In the Linux kernel, the following vulnerability has been resolved: clk: mediatek: clk-mt6765: Add check for mtk_alloc_clk_data Add the check for the return value of mtk_alloc_clk_data() in order to avoid NULL pointer dereference.
An issue was discovered in the Linux kernel through 5.2.13. nbd_genl_status in drivers/block/nbd.c does not check the nla_nest_start_noflag return value.
drivers/net/fjes/fjes_main.c in the Linux kernel 5.2.14 does not check the alloc_workqueue return value, leading to a NULL pointer dereference.
drivers/scsi/qla2xxx/qla_os.c in the Linux kernel 5.2.14 does not check the alloc_workqueue return value, leading to a NULL pointer dereference.
drivers/net/wireless/marvell/libertas/if_sdio.c in the Linux kernel 5.2.14 does not check the alloc_workqueue return value, leading to a NULL pointer dereference.
drivers/gpu/drm/amd/amdkfd/kfd_interrupt.c in the Linux kernel 5.2.14 does not check the alloc_workqueue return value, leading to a NULL pointer dereference. NOTE: The security community disputes this issues as not being serious enough to be deserving a CVE id
An issue was discovered in dlpar_parse_cc_property in arch/powerpc/platforms/pseries/dlpar.c in the Linux kernel through 5.1.6. There is an unchecked kstrdup of prop->name, which might allow an attacker to cause a denial of service (NULL pointer dereference and system crash).
The __mptctl_ioctl function in drivers/message/fusion/mptctl.c in the Linux kernel before 5.4.14 allows local users to hold an incorrect lock during the ioctl operation and trigger a race condition, i.e., a "double fetch" vulnerability, aka CID-28d76df18f0a. NOTE: the vendor states "The security impact of this bug is not as bad as it could have been because these operations are all privileged and root already has enormous destructive power."
In the Linux kernel, the following vulnerability has been resolved: drm/vc4: kms: Add missing drm_crtc_commit_put Commit 9ec03d7f1ed3 ("drm/vc4: kms: Wait on previous FIFO users before a commit") introduced a global state for the HVS, with each FIFO storing the current CRTC commit so that we can properly synchronize commits. However, the refcounting was off and we thus ended up leaking the drm_crtc_commit structure every commit. Add a drm_crtc_commit_put to prevent the leakage.
The mac80211 subsystem in the Linux kernel before 5.12.13, when a device supporting only 5 GHz is used, allows attackers to cause a denial of service (NULL pointer dereference in the radiotap parser) by injecting a frame with 802.11a rates.
arch/powerpc/perf/core-book3s.c in the Linux kernel before 5.12.13, on systems with perf_event_paranoid=-1 and no specific PMU driver support registered, allows local users to cause a denial of service (perf_instruction_pointer NULL pointer dereference and OOPS) via a "perf record" command.
The irda_bind function in net/irda/af_irda.c in the Linux kernel before 2.6.36-rc3-next-20100901 does not properly handle failure of the irda_open_tsap function, which allows local users to cause a denial of service (NULL pointer dereference and panic) and possibly have unspecified other impact via multiple unsuccessful calls to bind on an AF_IRDA (aka PF_IRDA) socket.
In the Linux kernel, the following vulnerability has been resolved: tracing/timerlat: Move hrtimer_init to timerlat_fd open() Currently, the timerlat's hrtimer is initialized at the first read of timerlat_fd, and destroyed at close(). It works, but it causes an error if the user program open() and close() the file without reading. Here's an example: # echo NO_OSNOISE_WORKLOAD > /sys/kernel/debug/tracing/osnoise/options # echo timerlat > /sys/kernel/debug/tracing/current_tracer # cat <<EOF > ./timerlat_load.py # !/usr/bin/env python3 timerlat_fd = open("/sys/kernel/tracing/osnoise/per_cpu/cpu0/timerlat_fd", 'r') timerlat_fd.close(); EOF # ./taskset -c 0 ./timerlat_load.py <BOOM> BUG: kernel NULL pointer dereference, address: 0000000000000010 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 1 PID: 2673 Comm: python3 Not tainted 6.6.13-200.fc39.x86_64 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-1.fc39 04/01/2014 RIP: 0010:hrtimer_active+0xd/0x50 Code: 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 48 8b 57 30 <8b> 42 10 a8 01 74 09 f3 90 8b 42 10 a8 01 75 f7 80 7f 38 00 75 1d RSP: 0018:ffffb031009b7e10 EFLAGS: 00010286 RAX: 000000000002db00 RBX: ffff9118f786db08 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffff9117a0e64400 RDI: ffff9118f786db08 RBP: ffff9118f786db80 R08: ffff9117a0ddd420 R09: ffff9117804d4f70 R10: 0000000000000000 R11: 0000000000000000 R12: ffff9118f786db08 R13: ffff91178fdd5e20 R14: ffff9117840978c0 R15: 0000000000000000 FS: 00007f2ffbab1740(0000) GS:ffff9118f7840000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000010 CR3: 00000001b402e000 CR4: 0000000000750ee0 PKRU: 55555554 Call Trace: <TASK> ? __die+0x23/0x70 ? page_fault_oops+0x171/0x4e0 ? srso_alias_return_thunk+0x5/0x7f ? avc_has_extended_perms+0x237/0x520 ? exc_page_fault+0x7f/0x180 ? asm_exc_page_fault+0x26/0x30 ? hrtimer_active+0xd/0x50 hrtimer_cancel+0x15/0x40 timerlat_fd_release+0x48/0xe0 __fput+0xf5/0x290 __x64_sys_close+0x3d/0x80 do_syscall_64+0x60/0x90 ? srso_alias_return_thunk+0x5/0x7f ? __x64_sys_ioctl+0x72/0xd0 ? srso_alias_return_thunk+0x5/0x7f ? syscall_exit_to_user_mode+0x2b/0x40 ? srso_alias_return_thunk+0x5/0x7f ? do_syscall_64+0x6c/0x90 ? srso_alias_return_thunk+0x5/0x7f ? exit_to_user_mode_prepare+0x142/0x1f0 ? srso_alias_return_thunk+0x5/0x7f ? syscall_exit_to_user_mode+0x2b/0x40 ? srso_alias_return_thunk+0x5/0x7f ? do_syscall_64+0x6c/0x90 entry_SYSCALL_64_after_hwframe+0x6e/0xd8 RIP: 0033:0x7f2ffb321594 Code: 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 80 3d d5 cd 0d 00 00 74 13 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 3c c3 0f 1f 00 55 48 89 e5 48 83 ec 10 89 7d RSP: 002b:00007ffe8d8eef18 EFLAGS: 00000202 ORIG_RAX: 0000000000000003 RAX: ffffffffffffffda RBX: 00007f2ffba4e668 RCX: 00007f2ffb321594 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 RBP: 00007ffe8d8eef40 R08: 0000000000000000 R09: 0000000000000000 R10: 55c926e3167eae79 R11: 0000000000000202 R12: 0000000000000003 R13: 00007ffe8d8ef030 R14: 0000000000000000 R15: 00007f2ffba4e668 </TASK> CR2: 0000000000000010 ---[ end trace 0000000000000000 ]--- Move hrtimer_init to timerlat_fd open() to avoid this problem.
In the Linux kernel, the following vulnerability has been resolved: nfp: flower: handle acti_netdevs allocation failure The kmalloc_array() in nfp_fl_lag_do_work() will return null, if the physical memory has run out. As a result, if we dereference the acti_netdevs, the null pointer dereference bugs will happen. This patch adds a check to judge whether allocation failure occurs. If it happens, the delayed work will be rescheduled and try again.
The br_mdb_ip_get function in net/bridge/br_multicast.c in the Linux kernel before 2.6.35-rc5 allows remote attackers to cause a denial of service (NULL pointer dereference and system crash) via an IGMP packet, related to lack of a multicast table.
A NULL pointer dereference was found in io_file_bitmap_get in io_uring/filetable.c in the io_uring sub-component in the Linux Kernel. When fixed files are unregistered, some context information (file_alloc_{start,end} and alloc_hint) is not cleared. A subsequent request that has auto index selection enabled via IORING_FILE_INDEX_ALLOC can cause a NULL pointer dereference. An unprivileged user can use the flaw to cause a system crash.
Race condition in the tty_fasync function in drivers/char/tty_io.c in the Linux kernel before 2.6.32.6 allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact via unknown vectors, related to the put_tty_queue and __f_setown functions. NOTE: the vulnerability was addressed in a different way in 2.6.32.9.
In the Linux kernel, the following vulnerability has been resolved: serial: core: Clearing the circular buffer before NULLifying it The circular buffer is NULLified in uart_tty_port_shutdown() under the spin lock. However, the PM or other timer based callbacks may still trigger after this event without knowning that buffer pointer is not valid. Since the serial code is a bit inconsistent in checking the buffer state (some rely on the head-tail positions, some on the buffer pointer), it's better to have both aligned, i.e. buffer pointer to be NULL and head-tail possitions to be the same, meaning it's empty. This will prevent asynchronous calls to dereference NULL pointer as reported recently in 8250 case: BUG: kernel NULL pointer dereference, address: 00000cf5 Workqueue: pm pm_runtime_work EIP: serial8250_tx_chars (drivers/tty/serial/8250/8250_port.c:1809) ... ? serial8250_tx_chars (drivers/tty/serial/8250/8250_port.c:1809) __start_tx (drivers/tty/serial/8250/8250_port.c:1551) serial8250_start_tx (drivers/tty/serial/8250/8250_port.c:1654) serial_port_runtime_suspend (include/linux/serial_core.h:667 drivers/tty/serial/serial_port.c:63) __rpm_callback (drivers/base/power/runtime.c:393) ? serial_port_remove (drivers/tty/serial/serial_port.c:50) rpm_suspend (drivers/base/power/runtime.c:447) The proposed change will prevent ->start_tx() to be called during suspend on shut down port.
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: rfcomm: Fix null-ptr-deref in rfcomm_check_security During our fuzz testing of the connection and disconnection process at the RFCOMM layer, we discovered this bug. By comparing the packets from a normal connection and disconnection process with the testcase that triggered a KASAN report. We analyzed the cause of this bug as follows: 1. In the packets captured during a normal connection, the host sends a `Read Encryption Key Size` type of `HCI_CMD` packet (Command Opcode: 0x1408) to the controller to inquire the length of encryption key.After receiving this packet, the controller immediately replies with a Command Completepacket (Event Code: 0x0e) to return the Encryption Key Size. 2. In our fuzz test case, the timing of the controller's response to this packet was delayed to an unexpected point: after the RFCOMM and L2CAP layers had disconnected but before the HCI layer had disconnected. 3. After receiving the Encryption Key Size Response at the time described in point 2, the host still called the rfcomm_check_security function. However, by this time `struct l2cap_conn *conn = l2cap_pi(sk)->chan->conn;` had already been released, and when the function executed `return hci_conn_security(conn->hcon, d->sec_level, auth_type, d->out);`, specifically when accessing `conn->hcon`, a null-ptr-deref error occurred. To fix this bug, check if `sk->sk_state` is BT_CLOSED before calling rfcomm_recv_frame in rfcomm_process_rx.
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fix null-pointer dereference on edid reading Use i2c adapter when there isn't aux_mode in dc_link to fix a null-pointer derefence that happens when running igt@kms_force_connector_basic in a system with DCN2.1 and HDMI connector detected as below: [ +0.178146] BUG: kernel NULL pointer dereference, address: 00000000000004c0 [ +0.000010] #PF: supervisor read access in kernel mode [ +0.000005] #PF: error_code(0x0000) - not-present page [ +0.000004] PGD 0 P4D 0 [ +0.000006] Oops: 0000 [#1] PREEMPT SMP NOPTI [ +0.000006] CPU: 15 PID: 2368 Comm: kms_force_conne Not tainted 6.5.0-asdn+ #152 [ +0.000005] Hardware name: HP HP ENVY x360 Convertible 13-ay1xxx/8929, BIOS F.01 07/14/2021 [ +0.000004] RIP: 0010:i2c_transfer+0xd/0x100 [ +0.000011] Code: ea fc ff ff 66 0f 1f 84 00 00 00 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 41 54 55 53 <48> 8b 47 10 48 89 fb 48 83 38 00 0f 84 b3 00 00 00 83 3d 2f 80 16 [ +0.000004] RSP: 0018:ffff9c4f89c0fad0 EFLAGS: 00010246 [ +0.000005] RAX: 0000000000000000 RBX: 0000000000000005 RCX: 0000000000000080 [ +0.000003] RDX: 0000000000000002 RSI: ffff9c4f89c0fb20 RDI: 00000000000004b0 [ +0.000003] RBP: ffff9c4f89c0fb80 R08: 0000000000000080 R09: ffff8d8e0b15b980 [ +0.000003] R10: 00000000000380e0 R11: 0000000000000000 R12: 0000000000000080 [ +0.000002] R13: 0000000000000002 R14: ffff9c4f89c0fb0e R15: ffff9c4f89c0fb0f [ +0.000004] FS: 00007f9ad2176c40(0000) GS:ffff8d90fe9c0000(0000) knlGS:0000000000000000 [ +0.000003] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ +0.000004] CR2: 00000000000004c0 CR3: 0000000121bc4000 CR4: 0000000000750ee0 [ +0.000003] PKRU: 55555554 [ +0.000003] Call Trace: [ +0.000006] <TASK> [ +0.000006] ? __die+0x23/0x70 [ +0.000011] ? page_fault_oops+0x17d/0x4c0 [ +0.000008] ? preempt_count_add+0x6e/0xa0 [ +0.000008] ? srso_alias_return_thunk+0x5/0x7f [ +0.000011] ? exc_page_fault+0x7f/0x180 [ +0.000009] ? asm_exc_page_fault+0x26/0x30 [ +0.000013] ? i2c_transfer+0xd/0x100 [ +0.000010] drm_do_probe_ddc_edid+0xc2/0x140 [drm] [ +0.000067] ? srso_alias_return_thunk+0x5/0x7f [ +0.000006] ? _drm_do_get_edid+0x97/0x3c0 [drm] [ +0.000043] ? __pfx_drm_do_probe_ddc_edid+0x10/0x10 [drm] [ +0.000042] edid_block_read+0x3b/0xd0 [drm] [ +0.000043] _drm_do_get_edid+0xb6/0x3c0 [drm] [ +0.000041] ? __pfx_drm_do_probe_ddc_edid+0x10/0x10 [drm] [ +0.000043] drm_edid_read_custom+0x37/0xd0 [drm] [ +0.000044] amdgpu_dm_connector_mode_valid+0x129/0x1d0 [amdgpu] [ +0.000153] drm_connector_mode_valid+0x3b/0x60 [drm_kms_helper] [ +0.000000] __drm_helper_update_and_validate+0xfe/0x3c0 [drm_kms_helper] [ +0.000000] ? amdgpu_dm_connector_get_modes+0xb6/0x520 [amdgpu] [ +0.000000] ? srso_alias_return_thunk+0x5/0x7f [ +0.000000] drm_helper_probe_single_connector_modes+0x2ab/0x540 [drm_kms_helper] [ +0.000000] status_store+0xb2/0x1f0 [drm] [ +0.000000] kernfs_fop_write_iter+0x136/0x1d0 [ +0.000000] vfs_write+0x24d/0x440 [ +0.000000] ksys_write+0x6f/0xf0 [ +0.000000] do_syscall_64+0x60/0xc0 [ +0.000000] ? srso_alias_return_thunk+0x5/0x7f [ +0.000000] ? syscall_exit_to_user_mode+0x2b/0x40 [ +0.000000] ? srso_alias_return_thunk+0x5/0x7f [ +0.000000] ? do_syscall_64+0x6c/0xc0 [ +0.000000] ? do_syscall_64+0x6c/0xc0 [ +0.000000] entry_SYSCALL_64_after_hwframe+0x6e/0xd8 [ +0.000000] RIP: 0033:0x7f9ad46b4b00 [ +0.000000] Code: 40 00 48 8b 15 19 b3 0d 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 80 3d e1 3a 0e 00 00 74 17 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 58 c3 0f 1f 80 00 00 00 00 48 83 ec 28 48 89 [ +0.000000] RSP: 002b:00007ffcbd3bd6d8 EFLAGS: 00000202 ORIG_RAX: 0000000000000001 [ +0.000000] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f9ad46b4b00 [ +0.000000] RDX: 0000000000000002 RSI: 00007f9ad48a7417 RDI: 0000000000000009 [ +0.000000] RBP: 0000000000000002 R08 ---truncated---
In the Linux kernel, the following vulnerability has been resolved: cpufreq: brcmstb-avs-cpufreq: add check for cpufreq_cpu_get's return value cpufreq_cpu_get may return NULL. To avoid NULL-dereference check it and return 0 in case of error. Found by Linux Verification Center (linuxtesting.org) with SVACE.
A data race flaw was found in the Linux kernel, between where con is allocated and con->sock is set. This issue leads to a NULL pointer dereference when accessing con->sock->sk in net/tipc/topsrv.c in the tipc protocol in the Linux kernel.
In the Linux kernel, the following vulnerability has been resolved: powerpc/pseries/iommu: DLPAR add doesn't completely initialize pci_controller When a PCI device is dynamically added, the kernel oopses with a NULL pointer dereference: BUG: Kernel NULL pointer dereference on read at 0x00000030 Faulting instruction address: 0xc0000000006bbe5c Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA pSeries Modules linked in: rpadlpar_io rpaphp rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs xsk_diag bonding nft_compat nf_tables nfnetlink rfkill binfmt_misc dm_multipath rpcrdma sunrpc rdma_ucm ib_srpt ib_isert iscsi_target_mod target_core_mod ib_umad ib_iser libiscsi scsi_transport_iscsi ib_ipoib rdma_cm iw_cm ib_cm mlx5_ib ib_uverbs ib_core pseries_rng drm drm_panel_orientation_quirks xfs libcrc32c mlx5_core mlxfw sd_mod t10_pi sg tls ibmvscsi ibmveth scsi_transport_srp vmx_crypto pseries_wdt psample dm_mirror dm_region_hash dm_log dm_mod fuse CPU: 17 PID: 2685 Comm: drmgr Not tainted 6.7.0-203405+ #66 Hardware name: IBM,9080-HEX POWER10 (raw) 0x800200 0xf000006 of:IBM,FW1060.00 (NH1060_008) hv:phyp pSeries NIP: c0000000006bbe5c LR: c000000000a13e68 CTR: c0000000000579f8 REGS: c00000009924f240 TRAP: 0300 Not tainted (6.7.0-203405+) MSR: 8000000000009033 <SF,EE,ME,IR,DR,RI,LE> CR: 24002220 XER: 20040006 CFAR: c000000000a13e64 DAR: 0000000000000030 DSISR: 40000000 IRQMASK: 0 ... NIP sysfs_add_link_to_group+0x34/0x94 LR iommu_device_link+0x5c/0x118 Call Trace: iommu_init_device+0x26c/0x318 (unreliable) iommu_device_link+0x5c/0x118 iommu_init_device+0xa8/0x318 iommu_probe_device+0xc0/0x134 iommu_bus_notifier+0x44/0x104 notifier_call_chain+0xb8/0x19c blocking_notifier_call_chain+0x64/0x98 bus_notify+0x50/0x7c device_add+0x640/0x918 pci_device_add+0x23c/0x298 of_create_pci_dev+0x400/0x884 of_scan_pci_dev+0x124/0x1b0 __of_scan_bus+0x78/0x18c pcibios_scan_phb+0x2a4/0x3b0 init_phb_dynamic+0xb8/0x110 dlpar_add_slot+0x170/0x3b8 [rpadlpar_io] add_slot_store.part.0+0xb4/0x130 [rpadlpar_io] kobj_attr_store+0x2c/0x48 sysfs_kf_write+0x64/0x78 kernfs_fop_write_iter+0x1b0/0x290 vfs_write+0x350/0x4a0 ksys_write+0x84/0x140 system_call_exception+0x124/0x330 system_call_vectored_common+0x15c/0x2ec Commit a940904443e4 ("powerpc/iommu: Add iommu_ops to report capabilities and allow blocking domains") broke DLPAR add of PCI devices. The above added iommu_device structure to pci_controller. During system boot, PCI devices are discovered and this newly added iommu_device structure is initialized by a call to iommu_device_register(). During DLPAR add of a PCI device, a new pci_controller structure is allocated but there are no calls made to iommu_device_register() interface. Fix is to register the iommu device during DLPAR add as well.
The ipv6_hop_jumbo function in net/ipv6/exthdrs.c in the Linux kernel before 2.6.32.4, when network namespaces are enabled, allows remote attackers to cause a denial of service (NULL pointer dereference) via an invalid IPv6 jumbogram, a related issue to CVE-2007-4567.
The sctp_assoc_update function in net/sctp/associola.c in the Linux kernel through 3.15.8, when SCTP authentication is enabled, allows remote attackers to cause a denial of service (NULL pointer dereference and OOPS) by starting to establish an association between two endpoints immediately after an exchange of INIT and INIT ACK chunks to establish an earlier association between these endpoints in the opposite direction.
A NULL pointer dereference was found in the net/rds/rdma.c __rds_rdma_map() function in the Linux kernel before 4.14.7 allowing local attackers to cause a system panic and a denial-of-service, related to RDS_GET_MR and RDS_GET_MR_FOR_DEST.
In the Linux kernel, the following vulnerability has been resolved: net: phy: fix phy_get_internal_delay accessing an empty array The phy_get_internal_delay function could try to access to an empty array in the case that the driver is calling phy_get_internal_delay without defining delay_values and rx-internal-delay-ps or tx-internal-delay-ps is defined to 0 in the device-tree. This will lead to "unable to handle kernel NULL pointer dereference at virtual address 0". To avoid this kernel oops, the test should be delay >= 0. As there is already delay < 0 test just before, the test could only be size == 0.
The unimac_mdio_probe function in drivers/net/phy/mdio-bcm-unimac.c in the Linux kernel through 4.15.8 does not validate certain resource availability, which allows local users to cause a denial of service (NULL pointer dereference).
In the Linux kernel, the following vulnerability has been resolved: net: phy: qcom: at803x: fix kernel panic with at8031_probe On reworking and splitting the at803x driver, in splitting function of at803x PHYs it was added a NULL dereference bug where priv is referenced before it's actually allocated and then is tried to write to for the is_1000basex and is_fiber variables in the case of at8031, writing on the wrong address. Fix this by correctly setting priv local variable only after at803x_probe is called and actually allocates priv in the phydev struct.
The ATI Rage 128 (aka r128) driver in the Linux kernel before 2.6.31-git11 does not properly verify Concurrent Command Engine (CCE) state initialization, which allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly gain privileges via unspecified ioctl calls.
In the Linux kernel, the following vulnerability has been resolved: clk: Fix clk_core_get NULL dereference It is possible for clk_core_get to dereference a NULL in the following sequence: clk_core_get() of_clk_get_hw_from_clkspec() __of_clk_get_hw_from_provider() __clk_get_hw() __clk_get_hw() can return NULL which is dereferenced by clk_core_get() at hw->core. Prior to commit dde4eff47c82 ("clk: Look for parents with clkdev based clk_lookups") the check IS_ERR_OR_NULL() was performed which would have caught the NULL. Reading the description of this function it talks about returning NULL but that cannot be so at the moment. Update the function to check for hw before dereferencing it and return NULL if hw is NULL.
Multiple race conditions in fs/pipe.c in the Linux kernel before 2.6.32-rc6 allow local users to cause a denial of service (NULL pointer dereference and system crash) or gain privileges by attempting to open an anonymous pipe via a /proc/*/fd/ pathname.
The aun_incoming function in net/econet/af_econet.c in the Linux kernel before 2.6.37-rc6, when Econet is enabled, allows remote attackers to cause a denial of service (NULL pointer dereference and OOPS) by sending an Acorn Universal Networking (AUN) packet over UDP.
In the Linux kernel through 4.14.13, the rds_cmsg_atomic function in net/rds/rdma.c mishandles cases where page pinning fails or an invalid address is supplied, leading to an rds_atomic_free_op NULL pointer dereference.
In the Linux kernel, the following vulnerability has been resolved: perf: RISCV: Fix panic on pmu overflow handler (1 << idx) of int is not desired when setting bits in unsigned long overflowed_ctrs, use BIT() instead. This panic happens when running 'perf record -e branches' on sophgo sg2042. [ 273.311852] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000098 [ 273.320851] Oops [#1] [ 273.323179] Modules linked in: [ 273.326303] CPU: 0 PID: 1475 Comm: perf Not tainted 6.6.0-rc3+ #9 [ 273.332521] Hardware name: Sophgo Mango (DT) [ 273.336878] epc : riscv_pmu_ctr_get_width_mask+0x8/0x62 [ 273.342291] ra : pmu_sbi_ovf_handler+0x2e0/0x34e [ 273.347091] epc : ffffffff80aecd98 ra : ffffffff80aee056 sp : fffffff6e36928b0 [ 273.354454] gp : ffffffff821f82d0 tp : ffffffd90c353200 t0 : 0000002ade4f9978 [ 273.361815] t1 : 0000000000504d55 t2 : ffffffff8016cd8c s0 : fffffff6e3692a70 [ 273.369180] s1 : 0000000000000020 a0 : 0000000000000000 a1 : 00001a8e81800000 [ 273.376540] a2 : 0000003c00070198 a3 : 0000003c00db75a4 a4 : 0000000000000015 [ 273.383901] a5 : ffffffd7ff8804b0 a6 : 0000000000000015 a7 : 000000000000002a [ 273.391327] s2 : 000000000000ffff s3 : 0000000000000000 s4 : ffffffd7ff8803b0 [ 273.398773] s5 : 0000000000504d55 s6 : ffffffd905069800 s7 : ffffffff821fe210 [ 273.406139] s8 : 000000007fffffff s9 : ffffffd7ff8803b0 s10: ffffffd903f29098 [ 273.413660] s11: 0000000080000000 t3 : 0000000000000003 t4 : ffffffff8017a0ca [ 273.421022] t5 : ffffffff8023cfc2 t6 : ffffffd9040780e8 [ 273.426437] status: 0000000200000100 badaddr: 0000000000000098 cause: 000000000000000d [ 273.434512] [<ffffffff80aecd98>] riscv_pmu_ctr_get_width_mask+0x8/0x62 [ 273.441169] [<ffffffff80076bd8>] handle_percpu_devid_irq+0x98/0x1ee [ 273.447562] [<ffffffff80071158>] generic_handle_domain_irq+0x28/0x36 [ 273.454151] [<ffffffff8047a99a>] riscv_intc_irq+0x36/0x4e [ 273.459659] [<ffffffff80c944de>] handle_riscv_irq+0x4a/0x74 [ 273.465442] [<ffffffff80c94c48>] do_irq+0x62/0x92 [ 273.470360] Code: 0420 60a2 6402 5529 0141 8082 0013 0000 0013 0000 (6d5c) b783 [ 273.477921] ---[ end trace 0000000000000000 ]--- [ 273.482630] Kernel panic - not syncing: Fatal exception in interrupt
The install_special_mapping function in mm/mmap.c in the Linux kernel before 2.6.37-rc6 does not make an expected security_file_mmap function call, which allows local users to bypass intended mmap_min_addr restrictions and possibly conduct NULL pointer dereference attacks via a crafted assembly-language application.
In the Linux kernel, the following vulnerability has been resolved: serial: max310x: fix NULL pointer dereference in I2C instantiation When trying to instantiate a max14830 device from userspace: echo max14830 0x60 > /sys/bus/i2c/devices/i2c-2/new_device we get the following error: Unable to handle kernel NULL pointer dereference at virtual address... ... Call trace: max310x_i2c_probe+0x48/0x170 [max310x] i2c_device_probe+0x150/0x2a0 ... Add check for validity of devtype to prevent the error, and abort probe with a meaningful error message.
NVIDIA GPU Display Driver contains a vulnerability in kernel mode layer handler where a NULL pointer dereference may lead to denial of service or potential escalation of privileges.
kernel/trace/ftrace.c in the Linux kernel before 2.6.35.5, when debugfs is enabled, does not properly handle interaction between mutex possession and llseek operations, which allows local users to cause a denial of service (NULL pointer dereference and outage of all function tracing files) via an lseek call on a file descriptor associated with the set_ftrace_filter file.
The keyctl_session_to_parent function in security/keys/keyctl.c in the Linux kernel 2.6.35.4 and earlier expects that a certain parent session keyring exists, which allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact via a KEYCTL_SESSION_TO_PARENT argument to the keyctl function.
The pppol2tp_xmit function in drivers/net/pppol2tp.c in the L2TP implementation in the Linux kernel before 2.6.34 does not properly validate certain values associated with an interface, which allows attackers to cause a denial of service (NULL pointer dereference and OOPS) or possibly have unspecified other impact via vectors related to a routing change.
Integer signedness error in the pkt_find_dev_from_minor function in drivers/block/pktcdvd.c in the Linux kernel before 2.6.36-rc6 allows local users to obtain sensitive information from kernel memory or cause a denial of service (invalid pointer dereference and system crash) via a crafted index value in a PKT_CTRL_CMD_STATUS ioctl call.
In the Linux kernel, the following vulnerability has been resolved: clk: zynq: Prevent null pointer dereference caused by kmalloc failure The kmalloc() in zynq_clk_setup() will return null if the physical memory has run out. As a result, if we use snprintf() to write data to the null address, the null pointer dereference bug will happen. This patch uses a stack variable to replace the kmalloc().
In the Linux kernel, the following vulnerability has been resolved: wifi: brcm80211: handle pmk_op allocation failure The kzalloc() in brcmf_pmksa_v3_op() will return null if the physical memory has run out. As a result, if we dereference the null value, the null pointer dereference bug will happen. Return -ENOMEM from brcmf_pmksa_v3_op() if kzalloc() fails for pmk_op.
In the Linux kernel, the following vulnerability has been resolved: powercap: intel_rapl: Fix a NULL pointer dereference A NULL pointer dereference is triggered when probing the MMIO RAPL driver on platforms with CPU ID not listed in intel_rapl_common CPU model list. This is because the intel_rapl_common module still probes on such platforms even if 'defaults_msr' is not set after commit 1488ac990ac8 ("powercap: intel_rapl: Allow probing without CPUID match"). Thus the MMIO RAPL rp->priv->defaults is NULL when registering to RAPL framework. Fix the problem by adding sanity check to ensure rp->priv->rapl_defaults is always valid.
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: ncm: Avoid dropping datagrams of properly parsed NTBs It is observed sometimes when tethering is used over NCM with Windows 11 as host, at some instances, the gadget_giveback has one byte appended at the end of a proper NTB. When the NTB is parsed, unwrap call looks for any leftover bytes in SKB provided by u_ether and if there are any pending bytes, it treats them as a separate NTB and parses it. But in case the second NTB (as per unwrap call) is faulty/corrupt, all the datagrams that were parsed properly in the first NTB and saved in rx_list are dropped. Adding a few custom traces showed the following: [002] d..1 7828.532866: dwc3_gadget_giveback: ep1out: req 000000003868811a length 1025/16384 zsI ==> 0 [002] d..1 7828.532867: ncm_unwrap_ntb: K: ncm_unwrap_ntb toprocess: 1025 [002] d..1 7828.532867: ncm_unwrap_ntb: K: ncm_unwrap_ntb nth: 1751999342 [002] d..1 7828.532868: ncm_unwrap_ntb: K: ncm_unwrap_ntb seq: 0xce67 [002] d..1 7828.532868: ncm_unwrap_ntb: K: ncm_unwrap_ntb blk_len: 0x400 [002] d..1 7828.532868: ncm_unwrap_ntb: K: ncm_unwrap_ntb ndp_len: 0x10 [002] d..1 7828.532869: ncm_unwrap_ntb: K: Parsed NTB with 1 frames In this case, the giveback is of 1025 bytes and block length is 1024. The rest 1 byte (which is 0x00) won't be parsed resulting in drop of all datagrams in rx_list. Same is case with packets of size 2048: [002] d..1 7828.557948: dwc3_gadget_giveback: ep1out: req 0000000011dfd96e length 2049/16384 zsI ==> 0 [002] d..1 7828.557949: ncm_unwrap_ntb: K: ncm_unwrap_ntb nth: 1751999342 [002] d..1 7828.557950: ncm_unwrap_ntb: K: ncm_unwrap_ntb blk_len: 0x800 Lecroy shows one byte coming in extra confirming that the byte is coming in from PC: Transfer 2959 - Bytes Transferred(1025) Timestamp((18.524 843 590) - Transaction 8391 - Data(1025 bytes) Timestamp(18.524 843 590) --- Packet 4063861 Data(1024 bytes) Duration(2.117us) Idle(14.700ns) Timestamp(18.524 843 590) --- Packet 4063863 Data(1 byte) Duration(66.160ns) Time(282.000ns) Timestamp(18.524 845 722) According to Windows driver, no ZLP is needed if wBlockLength is non-zero, because the non-zero wBlockLength has already told the function side the size of transfer to be expected. However, there are in-market NCM devices that rely on ZLP as long as the wBlockLength is multiple of wMaxPacketSize. To deal with such devices, it pads an extra 0 at end so the transfer is no longer multiple of wMaxPacketSize.
In nf_tables_updtable, if nf_tables_table_enable returns an error, nft_trans_destroy is called to free the transaction object. nft_trans_destroy() calls list_del(), but the transaction was never placed on a list -- the list head is all zeroes, this results in a NULL pointer dereference.
NVIDIA CUDA Toolkit SDK contains a bug in cuobjdump, where a local user running the tool against an ill-formed binary may cause a null- pointer dereference, which may result in a limited denial of service.
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu/pm: Fix NULL pointer dereference when get power limit Because powerplay_table initialization is skipped under sriov case, We check and set default lower and upper OD value if powerplay_table is NULL.
In the Linux kernel, the following vulnerability has been resolved: backlight: hx8357: Fix potential NULL pointer dereference The "im" pins are optional. Add missing check in the hx8357_probe().