Tenda routers G1 and G3 v15.11.0.17(9502)_CN were discovered to contain a stack overflow in the function formSetQvlanList. This vulnerability allows attackers to cause a Denial of Service (DoS) via the qvlanName parameter.
Tenda routers G1 and G3 v15.11.0.17(9502)_CN were discovered to contain a stack overflow in the function formSetPortMapping. This vulnerability allows attackers to cause a Denial of Service (DoS) via the portMappingServer, portMappingProtocol, portMappingWan, porMappingtInternal, and portMappingExternal parameters.
Improper validation of DRAM addresses in SMU may allow an attacker to overwrite sensitive memory locations within the ASP potentially resulting in a denial of service.
Tenda routers G1 and G3 v15.11.0.17(9502)_CN were discovered to contain a stack overflow in the function formSetStaticRoute. This vulnerability allows attackers to cause a Denial of Service (DoS) via the staticRouteNet, staticRouteMask, and staticRouteGateway parameters.
Tenda routers G1 and G3 v15.11.0.17(9502)_CN were discovered to contain a stack overflow in the function formIPMacBindModify. This vulnerability allows attackers to cause a Denial of Service (DoS) via the IPMacBindRuleIP and IPMacBindRuleMac parameters.
Tenda routers G1 and G3 v15.11.0.17(9502)_CN were discovered to contain a stack overflow in the function formAddDnsForward. This vulnerability allows attackers to cause a Denial of Service (DoS) via the DnsForwardRule parameter.
Tenda routers G1 and G3 v15.11.0.17(9502)_CN were discovered to contain a stack overflow in the function guestWifiRuleRefresh. This vulnerability allows attackers to cause a Denial of Service (DoS) via the qosGuestUpstream and qosGuestDownstream parameters.
In Lua 5.4.3, an erroneous finalizer called during a tail call leads to a heap-based buffer over-read.
An issue was discovered in the vec-const crate before 2.0.0 for Rust. It tries to construct a Vec from a pointer to a const slice, leading to memory corruption.
A Buffer Overflow vulnerability exists in Tenda Router AX12 V22.03.01.21_CN in the sub_422CE4 function in page /goform/setIPv6Status via the prefixDelegate parameter, which causes a Denial of Service.
A stack buffer overflow vulnerability exists in the buffer_get function of duc, a disk management tool, where a condition can evaluate to true due to underflow, allowing an out-of-bounds read.
An issue was discovered in p11-kit 0.23.6 through 0.23.21. A heap-based buffer overflow has been discovered in the RPC protocol used by p11-kit server/remote commands and the client library. When the remote entity supplies a serialized byte array in a CK_ATTRIBUTE, the receiving entity may not allocate sufficient length for the buffer to store the deserialized value.
Stack-based buffer overflow in libtasn1 version: v4.20.0. The function fails to validate the size of input data resulting in a buffer overflow in asn1_expend_octet_string.
A Buffer Overflow vulnerability exists in Tenda Router AX12 V22.03.01.21_CN in the sub_422CE4 function in the goform/setIPv6Status binary file /usr/sbin/httpd via the conType parameter, which causes a Denial of Service.
Tenda AC8V4 V16.03.34.06 was discovered to contain a stack overflow via the list parameter in the save_virtualser_data function.
An issue was discovered in the derive-com-impl crate before 0.1.2 for Rust. An invalid reference (and memory corruption) can occur because AddRef might not be called before returning a pointer.
A heap-based buffer overflows was discovered in upx, during the generic pointer 'p' points to an inaccessible address in func get_le32(). The problem is essentially caused in PackLinuxElf32::elf_lookup() at p_lx_elf.cpp:5349
Sante PACS Server DCM File Parsing Memory Corruption Denial-of-Service Vulnerability. This vulnerability allows remote attackers to create a denial-of-service condition on affected installations of Sante PACS Server. Authentication is not required to exploit this vulnerability. The specific flaw exists within the parsing of DCM files. The issue results from the lack of proper validation of user-supplied data, which can result in a memory corruption condition. An attacker can leverage this vulnerability to create a denial-of-service condition on the system. Was ZDI-CAN-25303.
A Buffer Overflow vulnerability exists in zlog 1.2.15 via zlog_conf_build_with_file in src/zlog/src/conf.c.
procps-ng before version 3.3.15 is vulnerable to a stack buffer overflow in pgrep. This vulnerability is mitigated by FORTIFY, as it involves strncat() to a stack-allocated string. When pgrep is compiled with FORTIFY (as on Red Hat Enterprise Linux and Fedora), the impact is limited to a crash.
Incorrect JSON input stringification in Google's Tensorflow serving versions up to 2.18.0 allows for potentially unbounded recursion leading to server crash.
In lldpd before 1.0.13, when decoding SONMP packets in the sonmp_decode function, it's possible to trigger an out-of-bounds heap read via short SONMP packets.
A vulnerability in the Smart Install feature of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to trigger a reload of an affected device, resulting in a denial of service (DoS) condition, or to execute arbitrary code on an affected device. The vulnerability is due to improper validation of packet data. An attacker could exploit this vulnerability by sending a crafted Smart Install message to an affected device on TCP port 4786. A successful exploit could allow the attacker to cause a buffer overflow on the affected device, which could have the following impacts: Triggering a reload of the device, Allowing the attacker to execute arbitrary code on the device, Causing an indefinite loop on the affected device that triggers a watchdog crash. Cisco Bug IDs: CSCvg76186.
A heap-based buffer overflow was discovered in upx, during the generic pointer 'p' points to an inaccessible address in func get_le64().
Sante PACS Server DCM File Parsing Memory Corruption Denial-of-Service Vulnerability. This vulnerability allows remote attackers to create a denial-of-service condition on affected installations of Sante PACS Server. Authentication is not required to exploit this vulnerability. The specific flaw exists within the parsing of DCM files. The issue results from the lack of proper validation of user-supplied data, which can result in a memory corruption condition. An attacker can leverage this vulnerability to create a denial-of-service condition on the system. Was ZDI-CAN-25302.
Sante PACS Server URL path Memory Corruption Denial-of-Service Vulnerability. This vulnerability allows remote attackers to create a denial-of-service condition on affected installations of Sante PACS Server. Authentication is not required to exploit this vulnerability. The specific flaw exists within the parsing of URLs in the web server module. The issue results from the lack of proper validation of user-supplied data, which can result in a memory corruption condition. An attacker can leverage this vulnerability to create a denial-of-service condition on the system. Was ZDI-CAN-25318.
A heap-based buffer overflow was discovered in upx, during the variable 'bucket' points to an inaccessible address. The issue is being triggered in the function PackLinuxElf32::invert_pt_dynamic at p_lx_elf.cpp:1688.
A buffer overflow in lib/sbi/message.c in Open5GS 2.3.6 and earlier allows remote attackers to Denial of Service via a crafted sbi request.
A memory corruption vulnerability in Palo Alto Networks PAN-OS software allows an unauthenticated attacker to crash PAN-OS due to a crafted packet through the data plane, resulting in a denial of service (DoS) condition. Repeated attempts to trigger this condition will result in PAN-OS entering maintenance mode.
A vulnerability in the DHCP option 82 encapsulation functionality of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause an affected device to reload, resulting in a denial of service (DoS) condition. The vulnerability exists because the affected software performs incomplete input validation of option 82 information that it receives in DHCP Version 4 (DHCPv4) packets from DHCP relay agents. An attacker could exploit this vulnerability by sending a crafted DHCPv4 packet to an affected device. A successful exploit could allow the attacker to cause a heap overflow condition on the affected device, which will cause the device to reload and result in a DoS condition. Cisco Bug IDs: CSCvg62730.
A vulnerability was found in MicroPython 1.23.0. It has been classified as critical. Affected is the function mp_vfs_umount of the file extmod/vfs.c of the component VFS Unmount Handler. The manipulation leads to heap-based buffer overflow. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. The name of the patch is 29943546343c92334e8518695a11fc0e2ceea68b. It is recommended to apply a patch to fix this issue. In the VFS unmount process, the comparison between the mounted path string and the unmount requested string is based solely on the length of the unmount string, which can lead to a heap buffer overflow read.
The Yubico YubiHSM YubiHSM2 library 2021.08, included in the yubihsm-shell project, does not properly validate the length of some operations including SSH signing requests, and some data operations received from a YubiHSM 2 device.
No proper validation of the length of user input in olcp_ind_handler in zephyr/subsys/bluetooth/services/ots/ots_client.c.
A heap-based buffer overflow was discovered in upx, during the variable 'bucket' points to an inaccessible address. The issue is being triggered in the function PackLinuxElf64::invert_pt_dynamic at p_lx_elf.cpp:5239.
CODESYS V2 runtime system SP before 2.4.7.55 has a Heap-based Buffer Overflow.
A vulnerability was found in MicroPython 1.23.0. It has been rated as critical. Affected by this issue is the function mpz_as_bytes of the file py/objint.c. The manipulation leads to heap-based buffer overflow. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. The patch is identified as 908ab1ceca15ee6fd0ef82ca4cba770a3ec41894. It is recommended to apply a patch to fix this issue. In micropython objint component, converting zero from int to bytes leads to heap buffer-overflow-write at mpz_as_bytes.
Out-of-bounds Write vulnerability in gerstrong Commander-Genius.This issue affects Commander-Genius: before Release refs/pull/358/merge.
Multiple switches are affected by an out-of-bounds write vulnerability. This vulnerability is caused by insufficient input validation, which allows data to be written to memory outside the bounds of the buffer. Successful exploitation of this vulnerability could result in a denial-of-service attack.
NLnet Labs Routinator versions 0.9.0 up to and including 0.10.1, support the gzip transfer encoding when querying RRDP repositories. This encoding can be used by an RRDP repository to cause an out-of-memory crash in these versions of Routinator. RRDP uses XML which allows arbitrary amounts of white space in the encoded data. The gzip scheme compresses such white space extremely well, leading to very small compressed files that become huge when being decompressed for further processing, big enough that Routinator runs out of memory when parsing input data waiting for the next XML element.
Any project that parses untrusted Protocol Buffers data containing an arbitrary number of nested groups / series of SGROUP tags can corrupted by exceeding the stack limit i.e. StackOverflow. Parsing nested groups as unknown fields with DiscardUnknownFieldsParser or Java Protobuf Lite parser, or against Protobuf map fields, creates unbounded recursions that can be abused by an attacker.
A heap-based buffer overflow was discovered in upx, during the generic pointer 'p' points to an inaccessible address in func get_le32(). The problem is essentially caused in PackLinuxElf32::elf_lookup() at p_lx_elf.cpp:5382.
A buffer overflow vulnerability exists in the AMF of open5gs 2.1.4. When the length of MSIN in Supi exceeds 24 characters, it leads to AMF denial of service.
An issue was discovered jmarsden/jsonij thru 0.5.2 allows attackers to cause a denial of service or other unspecified impacts via crafted object that uses cyclic dependencies.
An issue was discovered in Barrier before 2.3.4. An attacker can cause memory exhaustion in the barriers component (aka the server-side implementation of Barrier) and barrierc by sending long TCP messages.
There is a stack buffer overflow in MP4Box v1.0.1 at src/filters/dmx_nhml.c:1008 in the nhmldmx_send_sample() function szXmlFrom parameter which leads to a denial of service vulnerability.
radare2 5.8.9 has an out-of-bounds read in r_bin_object_set_items in libr/bin/bobj.c, causing a crash in r_read_le32 in libr/include/r_endian.h.
The serde-json-wasm crate before 1.0.1 for Rust allows stack consumption via deeply nested JSON data.
Suricata is a network IDS, IPS and NSM engine. Starting in version 8.0.0 and prior to version 8.0.3, Suricata can crash with a stack overflow. Version 8.0.3 patches the issue. As a workaround, use default values for `request-body-limit` and `response-body-limit`.
Buffer overflow vulnerability in the SVG parsing module of the ArkUI framework Impact: Successful exploitation of this vulnerability may affect availability.
In systemd through 233, certain sizes passed to dns_packet_new in systemd-resolved can cause it to allocate a buffer that's too small. A malicious DNS server can exploit this via a response with a specially crafted TCP payload to trick systemd-resolved into allocating a buffer that's too small, and subsequently write arbitrary data beyond the end of it.