In Telecom, there is a possible leak of TTY mode change due to a missing permission check. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-12LAndroid ID: A-203880906
In ipcSetDataReference of Parcel.cpp, there is a possible way to corrupt memory due to a use after free. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-11 Android-12Android ID: A-203847542
In PackageManager, there is a possible way to update the last usage time of another package due to a missing permission check. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-12LAndroid ID: A-201534884
In wifi service, there is a possible missing permission check. This could lead to local escalation of privilege with no additional execution privileges needed
In sendLegacyVoicemailNotification of LegacyModeSmsHandler.java, there is a possible permissions bypass due to an unsafe PendingIntent. This could lead to local escalation of privilege with User execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-10 Android-11 Android-12 Android-9Android ID: A-185126319
In TBD of TBD, there is a possible way to access PIN protected settings bypassing PIN confirmation due to a missing permission check. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-193438173References: N/A
In createOrUpdate of BasePermission.java, there is a possible permission bypass due to a logic error in the code. This could lead to local escalation of privilege with User execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-11Android ID: A-209607944
In delete_protocol of main.c, there is a possible arbitrary code execution due to a use after free. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-200251074References: N/A
In multiple methods of EuiccNotificationManager.java, there is a possible way to install existing packages without user consent due to an unsafe PendingIntent. This could lead to local escalation of privilege with User execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-10 Android-11 Android-12 Android-9Android ID: A-196855999
In telecom service, there is a possible missing permission check. This could lead to local escalation of privilege with no additional execution privileges needed
In CellBroadcastReceiver, there is a possible path to enable specific cellular features due to a missing permission check. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-12LAndroid ID: A-200163477
In (TBD) of (TBD), there is a possible way to boot with a hidden debug policy due to a missing warning to the user. This could lead to local escalation of privilege after preparing the device, hiding the warning, and passing the phone to a new user, with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-193443223References: N/A
In deleteNotificationChannelGroup of NotificationManagerService.java, there is a possible way to run foreground service without user notification due to a permissions bypass. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-10 Android-11 Android-12Android ID: A-209965481
In miniadb, there is a possible way to get read/write access to recovery system properties due to an insecure default value. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-12LAndroid ID: A-201308542
In _PMRLogicalOffsetToPhysicalOffset of the PowerVR kernel driver, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android SoCAndroid ID: A-246824784
In checkFileUriDestination of DownloadProvider.java, there is a possible way to bypass external storage private directories protection due to a missing permission check. This could lead to local escalation of privilege with User execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-11 Android-12Android ID: A-200813547
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can craft a TFLite model that would trigger a null pointer dereference, which would result in a crash and denial of service. This is caused by the MLIR optimization of `L2NormalizeReduceAxis` operator. The [implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/compiler/mlir/lite/transforms/optimize.cc#L67-L70) unconditionally dereferences a pointer to an iterator to a vector without checking that the vector has elements. We have patched the issue in GitHub commit d6b57f461b39fd1aa8c1b870f1b974aac3554955. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions it is possible to nest a `tf.map_fn` within another `tf.map_fn` call. However, if the input tensor is a `RaggedTensor` and there is no function signature provided, code assumes the output is a fully specified tensor and fills output buffer with uninitialized contents from the heap. The `t` and `z` outputs should be identical, however this is not the case. The last row of `t` contains data from the heap which can be used to leak other memory information. The bug lies in the conversion from a `Variant` tensor to a `RaggedTensor`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/ragged_tensor_from_variant_op.cc#L177-L190) does not check that all inner shapes match and this results in the additional dimensions. The same implementation can result in data loss, if input tensor is tweaked. We have patched the issue in GitHub commit 4e2565483d0ffcadc719bd44893fb7f609bb5f12. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. When restoring tensors via raw APIs, if the tensor name is not provided, TensorFlow can be tricked into dereferencing a null pointer. Alternatively, attackers can read memory outside the bounds of heap allocated data by providing some tensor names but not enough for a successful restoration. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/kernels/save_restore_tensor.cc#L158-L159) retrieves the tensor list corresponding to the `tensor_name` user controlled input and immediately retrieves the tensor at the restoration index (controlled via `preferred_shard` argument). This occurs without validating that the provided list has enough values. If the list is empty this results in dereferencing a null pointer (undefined behavior). If, however, the list has some elements, if the restoration index is outside the bounds this results in heap OOB read. We have patched the issue in GitHub commit 9e82dce6e6bd1f36a57e08fa85af213e2b2f2622. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all operations of type `tf.raw_ops.MatrixSetDiagV*`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/linalg/matrix_diag_op.cc) has incomplete validation that the value of `k` is a valid tensor. We have check that this value is either a scalar or a vector, but there is no check for the number of elements. If this is an empty tensor, then code that accesses the first element of the tensor is wrong. We have patched the issue in GitHub commit ff8894044dfae5568ecbf2ed514c1a37dc394f1b. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all operations of type `tf.raw_ops.MatrixDiagV*`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/linalg/matrix_diag_op.cc) has incomplete validation that the value of `k` is a valid tensor. We have check that this value is either a scalar or a vector, but there is no check for the number of elements. If this is an empty tensor, then code that accesses the first element of the tensor is wrong. We have patched the issue in GitHub commit f2a673bd34f0d64b8e40a551ac78989d16daad09. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.Map*` and `tf.raw_ops.OrderedMap*` operations. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/map_stage_op.cc#L222-L248) has a check in place to ensure that `indices` is in ascending order, but does not check that `indices` is not empty. We have patched the issue in GitHub commit 532f5c5a547126c634fefd43bbad1dc6417678ac. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
In camera service, there is a possible missing permission check. This could lead to local escalation of privilege with no additional execution privileges needed
In getAvailabilityStatus of WifiScanningMainSwitchPreferenceController.java, there is a possible way to bypass a device policy restriction due to a missing permission check. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the code for `tf.raw_ops.SaveV2` does not properly validate the inputs and an attacker can trigger a null pointer dereference. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/save_restore_v2_ops.cc) uses `ValidateInputs` to check that the input arguments are valid. This validation would have caught the illegal state represented by the reproducer above. However, the validation uses `OP_REQUIRES` which translates to setting the `Status` object of the current `OpKernelContext` to an error status, followed by an empty `return` statement which just terminates the execution of the function it is present in. However, this does not mean that the kernel execution is finalized: instead, execution continues from the next line in `Compute` that follows the call to `ValidateInputs`. This is equivalent to lacking the validation. We have patched the issue in GitHub commit 9728c60e136912a12d99ca56e106b7cce7af5986. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
In several functions of SnoozeHelper.java, there is a possible way to grant notifications access due to resource exhaustion. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-11 Android-12 Android-12L Android-13Android ID: A-258422365
TensorFlow is an end-to-end open source platform for machine learning. In affected versions due to incomplete validation in `tf.raw_ops.QuantizeV2`, an attacker can trigger undefined behavior via binding a reference to a null pointer or can access data outside the bounds of heap allocated arrays. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/quantize_op.cc#L59) has some validation but does not check that `min_range` and `max_range` both have the same non-zero number of elements. If `axis` is provided (i.e., not `-1`), then validation should check that it is a value in range for the rank of `input` tensor and then the lengths of `min_range` and `max_range` inputs match the `axis` dimension of the `input` tensor. We have patched the issue in GitHub commit 6da6620efad397c85493b8f8667b821403516708. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.UnicodeEncode`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/unicode_ops.cc#L533-L539) reads the first dimension of the `input_splits` tensor before validating that this tensor is not empty. We have patched the issue in GitHub commit 2e0ee46f1a47675152d3d865797a18358881d7a6. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all binary cwise operations that don't require broadcasting (e.g., gradients of binary cwise operations). The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/cwise_ops_common.h#L264) assumes that the two inputs have exactly the same number of elements but does not check that. Hence, when the eigen functor executes it triggers heap OOB reads and undefined behavior due to binding to nullptr. We have patched the issue in GitHub commit 93f428fd1768df147171ed674fee1fc5ab8309ec. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
A local attacker, as a different local user, may be able to send a HTTP request to 127.0.0.1:10000 after the user (typically a developer) manually invoked the ./tools/run-dev-server script. It is recommended to upgrade to any version beyond 24.2
In init_data of , there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.
In update_policy_data of , there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.
In wifi service, there is a possible missing permission check. This could lead to local escalation of privilege with no additional execution privileges needed
In UWB Google, there is a possible way for a malicious app to masquerade as system app com.android.uwb.resources due to improperly used crypto. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.FractionalAvgPoolGrad` can be tricked into accessing data outside of bounds of heap allocated buffers. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/fractional_avg_pool_op.cc#L205) does not validate that the input tensor is non-empty. Thus, code constructs an empty `EigenDoubleMatrixMap` and then accesses this buffer with indices that are outside of the empty area. We have patched the issue in GitHub commit 0f931751fb20f565c4e94aa6df58d54a003cdb30. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can craft a TFLite model that would trigger a null pointer dereference, which would result in a crash and denial of service. The [implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/internal/optimized/optimized_ops.h#L268-L285) unconditionally dereferences a pointer. We have patched the issue in GitHub commit 15691e456c7dc9bd6be203b09765b063bf4a380c. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of SVDF in TFLite is [vulnerable to a null pointer error](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/svdf.cc#L300-L313). The [`GetVariableInput` function](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/kernel_util.cc#L115-L119) can return a null pointer but `GetTensorData` assumes that the argument is always a valid tensor. Furthermore, because `GetVariableInput` calls [`GetMutableInput`](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/kernel_util.cc#L82-L90) which might return `nullptr`, the `tensor->is_variable` expression can also trigger a null pointer exception. We have patched the issue in GitHub commit 5b048e87e4e55990dae6b547add4dae59f4e1c76. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can generate undefined behavior via a reference binding to nullptr in `BoostedTreesCalculateBestGainsPerFeature` and similar attack can occur in `BoostedTreesCalculateBestFeatureSplitV2`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/stats_ops.cc) does not validate the input values. We have patched the issue in GitHub commit 9c87c32c710d0b5b53dc6fd3bfde4046e1f7a5ad and in commit 429f009d2b2c09028647dd4bb7b3f6f414bbaad7. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. Sending invalid argument for `row_partition_types` of `tf.raw_ops.RaggedTensorToTensor` API results in a null pointer dereference and undefined behavior. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L328) accesses the first element of a user supplied list of values without validating that the provided list is not empty. We have patched the issue in GitHub commit 301ae88b331d37a2a16159b65b255f4f9eb39314. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
In wifi service, there is a possible missing permission check. This could lead to local escalation of privilege with no additional execution privileges needed
In the Android kernel in the kernel MMU code there is a possible execution path leaving some kernel text and rodata pages writable. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.
In WelcomeActivity.java and related files, there is a possible permissions bypass due to a partially provisioned Device Policy Client. This could lead to local escalation of privilege, leaving an Admin app installed with no indication to the user, with User execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-8.0 Android-8.1 Android-9 Android-10Android ID: A-132261064
An issue was discovered on Samsung mobile devices with N(7.x), O(8.x), and P(9.0) software. There is local SQL injection in the RCS Content Provider. The Samsung IDs are SVE-2019-14059, SVE-2019-14685 (August 2019).
In SurfaceFlinger::createLayer of SurfaceFlinger.cpp, there is a possible arbitrary code execution due to improper casting. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-9Android ID: A-137284057
An issue was discovered on Samsung mobile devices with N(7.x), O(8.x), and P(9.0) software. There is local SQL injection in the Story Video Editor Content Provider. The Samsung ID is SVE-2019-14062 (July 2019).
An issue was discovered on Samsung mobile devices with N(7.x), O(8.x), and P(9.0) software. There is local SQL injection in the Wi-Fi history Content Provider. The Samsung ID is SVE-2019-14061 (August 2019).
In startActivityMayWait of ActivityStarter.java, there is a possible incorrect Activity launch due to an incorrect permission check. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-7.1.1 Android-7.1.2 Android-8.0 Android-8.1 Android-9Android ID: A-123013720
In migrateNotificationFilter of NotificationManagerService.java, there is a possible failure to persist notifications settings due to improper input validation. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.
NVIDIA Linux distributions contain a vulnerability in nvmap ioctl, which allows any user with a local account to exploit a use-after-free condition, leading to code privilege escalation, loss of confidentiality and integrity, or denial of service.
In the seccomp implementation prior to kernel version 4.8, there is a possible seccomp bypass due to seccomp policies that allow the use of ptrace. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation. Product: Android Versions: Android kernel Android ID: A-119769499