerability has been resolved: net: hns3: put off calling register_netdev() until client initialize complete Currently, the netdevice is registered before client initializing complete. So there is a timewindow between netdevice available and usable. In this case, if user try to change the channel number or ring param, it may cause the hns3_set_rx_cpu_rmap() being called twice, and report bug. [47199.416502] hns3 0000:35:00.0 eth1: set channels: tqp_num=1, rxfh=0 [47199.430340] hns3 0000:35:00.0 eth1: already uninitialized [47199.438554] hns3 0000:35:00.0: rss changes from 4 to 1 [47199.511854] hns3 0000:35:00.0: Channels changed, rss_size from 4 to 1, tqps from 4 to 1 [47200.163524] ------------[ cut here ]------------ [47200.171674] kernel BUG at lib/cpu_rmap.c:142! [47200.177847] Internal error: Oops - BUG: 0 [#1] PREEMPT SMP [47200.185259] Modules linked in: hclge(+) hns3(-) hns3_cae(O) hns_roce_hw_v2 hnae3 vfio_iommu_type1 vfio_pci vfio_virqfd vfio pv680_mii(O) [last unloaded: hclge] [47200.205912] CPU: 1 PID: 8260 Comm: ethtool Tainted: G O 5.11.0-rc3+ #1 [47200.215601] Hardware name: , xxxxxx 02/04/2021 [47200.223052] pstate: 60400009 (nZCv daif +PAN -UAO -TCO BTYPE=--) [47200.230188] pc : cpu_rmap_add+0x38/0x40 [47200.237472] lr : irq_cpu_rmap_add+0x84/0x140 [47200.243291] sp : ffff800010e93a30 [47200.247295] x29: ffff800010e93a30 x28: ffff082100584880 [47200.254155] x27: 0000000000000000 x26: 0000000000000000 [47200.260712] x25: 0000000000000000 x24: 0000000000000004 [47200.267241] x23: ffff08209ba03000 x22: ffff08209ba038c0 [47200.273789] x21: 000000000000003f x20: ffff0820e2bc1680 [47200.280400] x19: ffff0820c970ec80 x18: 00000000000000c0 [47200.286944] x17: 0000000000000000 x16: ffffb43debe4a0d0 [47200.293456] x15: fffffc2082990600 x14: dead000000000122 [47200.300059] x13: ffffffffffffffff x12: 000000000000003e [47200.306606] x11: ffff0820815b8080 x10: ffff53e411988000 [47200.313171] x9 : 0000000000000000 x8 : ffff0820e2bc1700 [47200.319682] x7 : 0000000000000000 x6 : 000000000000003f [47200.326170] x5 : 0000000000000040 x4 : ffff800010e93a20 [47200.332656] x3 : 0000000000000004 x2 : ffff0820c970ec80 [47200.339168] x1 : ffff0820e2bc1680 x0 : 0000000000000004 [47200.346058] Call trace: [47200.349324] cpu_rmap_add+0x38/0x40 [47200.354300] hns3_set_rx_cpu_rmap+0x6c/0xe0 [hns3] [47200.362294] hns3_reset_notify_init_enet+0x1cc/0x340 [hns3] [47200.370049] hns3_change_channels+0x40/0xb0 [hns3] [47200.376770] hns3_set_channels+0x12c/0x2a0 [hns3] [47200.383353] ethtool_set_channels+0x140/0x250 [47200.389772] dev_ethtool+0x714/0x23d0 [47200.394440] dev_ioctl+0x4cc/0x640 [47200.399277] sock_do_ioctl+0x100/0x2a0 [47200.404574] sock_ioctl+0x28c/0x470 [47200.409079] __arm64_sys_ioctl+0xb4/0x100 [47200.415217] el0_svc_common.constprop.0+0x84/0x210 [47200.422088] do_el0_svc+0x28/0x34 [47200.426387] el0_svc+0x28/0x70 [47200.431308] el0_sync_handler+0x1a4/0x1b0 [47200.436477] el0_sync+0x174/0x180 [47200.441562] Code: 11000405 79000c45 f8247861 d65f03c0 (d4210000) [47200.448869] ---[ end trace a01efe4ce42e5f34 ]--- The process is like below: excuting hns3_client_init | register_netdev() | hns3_set_channels() | | hns3_set_rx_cpu_rmap() hns3_reset_notify_uninit_enet() | | | quit without calling function | hns3_free_rx_cpu_rmap for flag | HNS3_NIC_STATE_INITED is unset. | | | hns3_reset_notify_init_enet() | | set HNS3_NIC_STATE_INITED call hns3_set_rx_cpu_rmap()-- crash Fix it by calling register_netdev() at the end of function hns3_client_init().

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-908
Use of Uninitialized Resource
CVE-2021-47415
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.03% / 7.17%
||
7 Day CHG~0.00%
Published-21 May, 2024 | 15:04
Updated-04 May, 2025 | 07:10
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
iwlwifi: mvm: Fix possible NULL dereference

In the Linux kernel, the following vulnerability has been resolved: iwlwifi: mvm: Fix possible NULL dereference In __iwl_mvm_remove_time_event() check that 'te_data->vif' is NULL before dereferencing it.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2021-47345
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 0.75%
||
7 Day CHG~0.00%
Published-21 May, 2024 | 14:35
Updated-18 Dec, 2025 | 11:37
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
RDMA/cma: Fix rdma_resolve_route() memory leak

In the Linux kernel, the following vulnerability has been resolved: RDMA/cma: Fix rdma_resolve_route() memory leak Fix a memory leak when "mda_resolve_route() is called more than once on the same "rdma_cm_id". This is possible if cma_query_handler() triggers the RDMA_CM_EVENT_ROUTE_ERROR flow which puts the state machine back and allows rdma_resolve_route() to be called again.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-401
Missing Release of Memory after Effective Lifetime
CVE-2021-47351
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.02% / 5.97%
||
7 Day CHG~0.00%
Published-21 May, 2024 | 14:35
Updated-12 May, 2025 | 19:55
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
ubifs: Fix races between xattr_{set|get} and listxattr operations

In the Linux kernel, the following vulnerability has been resolved: ubifs: Fix races between xattr_{set|get} and listxattr operations UBIFS may occur some problems with concurrent xattr_{set|get} and listxattr operations, such as assertion failure, memory corruption, stale xattr value[1]. Fix it by importing a new rw-lock in @ubifs_inode to serilize write operations on xattr, concurrent read operations are still effective, just like ext4. [1] https://lore.kernel.org/linux-mtd/20200630130438.141649-1-houtao1@huawei.com

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-617
Reachable Assertion
CWE ID-CWE-787
Out-of-bounds Write
CVE-2022-49977
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 2.33%
||
7 Day CHG~0.00%
Published-18 Jun, 2025 | 11:00
Updated-23 Dec, 2025 | 13:26
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
ftrace: Fix NULL pointer dereference in is_ftrace_trampoline when ftrace is dead

In the Linux kernel, the following vulnerability has been resolved: ftrace: Fix NULL pointer dereference in is_ftrace_trampoline when ftrace is dead ftrace_startup does not remove ops from ftrace_ops_list when ftrace_startup_enable fails: register_ftrace_function ftrace_startup __register_ftrace_function ... add_ftrace_ops(&ftrace_ops_list, ops) ... ... ftrace_startup_enable // if ftrace failed to modify, ftrace_disabled is set to 1 ... return 0 // ops is in the ftrace_ops_list. When ftrace_disabled = 1, unregister_ftrace_function simply returns without doing anything: unregister_ftrace_function ftrace_shutdown if (unlikely(ftrace_disabled)) return -ENODEV; // return here, __unregister_ftrace_function is not executed, // as a result, ops is still in the ftrace_ops_list __unregister_ftrace_function ... If ops is dynamically allocated, it will be free later, in this case, is_ftrace_trampoline accesses NULL pointer: is_ftrace_trampoline ftrace_ops_trampoline do_for_each_ftrace_op(op, ftrace_ops_list) // OOPS! op may be NULL! Syzkaller reports as follows: [ 1203.506103] BUG: kernel NULL pointer dereference, address: 000000000000010b [ 1203.508039] #PF: supervisor read access in kernel mode [ 1203.508798] #PF: error_code(0x0000) - not-present page [ 1203.509558] PGD 800000011660b067 P4D 800000011660b067 PUD 130fb8067 PMD 0 [ 1203.510560] Oops: 0000 [#1] SMP KASAN PTI [ 1203.511189] CPU: 6 PID: 29532 Comm: syz-executor.2 Tainted: G B W 5.10.0 #8 [ 1203.512324] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 1203.513895] RIP: 0010:is_ftrace_trampoline+0x26/0xb0 [ 1203.514644] Code: ff eb d3 90 41 55 41 54 49 89 fc 55 53 e8 f2 00 fd ff 48 8b 1d 3b 35 5d 03 e8 e6 00 fd ff 48 8d bb 90 00 00 00 e8 2a 81 26 00 <48> 8b ab 90 00 00 00 48 85 ed 74 1d e8 c9 00 fd ff 48 8d bb 98 00 [ 1203.518838] RSP: 0018:ffffc900012cf960 EFLAGS: 00010246 [ 1203.520092] RAX: 0000000000000000 RBX: 000000000000007b RCX: ffffffff8a331866 [ 1203.521469] RDX: 0000000000000000 RSI: 0000000000000008 RDI: 000000000000010b [ 1203.522583] RBP: 0000000000000000 R08: 0000000000000000 R09: ffffffff8df18b07 [ 1203.523550] R10: fffffbfff1be3160 R11: 0000000000000001 R12: 0000000000478399 [ 1203.524596] R13: 0000000000000000 R14: ffff888145088000 R15: 0000000000000008 [ 1203.525634] FS: 00007f429f5f4700(0000) GS:ffff8881daf00000(0000) knlGS:0000000000000000 [ 1203.526801] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1203.527626] CR2: 000000000000010b CR3: 0000000170e1e001 CR4: 00000000003706e0 [ 1203.528611] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 1203.529605] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Therefore, when ftrace_startup_enable fails, we need to rollback registration process and remove ops from ftrace_ops_list.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2021-47433
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 2.99%
||
7 Day CHG~0.00%
Published-22 May, 2024 | 06:19
Updated-18 Dec, 2025 | 11:37
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
btrfs: fix abort logic in btrfs_replace_file_extents

In the Linux kernel, the following vulnerability has been resolved: btrfs: fix abort logic in btrfs_replace_file_extents Error injection testing uncovered a case where we'd end up with a corrupt file system with a missing extent in the middle of a file. This occurs because the if statement to decide if we should abort is wrong. The only way we would abort in this case is if we got a ret != -EOPNOTSUPP and we called from the file clone code. However the prealloc code uses this path too. Instead we need to abort if there is an error, and the only error we _don't_ abort on is -EOPNOTSUPP and only if we came from the clone file code.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CVE-2009-3621
Matching Score-8
Assigner-Red Hat, Inc.
ShareView Details
Matching Score-8
Assigner-Red Hat, Inc.
CVSS Score-5.5||MEDIUM
EPSS-0.06% / 19.93%
||
7 Day CHG~0.00%
Published-22 Oct, 2009 | 15:26
Updated-07 Aug, 2024 | 06:31
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available

net/unix/af_unix.c in the Linux kernel 2.6.31.4 and earlier allows local users to cause a denial of service (system hang) by creating an abstract-namespace AF_UNIX listening socket, performing a shutdown operation on this socket, and then performing a series of connect operations to this socket.

Action-Not Available
Vendor-n/aLinux Kernel Organization, IncSUSEVMware (Broadcom Inc.)Fedora ProjectopenSUSECanonical Ltd.
Product-ubuntu_linuxesxlinux_kernelopensusefedorasuse_linux_enterprise_serversuse_linux_enterprise_desktopvman/a
CWE ID-CWE-400
Uncontrolled Resource Consumption
CVE-2024-31076
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 1.00%
||
7 Day CHG~0.00%
Published-21 Jun, 2024 | 10:18
Updated-04 Nov, 2025 | 18:16
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
genirq/cpuhotplug, x86/vector: Prevent vector leak during CPU offline

In the Linux kernel, the following vulnerability has been resolved: genirq/cpuhotplug, x86/vector: Prevent vector leak during CPU offline The absence of IRQD_MOVE_PCNTXT prevents immediate effectiveness of interrupt affinity reconfiguration via procfs. Instead, the change is deferred until the next instance of the interrupt being triggered on the original CPU. When the interrupt next triggers on the original CPU, the new affinity is enforced within __irq_move_irq(). A vector is allocated from the new CPU, but the old vector on the original CPU remains and is not immediately reclaimed. Instead, apicd->move_in_progress is flagged, and the reclaiming process is delayed until the next trigger of the interrupt on the new CPU. Upon the subsequent triggering of the interrupt on the new CPU, irq_complete_move() adds a task to the old CPU's vector_cleanup list if it remains online. Subsequently, the timer on the old CPU iterates over its vector_cleanup list, reclaiming old vectors. However, a rare scenario arises if the old CPU is outgoing before the interrupt triggers again on the new CPU. In that case irq_force_complete_move() is not invoked on the outgoing CPU to reclaim the old apicd->prev_vector because the interrupt isn't currently affine to the outgoing CPU, and irq_needs_fixup() returns false. Even though __vector_schedule_cleanup() is later called on the new CPU, it doesn't reclaim apicd->prev_vector; instead, it simply resets both apicd->move_in_progress and apicd->prev_vector to 0. As a result, the vector remains unreclaimed in vector_matrix, leading to a CPU vector leak. To address this issue, move the invocation of irq_force_complete_move() before the irq_needs_fixup() call to reclaim apicd->prev_vector, if the interrupt is currently or used to be affine to the outgoing CPU. Additionally, reclaim the vector in __vector_schedule_cleanup() as well, following a warning message, although theoretically it should never see apicd->move_in_progress with apicd->prev_cpu pointing to an offline CPU.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CVE-2021-47583
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 1.39%
||
7 Day CHG~0.00%
Published-19 Jun, 2024 | 14:53
Updated-04 May, 2025 | 07:14
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
media: mxl111sf: change mutex_init() location

In the Linux kernel, the following vulnerability has been resolved: media: mxl111sf: change mutex_init() location Syzbot reported, that mxl111sf_ctrl_msg() uses uninitialized mutex. The problem was in wrong mutex_init() location. Previous mutex_init(&state->msg_lock) call was in ->init() function, but dvb_usbv2_init() has this order of calls: dvb_usbv2_init() dvb_usbv2_adapter_init() dvb_usbv2_adapter_frontend_init() props->frontend_attach() props->init() Since mxl111sf_* devices call mxl111sf_ctrl_msg() in ->frontend_attach() internally we need to initialize state->msg_lock before frontend_attach(). To achieve it, ->probe() call added to all mxl111sf_* devices, which will simply initiaize mutex.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-908
Use of Uninitialized Resource
CVE-2021-47494
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.03% / 6.87%
||
7 Day CHG~0.00%
Published-22 May, 2024 | 08:19
Updated-24 Sep, 2025 | 19:14
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
cfg80211: fix management registrations locking

In the Linux kernel, the following vulnerability has been resolved: cfg80211: fix management registrations locking The management registrations locking was broken, the list was locked for each wdev, but cfg80211_mgmt_registrations_update() iterated it without holding all the correct spinlocks, causing list corruption. Rather than trying to fix it with fine-grained locking, just move the lock to the wiphy/rdev (still need the list on each wdev), we already need to hold the wdev lock to change it, so there's no contention on the lock in any case. This trivially fixes the bug since we hold one wdev's lock already, and now will hold the lock that protects all lists.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-667
Improper Locking
CVE-2024-42077
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 1.70%
||
7 Day CHG~0.00%
Published-29 Jul, 2024 | 15:52
Updated-03 Nov, 2025 | 22:17
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
ocfs2: fix DIO failure due to insufficient transaction credits

In the Linux kernel, the following vulnerability has been resolved: ocfs2: fix DIO failure due to insufficient transaction credits The code in ocfs2_dio_end_io_write() estimates number of necessary transaction credits using ocfs2_calc_extend_credits(). This however does not take into account that the IO could be arbitrarily large and can contain arbitrary number of extents. Extent tree manipulations do often extend the current transaction but not in all of the cases. For example if we have only single block extents in the tree, ocfs2_mark_extent_written() will end up calling ocfs2_replace_extent_rec() all the time and we will never extend the current transaction and eventually exhaust all the transaction credits if the IO contains many single block extents. Once that happens a WARN_ON(jbd2_handle_buffer_credits(handle) <= 0) is triggered in jbd2_journal_dirty_metadata() and subsequently OCFS2 aborts in response to this error. This was actually triggered by one of our customers on a heavily fragmented OCFS2 filesystem. To fix the issue make sure the transaction always has enough credits for one extent insert before each call of ocfs2_mark_extent_written(). Heming Zhao said: ------ PANIC: "Kernel panic - not syncing: OCFS2: (device dm-1): panic forced after error" PID: xxx TASK: xxxx CPU: 5 COMMAND: "SubmitThread-CA" #0 machine_kexec at ffffffff8c069932 #1 __crash_kexec at ffffffff8c1338fa #2 panic at ffffffff8c1d69b9 #3 ocfs2_handle_error at ffffffffc0c86c0c [ocfs2] #4 __ocfs2_abort at ffffffffc0c88387 [ocfs2] #5 ocfs2_journal_dirty at ffffffffc0c51e98 [ocfs2] #6 ocfs2_split_extent at ffffffffc0c27ea3 [ocfs2] #7 ocfs2_change_extent_flag at ffffffffc0c28053 [ocfs2] #8 ocfs2_mark_extent_written at ffffffffc0c28347 [ocfs2] #9 ocfs2_dio_end_io_write at ffffffffc0c2bef9 [ocfs2] #10 ocfs2_dio_end_io at ffffffffc0c2c0f5 [ocfs2] #11 dio_complete at ffffffff8c2b9fa7 #12 do_blockdev_direct_IO at ffffffff8c2bc09f #13 ocfs2_direct_IO at ffffffffc0c2b653 [ocfs2] #14 generic_file_direct_write at ffffffff8c1dcf14 #15 __generic_file_write_iter at ffffffff8c1dd07b #16 ocfs2_file_write_iter at ffffffffc0c49f1f [ocfs2] #17 aio_write at ffffffff8c2cc72e #18 kmem_cache_alloc at ffffffff8c248dde #19 do_io_submit at ffffffff8c2ccada #20 do_syscall_64 at ffffffff8c004984 #21 entry_SYSCALL_64_after_hwframe at ffffffff8c8000ba

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CVE-2023-53169
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 1.16%
||
7 Day CHG~0.00%
Published-15 Sep, 2025 | 14:04
Updated-02 Dec, 2025 | 19:06
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
x86/resctrl: Clear staged_config[] before and after it is used

In the Linux kernel, the following vulnerability has been resolved: x86/resctrl: Clear staged_config[] before and after it is used As a temporary storage, staged_config[] in rdt_domain should be cleared before and after it is used. The stale value in staged_config[] could cause an MSR access error. Here is a reproducer on a system with 16 usable CLOSIDs for a 15-way L3 Cache (MBA should be disabled if the number of CLOSIDs for MB is less than 16.) : mount -t resctrl resctrl -o cdp /sys/fs/resctrl mkdir /sys/fs/resctrl/p{1..7} umount /sys/fs/resctrl/ mount -t resctrl resctrl /sys/fs/resctrl mkdir /sys/fs/resctrl/p{1..8} An error occurs when creating resource group named p8: unchecked MSR access error: WRMSR to 0xca0 (tried to write 0x00000000000007ff) at rIP: 0xffffffff82249142 (cat_wrmsr+0x32/0x60) Call Trace: <IRQ> __flush_smp_call_function_queue+0x11d/0x170 __sysvec_call_function+0x24/0xd0 sysvec_call_function+0x89/0xc0 </IRQ> <TASK> asm_sysvec_call_function+0x16/0x20 When creating a new resource control group, hardware will be configured by the following process: rdtgroup_mkdir() rdtgroup_mkdir_ctrl_mon() rdtgroup_init_alloc() resctrl_arch_update_domains() resctrl_arch_update_domains() iterates and updates all resctrl_conf_type whose have_new_ctrl is true. Since staged_config[] holds the same values as when CDP was enabled, it will continue to update the CDP_CODE and CDP_DATA configurations. When group p8 is created, get_config_index() called in resctrl_arch_update_domains() will return 16 and 17 as the CLOSIDs for CDP_CODE and CDP_DATA, which will be translated to an invalid register - 0xca0 in this scenario. Fix it by clearing staged_config[] before and after it is used. [reinette: re-order commit tags]

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CVE-2022-50009
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 2.16%
||
7 Day CHG~0.00%
Published-18 Jun, 2025 | 11:01
Updated-14 Nov, 2025 | 16:59
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
f2fs: fix null-ptr-deref in f2fs_get_dnode_of_data

In the Linux kernel, the following vulnerability has been resolved: f2fs: fix null-ptr-deref in f2fs_get_dnode_of_data There is issue as follows when test f2fs atomic write: F2FS-fs (loop0): Can't find valid F2FS filesystem in 2th superblock F2FS-fs (loop0): invalid crc_offset: 0 F2FS-fs (loop0): f2fs_check_nid_range: out-of-range nid=1, run fsck to fix. F2FS-fs (loop0): f2fs_check_nid_range: out-of-range nid=2, run fsck to fix. ================================================================== BUG: KASAN: null-ptr-deref in f2fs_get_dnode_of_data+0xac/0x16d0 Read of size 8 at addr 0000000000000028 by task rep/1990 CPU: 4 PID: 1990 Comm: rep Not tainted 5.19.0-rc6-next-20220715 #266 Call Trace: <TASK> dump_stack_lvl+0x6e/0x91 print_report.cold+0x49a/0x6bb kasan_report+0xa8/0x130 f2fs_get_dnode_of_data+0xac/0x16d0 f2fs_do_write_data_page+0x2a5/0x1030 move_data_page+0x3c5/0xdf0 do_garbage_collect+0x2015/0x36c0 f2fs_gc+0x554/0x1d30 f2fs_balance_fs+0x7f5/0xda0 f2fs_write_single_data_page+0xb66/0xdc0 f2fs_write_cache_pages+0x716/0x1420 f2fs_write_data_pages+0x84f/0x9a0 do_writepages+0x130/0x3a0 filemap_fdatawrite_wbc+0x87/0xa0 file_write_and_wait_range+0x157/0x1c0 f2fs_do_sync_file+0x206/0x12d0 f2fs_sync_file+0x99/0xc0 vfs_fsync_range+0x75/0x140 f2fs_file_write_iter+0xd7b/0x1850 vfs_write+0x645/0x780 ksys_write+0xf1/0x1e0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd As 3db1de0e582c commit changed atomic write way which new a cow_inode for atomic write file, and also mark cow_inode as FI_ATOMIC_FILE. When f2fs_do_write_data_page write cow_inode will use cow_inode's cow_inode which is NULL. Then will trigger null-ptr-deref. To solve above issue, introduce FI_COW_FILE flag for COW inode. Fiexes: 3db1de0e582c("f2fs: change the current atomic write way")

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2022-50362
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 1.23%
||
7 Day CHG~0.00%
Published-17 Sep, 2025 | 14:56
Updated-14 Jan, 2026 | 19:16
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
dmaengine: hisilicon: Add multi-thread support for a DMA channel

In the Linux kernel, the following vulnerability has been resolved: dmaengine: hisilicon: Add multi-thread support for a DMA channel When we get a DMA channel and try to use it in multiple threads it will cause oops and hanging the system. % echo 100 > /sys/module/dmatest/parameters/threads_per_chan % echo 100 > /sys/module/dmatest/parameters/iterations % echo 1 > /sys/module/dmatest/parameters/run [383493.327077] Unable to handle kernel paging request at virtual address dead000000000108 [383493.335103] Mem abort info: [383493.335103] ESR = 0x96000044 [383493.335105] EC = 0x25: DABT (current EL), IL = 32 bits [383493.335107] SET = 0, FnV = 0 [383493.335108] EA = 0, S1PTW = 0 [383493.335109] FSC = 0x04: level 0 translation fault [383493.335110] Data abort info: [383493.335111] ISV = 0, ISS = 0x00000044 [383493.364739] CM = 0, WnR = 1 [383493.367793] [dead000000000108] address between user and kernel address ranges [383493.375021] Internal error: Oops: 96000044 [#1] PREEMPT SMP [383493.437574] CPU: 63 PID: 27895 Comm: dma0chan0-copy2 Kdump: loaded Tainted: GO 5.17.0-rc4+ #2 [383493.457851] pstate: 204000c9 (nzCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [383493.465331] pc : vchan_tx_submit+0x64/0xa0 [383493.469957] lr : vchan_tx_submit+0x34/0xa0 This occurs because the transmission timed out, and that's due to data race. Each thread rewrite channels's descriptor as soon as device_issue_pending is called. It leads to the situation that the driver thinks that it uses the right descriptor in interrupt handler while channels's descriptor has been changed by other thread. The descriptor which in fact reported interrupt will not be handled any more, as well as its tx->callback. That's why timeout reports. With current fixes channels' descriptor changes it's value only when it has been used. A new descriptor is acquired from vc->desc_issued queue that is already filled with descriptors that are ready to be sent. Threads have no direct access to DMA channel descriptor. In case of channel's descriptor is busy, try to submit to HW again when a descriptor is completed. In this case, vc->desc_issued may be empty when hisi_dma_start_transfer is called, so delete error reporting on this. Now it is just possible to queue a descriptor for further processing.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CVE-2022-50069
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 2.16%
||
7 Day CHG~0.00%
Published-18 Jun, 2025 | 11:02
Updated-17 Nov, 2025 | 18:19
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
BPF: Fix potential bad pointer dereference in bpf_sys_bpf()

In the Linux kernel, the following vulnerability has been resolved: BPF: Fix potential bad pointer dereference in bpf_sys_bpf() The bpf_sys_bpf() helper function allows an eBPF program to load another eBPF program from within the kernel. In this case the argument union bpf_attr pointer (as well as the insns and license pointers inside) is a kernel address instead of a userspace address (which is the case of a usual bpf() syscall). To make the memory copying process in the syscall work in both cases, bpfptr_t was introduced to wrap around the pointer and distinguish its origin. Specifically, when copying memory contents from a bpfptr_t, a copy_from_user() is performed in case of a userspace address and a memcpy() is performed for a kernel address. This can lead to problems because the in-kernel pointer is never checked for validity. The problem happens when an eBPF syscall program tries to call bpf_sys_bpf() to load a program but provides a bad insns pointer -- say 0xdeadbeef -- in the bpf_attr union. The helper calls __sys_bpf() which would then call bpf_prog_load() to load the program. bpf_prog_load() is responsible for copying the eBPF instructions to the newly allocated memory for the program; it creates a kernel bpfptr_t for insns and invokes copy_from_bpfptr(). Internally, all bpfptr_t operations are backed by the corresponding sockptr_t operations, which performs direct memcpy() on kernel pointers for copy_from/strncpy_from operations. Therefore, the code is always happy to dereference the bad pointer to trigger a un-handle-able page fault and in turn an oops. However, this is not supposed to happen because at that point the eBPF program is already verified and should not cause a memory error. Sample KASAN trace: [ 25.685056][ T228] ================================================================== [ 25.685680][ T228] BUG: KASAN: user-memory-access in copy_from_bpfptr+0x21/0x30 [ 25.686210][ T228] Read of size 80 at addr 00000000deadbeef by task poc/228 [ 25.686732][ T228] [ 25.686893][ T228] CPU: 3 PID: 228 Comm: poc Not tainted 5.19.0-rc7 #7 [ 25.687375][ T228] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS d55cb5a 04/01/2014 [ 25.687991][ T228] Call Trace: [ 25.688223][ T228] <TASK> [ 25.688429][ T228] dump_stack_lvl+0x73/0x9e [ 25.688747][ T228] print_report+0xea/0x200 [ 25.689061][ T228] ? copy_from_bpfptr+0x21/0x30 [ 25.689401][ T228] ? _printk+0x54/0x6e [ 25.689693][ T228] ? _raw_spin_lock_irqsave+0x70/0xd0 [ 25.690071][ T228] ? copy_from_bpfptr+0x21/0x30 [ 25.690412][ T228] kasan_report+0xb5/0xe0 [ 25.690716][ T228] ? copy_from_bpfptr+0x21/0x30 [ 25.691059][ T228] kasan_check_range+0x2bd/0x2e0 [ 25.691405][ T228] ? copy_from_bpfptr+0x21/0x30 [ 25.691734][ T228] memcpy+0x25/0x60 [ 25.692000][ T228] copy_from_bpfptr+0x21/0x30 [ 25.692328][ T228] bpf_prog_load+0x604/0x9e0 [ 25.692653][ T228] ? cap_capable+0xb4/0xe0 [ 25.692956][ T228] ? security_capable+0x4f/0x70 [ 25.693324][ T228] __sys_bpf+0x3af/0x580 [ 25.693635][ T228] bpf_sys_bpf+0x45/0x240 [ 25.693937][ T228] bpf_prog_f0ec79a5a3caca46_bpf_func1+0xa2/0xbd [ 25.694394][ T228] bpf_prog_run_pin_on_cpu+0x2f/0xb0 [ 25.694756][ T228] bpf_prog_test_run_syscall+0x146/0x1c0 [ 25.695144][ T228] bpf_prog_test_run+0x172/0x190 [ 25.695487][ T228] __sys_bpf+0x2c5/0x580 [ 25.695776][ T228] __x64_sys_bpf+0x3a/0x50 [ 25.696084][ T228] do_syscall_64+0x60/0x90 [ 25.696393][ T228] ? fpregs_assert_state_consistent+0x50/0x60 [ 25.696815][ T228] ? exit_to_user_mode_prepare+0x36/0xa0 [ 25.697202][ T228] ? syscall_exit_to_user_mode+0x20/0x40 [ 25.697586][ T228] ? do_syscall_64+0x6e/0x90 [ 25.697899][ T228] entry_SYSCALL_64_after_hwframe+0x63/0xcd [ 25.698312][ T228] RIP: 0033:0x7f6d543fb759 [ 25.698624][ T228] Code: 08 5b 89 e8 5d c3 66 2e 0f 1f 84 00 00 00 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d ---truncated---

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2021-47530
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.02% / 4.99%
||
7 Day CHG~0.00%
Published-24 May, 2024 | 15:09
Updated-29 Sep, 2025 | 17:07
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
drm/msm: Fix wait_fence submitqueue leak

In the Linux kernel, the following vulnerability has been resolved: drm/msm: Fix wait_fence submitqueue leak We weren't dropping the submitqueue reference in all paths. In particular, when the fence has already been signalled. Split out a helper to simplify handling this in the various different return paths.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CVE-2021-47165
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 2.60%
||
7 Day CHG~0.00%
Published-25 Mar, 2024 | 09:16
Updated-04 May, 2025 | 12:41
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
drm/meson: fix shutdown crash when component not probed

In the Linux kernel, the following vulnerability has been resolved: drm/meson: fix shutdown crash when component not probed When main component is not probed, by example when the dw-hdmi module is not loaded yet or in probe defer, the following crash appears on shutdown: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000038 ... pc : meson_drv_shutdown+0x24/0x50 lr : platform_drv_shutdown+0x20/0x30 ... Call trace: meson_drv_shutdown+0x24/0x50 platform_drv_shutdown+0x20/0x30 device_shutdown+0x158/0x360 kernel_restart_prepare+0x38/0x48 kernel_restart+0x18/0x68 __do_sys_reboot+0x224/0x250 __arm64_sys_reboot+0x24/0x30 ... Simply check if the priv struct has been allocated before using it.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2022-50266
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 1.21%
||
7 Day CHG~0.00%
Published-15 Sep, 2025 | 14:21
Updated-02 Dec, 2025 | 19:27
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
kprobes: Fix check for probe enabled in kill_kprobe()

In the Linux kernel, the following vulnerability has been resolved: kprobes: Fix check for probe enabled in kill_kprobe() In kill_kprobe(), the check whether disarm_kprobe_ftrace() needs to be called always fails. This is because before that we set the KPROBE_FLAG_GONE flag for kprobe so that "!kprobe_disabled(p)" is always false. The disarm_kprobe_ftrace() call introduced by commit: 0cb2f1372baa ("kprobes: Fix NULL pointer dereference at kprobe_ftrace_handler") to fix the NULL pointer reference problem. When the probe is enabled, if we do not disarm it, this problem still exists. Fix it by putting the probe enabled check before setting the KPROBE_FLAG_GONE flag.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2021-47190
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 1.19%
||
7 Day CHG~0.00%
Published-10 Apr, 2024 | 18:56
Updated-04 May, 2025 | 07:06
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
perf bpf: Avoid memory leak from perf_env__insert_btf()

In the Linux kernel, the following vulnerability has been resolved: perf bpf: Avoid memory leak from perf_env__insert_btf() perf_env__insert_btf() doesn't insert if a duplicate BTF id is encountered and this causes a memory leak. Modify the function to return a success/error value and then free the memory if insertion didn't happen. v2. Adds a return -1 when the insertion error occurs in perf_env__fetch_btf. This doesn't affect anything as the result is never checked.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-401
Missing Release of Memory after Effective Lifetime
CVE-2021-47491
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.02% / 3.48%
||
7 Day CHG~0.00%
Published-22 May, 2024 | 08:19
Updated-29 Sep, 2025 | 16:37
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
mm: khugepaged: skip huge page collapse for special files

In the Linux kernel, the following vulnerability has been resolved: mm: khugepaged: skip huge page collapse for special files The read-only THP for filesystems will collapse THP for files opened readonly and mapped with VM_EXEC. The intended usecase is to avoid TLB misses for large text segments. But it doesn't restrict the file types so a THP could be collapsed for a non-regular file, for example, block device, if it is opened readonly and mapped with EXEC permission. This may cause bugs, like [1] and [2]. This is definitely not the intended usecase, so just collapse THP for regular files in order to close the attack surface. [shy828301@gmail.com: fix vm_file check [3]]

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CVE-2021-47021
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.04% / 12.38%
||
7 Day CHG~0.00%
Published-28 Feb, 2024 | 08:13
Updated-04 May, 2025 | 07:02
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
mt76: mt7915: fix memleak when mt7915_unregister_device()

In the Linux kernel, the following vulnerability has been resolved: mt76: mt7915: fix memleak when mt7915_unregister_device() mt7915_tx_token_put() should get call before mt76_free_pending_txwi().

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-401
Missing Release of Memory after Effective Lifetime
CVE-2020-11669
Matching Score-8
Assigner-MITRE Corporation
ShareView Details
Matching Score-8
Assigner-MITRE Corporation
CVSS Score-5.5||MEDIUM
EPSS-0.08% / 23.60%
||
7 Day CHG~0.00%
Published-10 Apr, 2020 | 14:40
Updated-04 Aug, 2024 | 11:35
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available

An issue was discovered in the Linux kernel before 5.2 on the powerpc platform. arch/powerpc/kernel/idle_book3s.S does not have save/restore functionality for PNV_POWERSAVE_AMR, PNV_POWERSAVE_UAMOR, and PNV_POWERSAVE_AMOR, aka CID-53a712bae5dd.

Action-Not Available
Vendor-n/aopenSUSELinux Kernel Organization, IncRed Hat, Inc.
Product-enterprise_linuxlinux_kernelleapn/a
CVE-2021-46983
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 3.04%
||
7 Day CHG~0.00%
Published-28 Feb, 2024 | 08:13
Updated-04 May, 2025 | 07:01
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
nvmet-rdma: Fix NULL deref when SEND is completed with error

In the Linux kernel, the following vulnerability has been resolved: nvmet-rdma: Fix NULL deref when SEND is completed with error When running some traffic and taking down the link on peer, a retry counter exceeded error is received. This leads to nvmet_rdma_error_comp which tried accessing the cq_context to obtain the queue. The cq_context is no longer valid after the fix to use shared CQ mechanism and should be obtained similar to how it is obtained in other functions from the wc->qp. [ 905.786331] nvmet_rdma: SEND for CQE 0x00000000e3337f90 failed with status transport retry counter exceeded (12). [ 905.832048] BUG: unable to handle kernel NULL pointer dereference at 0000000000000048 [ 905.839919] PGD 0 P4D 0 [ 905.842464] Oops: 0000 1 SMP NOPTI [ 905.846144] CPU: 13 PID: 1557 Comm: kworker/13:1H Kdump: loaded Tainted: G OE --------- - - 4.18.0-304.el8.x86_64 #1 [ 905.872135] RIP: 0010:nvmet_rdma_error_comp+0x5/0x1b [nvmet_rdma] [ 905.878259] Code: 19 4f c0 e8 89 b3 a5 f6 e9 5b e0 ff ff 0f b7 75 14 4c 89 ea 48 c7 c7 08 1a 4f c0 e8 71 b3 a5 f6 e9 4b e0 ff ff 0f 1f 44 00 00 <48> 8b 47 48 48 85 c0 74 08 48 89 c7 e9 98 bf 49 00 e9 c3 e3 ff ff [ 905.897135] RSP: 0018:ffffab601c45fe28 EFLAGS: 00010246 [ 905.902387] RAX: 0000000000000065 RBX: ffff9e729ea2f800 RCX: 0000000000000000 [ 905.909558] RDX: 0000000000000000 RSI: ffff9e72df9567c8 RDI: 0000000000000000 [ 905.916731] RBP: ffff9e729ea2b400 R08: 000000000000074d R09: 0000000000000074 [ 905.923903] R10: 0000000000000000 R11: ffffab601c45fcc0 R12: 0000000000000010 [ 905.931074] R13: 0000000000000000 R14: 0000000000000010 R15: ffff9e729ea2f400 [ 905.938247] FS: 0000000000000000(0000) GS:ffff9e72df940000(0000) knlGS:0000000000000000 [ 905.938249] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 905.950067] nvmet_rdma: SEND for CQE 0x00000000c7356cca failed with status transport retry counter exceeded (12). [ 905.961855] CR2: 0000000000000048 CR3: 000000678d010004 CR4: 00000000007706e0 [ 905.961855] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 905.961856] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 905.961857] PKRU: 55555554 [ 906.010315] Call Trace: [ 906.012778] __ib_process_cq+0x89/0x170 [ib_core] [ 906.017509] ib_cq_poll_work+0x26/0x80 [ib_core] [ 906.022152] process_one_work+0x1a7/0x360 [ 906.026182] ? create_worker+0x1a0/0x1a0 [ 906.030123] worker_thread+0x30/0x390 [ 906.033802] ? create_worker+0x1a0/0x1a0 [ 906.037744] kthread+0x116/0x130 [ 906.040988] ? kthread_flush_work_fn+0x10/0x10 [ 906.045456] ret_from_fork+0x1f/0x40

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2021-46996
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.04% / 10.78%
||
7 Day CHG~0.00%
Published-28 Feb, 2024 | 08:13
Updated-04 May, 2025 | 07:01
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
netfilter: nftables: Fix a memleak from userdata error path in new objects

In the Linux kernel, the following vulnerability has been resolved: netfilter: nftables: Fix a memleak from userdata error path in new objects Release object name if userdata allocation fails.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-401
Missing Release of Memory after Effective Lifetime
CVE-2021-46961
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.02% / 3.31%
||
7 Day CHG~0.00%
Published-27 Feb, 2024 | 18:47
Updated-04 May, 2025 | 07:01
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
irqchip/gic-v3: Do not enable irqs when handling spurious interrups

In the Linux kernel, the following vulnerability has been resolved: irqchip/gic-v3: Do not enable irqs when handling spurious interrups We triggered the following error while running our 4.19 kernel with the pseudo-NMI patches backported to it: [ 14.816231] ------------[ cut here ]------------ [ 14.816231] kernel BUG at irq.c:99! [ 14.816232] Internal error: Oops - BUG: 0 [#1] SMP [ 14.816232] Process swapper/0 (pid: 0, stack limit = 0x(____ptrval____)) [ 14.816233] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 4.19.95.aarch64 #14 [ 14.816233] Hardware name: evb (DT) [ 14.816234] pstate: 80400085 (Nzcv daIf +PAN -UAO) [ 14.816234] pc : asm_nmi_enter+0x94/0x98 [ 14.816235] lr : asm_nmi_enter+0x18/0x98 [ 14.816235] sp : ffff000008003c50 [ 14.816235] pmr_save: 00000070 [ 14.816237] x29: ffff000008003c50 x28: ffff0000095f56c0 [ 14.816238] x27: 0000000000000000 x26: ffff000008004000 [ 14.816239] x25: 00000000015e0000 x24: ffff8008fb916000 [ 14.816240] x23: 0000000020400005 x22: ffff0000080817cc [ 14.816241] x21: ffff000008003da0 x20: 0000000000000060 [ 14.816242] x19: 00000000000003ff x18: ffffffffffffffff [ 14.816243] x17: 0000000000000008 x16: 003d090000000000 [ 14.816244] x15: ffff0000095ea6c8 x14: ffff8008fff5ab40 [ 14.816244] x13: ffff8008fff58b9d x12: 0000000000000000 [ 14.816245] x11: ffff000008c8a200 x10: 000000008e31fca5 [ 14.816246] x9 : ffff000008c8a208 x8 : 000000000000000f [ 14.816247] x7 : 0000000000000004 x6 : ffff8008fff58b9e [ 14.816248] x5 : 0000000000000000 x4 : 0000000080000000 [ 14.816249] x3 : 0000000000000000 x2 : 0000000080000000 [ 14.816250] x1 : 0000000000120000 x0 : ffff0000095f56c0 [ 14.816251] Call trace: [ 14.816251] asm_nmi_enter+0x94/0x98 [ 14.816251] el1_irq+0x8c/0x180 (IRQ C) [ 14.816252] gic_handle_irq+0xbc/0x2e4 [ 14.816252] el1_irq+0xcc/0x180 (IRQ B) [ 14.816253] arch_timer_handler_virt+0x38/0x58 [ 14.816253] handle_percpu_devid_irq+0x90/0x240 [ 14.816253] generic_handle_irq+0x34/0x50 [ 14.816254] __handle_domain_irq+0x68/0xc0 [ 14.816254] gic_handle_irq+0xf8/0x2e4 [ 14.816255] el1_irq+0xcc/0x180 (IRQ A) [ 14.816255] arch_cpu_idle+0x34/0x1c8 [ 14.816255] default_idle_call+0x24/0x44 [ 14.816256] do_idle+0x1d0/0x2c8 [ 14.816256] cpu_startup_entry+0x28/0x30 [ 14.816256] rest_init+0xb8/0xc8 [ 14.816257] start_kernel+0x4c8/0x4f4 [ 14.816257] Code: 940587f1 d5384100 b9401001 36a7fd01 (d4210000) [ 14.816258] Modules linked in: start_dp(O) smeth(O) [ 15.103092] ---[ end trace 701753956cb14aa8 ]--- [ 15.103093] Kernel panic - not syncing: Fatal exception in interrupt [ 15.103099] SMP: stopping secondary CPUs [ 15.103100] Kernel Offset: disabled [ 15.103100] CPU features: 0x36,a2400218 [ 15.103100] Memory Limit: none which is cause by a 'BUG_ON(in_nmi())' in nmi_enter(). From the call trace, we can find three interrupts (noted A, B, C above): interrupt (A) is preempted by (B), which is further interrupted by (C). Subsequent investigations show that (B) results in nmi_enter() being called, but that it actually is a spurious interrupt. Furthermore, interrupts are reenabled in the context of (B), and (C) fires with NMI priority. We end-up with a nested NMI situation, something we definitely do not want to (and cannot) handle. The bug here is that spurious interrupts should never result in any state change, and we should just return to the interrupted context. Moving the handling of spurious interrupts as early as possible in the GICv3 handler fixes this issue. [maz: rewrote commit message, corrected Fixes: tag]

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CVE-2021-46988
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 1.75%
||
7 Day CHG~0.00%
Published-28 Feb, 2024 | 08:13
Updated-04 May, 2025 | 07:01
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
userfaultfd: release page in error path to avoid BUG_ON

In the Linux kernel, the following vulnerability has been resolved: userfaultfd: release page in error path to avoid BUG_ON Consider the following sequence of events: 1. Userspace issues a UFFD ioctl, which ends up calling into shmem_mfill_atomic_pte(). We successfully account the blocks, we shmem_alloc_page(), but then the copy_from_user() fails. We return -ENOENT. We don't release the page we allocated. 2. Our caller detects this error code, tries the copy_from_user() after dropping the mmap_lock, and retries, calling back into shmem_mfill_atomic_pte(). 3. Meanwhile, let's say another process filled up the tmpfs being used. 4. So shmem_mfill_atomic_pte() fails to account blocks this time, and immediately returns - without releasing the page. This triggers a BUG_ON in our caller, which asserts that the page should always be consumed, unless -ENOENT is returned. To fix this, detect if we have such a "dangling" page when accounting fails, and if so, release it before returning.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-416
Use After Free
CVE-2021-47045
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 2.99%
||
7 Day CHG~0.00%
Published-28 Feb, 2024 | 08:13
Updated-04 May, 2025 | 07:03
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
scsi: lpfc: Fix null pointer dereference in lpfc_prep_els_iocb()

In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Fix null pointer dereference in lpfc_prep_els_iocb() It is possible to call lpfc_issue_els_plogi() passing a did for which no matching ndlp is found. A call is then made to lpfc_prep_els_iocb() with a null pointer to a lpfc_nodelist structure resulting in a null pointer dereference. Fix by returning an error status if no valid ndlp is found. Fix up comments regarding ndlp reference counting.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2021-46951
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.02% / 3.31%
||
7 Day CHG~0.00%
Published-27 Feb, 2024 | 18:40
Updated-04 May, 2025 | 07:01
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
tpm: efi: Use local variable for calculating final log size

In the Linux kernel, the following vulnerability has been resolved: tpm: efi: Use local variable for calculating final log size When tpm_read_log_efi is called multiple times, which happens when one loads and unloads a TPM2 driver multiple times, then the global variable efi_tpm_final_log_size will at some point become a negative number due to the subtraction of final_events_preboot_size occurring each time. Use a local variable to avoid this integer underflow. The following issue is now resolved: Mar 8 15:35:12 hibinst kernel: Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Mar 8 15:35:12 hibinst kernel: Workqueue: tpm-vtpm vtpm_proxy_work [tpm_vtpm_proxy] Mar 8 15:35:12 hibinst kernel: RIP: 0010:__memcpy+0x12/0x20 Mar 8 15:35:12 hibinst kernel: Code: 00 b8 01 00 00 00 85 d2 74 0a c7 05 44 7b ef 00 0f 00 00 00 c3 cc cc cc 66 66 90 66 90 48 89 f8 48 89 d1 48 c1 e9 03 83 e2 07 <f3> 48 a5 89 d1 f3 a4 c3 66 0f 1f 44 00 00 48 89 f8 48 89 d1 f3 a4 Mar 8 15:35:12 hibinst kernel: RSP: 0018:ffff9ac4c0fcfde0 EFLAGS: 00010206 Mar 8 15:35:12 hibinst kernel: RAX: ffff88f878cefed5 RBX: ffff88f878ce9000 RCX: 1ffffffffffffe0f Mar 8 15:35:12 hibinst kernel: RDX: 0000000000000003 RSI: ffff9ac4c003bff9 RDI: ffff88f878cf0e4d Mar 8 15:35:12 hibinst kernel: RBP: ffff9ac4c003b000 R08: 0000000000001000 R09: 000000007e9d6073 Mar 8 15:35:12 hibinst kernel: R10: ffff9ac4c003b000 R11: ffff88f879ad3500 R12: 0000000000000ed5 Mar 8 15:35:12 hibinst kernel: R13: ffff88f878ce9760 R14: 0000000000000002 R15: ffff88f77de7f018 Mar 8 15:35:12 hibinst kernel: FS: 0000000000000000(0000) GS:ffff88f87bd00000(0000) knlGS:0000000000000000 Mar 8 15:35:12 hibinst kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 Mar 8 15:35:12 hibinst kernel: CR2: ffff9ac4c003c000 CR3: 00000001785a6004 CR4: 0000000000060ee0 Mar 8 15:35:12 hibinst kernel: Call Trace: Mar 8 15:35:12 hibinst kernel: tpm_read_log_efi+0x152/0x1a7 Mar 8 15:35:12 hibinst kernel: tpm_bios_log_setup+0xc8/0x1c0 Mar 8 15:35:12 hibinst kernel: tpm_chip_register+0x8f/0x260 Mar 8 15:35:12 hibinst kernel: vtpm_proxy_work+0x16/0x60 [tpm_vtpm_proxy] Mar 8 15:35:12 hibinst kernel: process_one_work+0x1b4/0x370 Mar 8 15:35:12 hibinst kernel: worker_thread+0x53/0x3e0 Mar 8 15:35:12 hibinst kernel: ? process_one_work+0x370/0x370

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-191
Integer Underflow (Wrap or Wraparound)
CVE-2022-49957
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.02% / 3.78%
||
7 Day CHG~0.00%
Published-18 Jun, 2025 | 11:00
Updated-14 Nov, 2025 | 18:10
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
kcm: fix strp_init() order and cleanup

In the Linux kernel, the following vulnerability has been resolved: kcm: fix strp_init() order and cleanup strp_init() is called just a few lines above this csk->sk_user_data check, it also initializes strp->work etc., therefore, it is unnecessary to call strp_done() to cancel the freshly initialized work. And if sk_user_data is already used by KCM, psock->strp should not be touched, particularly strp->work state, so we need to move strp_init() after the csk->sk_user_data check. This also makes a lockdep warning reported by syzbot go away.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-908
Use of Uninitialized Resource
CVE-2022-50053
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 1.14%
||
7 Day CHG~0.00%
Published-18 Jun, 2025 | 11:01
Updated-13 Nov, 2025 | 18:15
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
iavf: Fix reset error handling

In the Linux kernel, the following vulnerability has been resolved: iavf: Fix reset error handling Do not call iavf_close in iavf_reset_task error handling. Doing so can lead to double call of napi_disable, which can lead to deadlock there. Removing VF would lead to iavf_remove task being stuck, because it requires crit_lock, which is held by iavf_close. Call iavf_disable_vf if reset fail, so that driver will clean up remaining invalid resources. During rapid VF resets, HW can fail to setup VF mailbox. Wrong error handling can lead to iavf_remove being stuck with: [ 5218.999087] iavf 0000:82:01.0: Failed to init adminq: -53 ... [ 5267.189211] INFO: task repro.sh:11219 blocked for more than 30 seconds. [ 5267.189520] Tainted: G S E 5.18.0-04958-ga54ce3703613-dirty #1 [ 5267.189764] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 5267.190062] task:repro.sh state:D stack: 0 pid:11219 ppid: 8162 flags:0x00000000 [ 5267.190347] Call Trace: [ 5267.190647] <TASK> [ 5267.190927] __schedule+0x460/0x9f0 [ 5267.191264] schedule+0x44/0xb0 [ 5267.191563] schedule_preempt_disabled+0x14/0x20 [ 5267.191890] __mutex_lock.isra.12+0x6e3/0xac0 [ 5267.192237] ? iavf_remove+0xf9/0x6c0 [iavf] [ 5267.192565] iavf_remove+0x12a/0x6c0 [iavf] [ 5267.192911] ? _raw_spin_unlock_irqrestore+0x1e/0x40 [ 5267.193285] pci_device_remove+0x36/0xb0 [ 5267.193619] device_release_driver_internal+0xc1/0x150 [ 5267.193974] pci_stop_bus_device+0x69/0x90 [ 5267.194361] pci_stop_and_remove_bus_device+0xe/0x20 [ 5267.194735] pci_iov_remove_virtfn+0xba/0x120 [ 5267.195130] sriov_disable+0x2f/0xe0 [ 5267.195506] ice_free_vfs+0x7d/0x2f0 [ice] [ 5267.196056] ? pci_get_device+0x4f/0x70 [ 5267.196496] ice_sriov_configure+0x78/0x1a0 [ice] [ 5267.196995] sriov_numvfs_store+0xfe/0x140 [ 5267.197466] kernfs_fop_write_iter+0x12e/0x1c0 [ 5267.197918] new_sync_write+0x10c/0x190 [ 5267.198404] vfs_write+0x24e/0x2d0 [ 5267.198886] ksys_write+0x5c/0xd0 [ 5267.199367] do_syscall_64+0x3a/0x80 [ 5267.199827] entry_SYSCALL_64_after_hwframe+0x46/0xb0 [ 5267.200317] RIP: 0033:0x7f5b381205c8 [ 5267.200814] RSP: 002b:00007fff8c7e8c78 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 [ 5267.201981] RAX: ffffffffffffffda RBX: 0000000000000002 RCX: 00007f5b381205c8 [ 5267.202620] RDX: 0000000000000002 RSI: 00005569420ee900 RDI: 0000000000000001 [ 5267.203426] RBP: 00005569420ee900 R08: 000000000000000a R09: 00007f5b38180820 [ 5267.204327] R10: 000000000000000a R11: 0000000000000246 R12: 00007f5b383c06e0 [ 5267.205193] R13: 0000000000000002 R14: 00007f5b383bb880 R15: 0000000000000002 [ 5267.206041] </TASK> [ 5267.206970] Kernel panic - not syncing: hung_task: blocked tasks [ 5267.207809] CPU: 48 PID: 551 Comm: khungtaskd Kdump: loaded Tainted: G S E 5.18.0-04958-ga54ce3703613-dirty #1 [ 5267.208726] Hardware name: Dell Inc. PowerEdge R730/0WCJNT, BIOS 2.11.0 11/02/2019 [ 5267.209623] Call Trace: [ 5267.210569] <TASK> [ 5267.211480] dump_stack_lvl+0x33/0x42 [ 5267.212472] panic+0x107/0x294 [ 5267.213467] watchdog.cold.8+0xc/0xbb [ 5267.214413] ? proc_dohung_task_timeout_secs+0x30/0x30 [ 5267.215511] kthread+0xf4/0x120 [ 5267.216459] ? kthread_complete_and_exit+0x20/0x20 [ 5267.217505] ret_from_fork+0x22/0x30 [ 5267.218459] </TASK>

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-667
Improper Locking
CVE-2023-53152
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 1.21%
||
7 Day CHG~0.00%
Published-15 Sep, 2025 | 14:03
Updated-24 Nov, 2025 | 21:01
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
drm/amdgpu: fix calltrace warning in amddrm_buddy_fini

In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix calltrace warning in amddrm_buddy_fini The following call trace is observed when removing the amdgpu driver, which is caused by that BOs allocated for psp are not freed until removing. [61811.450562] RIP: 0010:amddrm_buddy_fini.cold+0x29/0x47 [amddrm_buddy] [61811.450577] Call Trace: [61811.450577] <TASK> [61811.450579] amdgpu_vram_mgr_fini+0x135/0x1c0 [amdgpu] [61811.450728] amdgpu_ttm_fini+0x207/0x290 [amdgpu] [61811.450870] amdgpu_bo_fini+0x27/0xa0 [amdgpu] [61811.451012] gmc_v9_0_sw_fini+0x4a/0x60 [amdgpu] [61811.451166] amdgpu_device_fini_sw+0x117/0x520 [amdgpu] [61811.451306] amdgpu_driver_release_kms+0x16/0x30 [amdgpu] [61811.451447] devm_drm_dev_init_release+0x4d/0x80 [drm] [61811.451466] devm_action_release+0x15/0x20 [61811.451469] release_nodes+0x40/0xb0 [61811.451471] devres_release_all+0x9b/0xd0 [61811.451473] __device_release_driver+0x1bb/0x2a0 [61811.451476] driver_detach+0xf3/0x140 [61811.451479] bus_remove_driver+0x6c/0xf0 [61811.451481] driver_unregister+0x31/0x60 [61811.451483] pci_unregister_driver+0x40/0x90 [61811.451486] amdgpu_exit+0x15/0x447 [amdgpu] For smu v13_0_2, if the GPU supports xgmi, refer to commit f5c7e7797060 ("drm/amdgpu: Adjust removal control flow for smu v13_0_2"), it will run gpu recover in AMDGPU_RESET_FOR_DEVICE_REMOVE mode when removing, which makes all devices in hive list have hw reset but no resume except the basic ip blocks, then other ip blocks will not call .hw_fini according to ip_block.status.hw. Since psp_free_shared_bufs just includes some software operations, so move it to psp_sw_fini.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-772
Missing Release of Resource after Effective Lifetime
  • Previous
  • 1
  • 2
  • ...
  • 8
  • 9
  • 10
  • ...
  • 120
  • 121
  • Next
Details not found