In the Linux kernel, the following vulnerability has been resolved: tty: serial: fsl_lpuart: fix race on RX DMA shutdown From time to time DMA completion can come in the middle of DMA shutdown: <process ctx>: <IRQ>: lpuart32_shutdown() lpuart_dma_shutdown() del_timer_sync() lpuart_dma_rx_complete() lpuart_copy_rx_to_tty() mod_timer() lpuart_dma_rx_free() When the timer fires a bit later, sport->dma_rx_desc is NULL: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000004 pc : lpuart_copy_rx_to_tty+0xcc/0x5bc lr : lpuart_timer_func+0x1c/0x2c Call trace: lpuart_copy_rx_to_tty lpuart_timer_func call_timer_fn __run_timers.part.0 run_timer_softirq __do_softirq __irq_exit_rcu irq_exit handle_domain_irq gic_handle_irq call_on_irq_stack do_interrupt_handler ... To fix this fold del_timer_sync() into lpuart_dma_rx_free() after dmaengine_terminate_sync() to make sure timer will not be re-started in lpuart_copy_rx_to_tty() <= lpuart_dma_rx_complete().
In the Linux kernel, the following vulnerability has been resolved: md/raid10: prevent soft lockup while flush writes Currently, there is no limit for raid1/raid10 plugged bio. While flushing writes, raid1 has cond_resched() while raid10 doesn't, and too many writes can cause soft lockup. Follow up soft lockup can be triggered easily with writeback test for raid10 with ramdisks: watchdog: BUG: soft lockup - CPU#10 stuck for 27s! [md0_raid10:1293] Call Trace: <TASK> call_rcu+0x16/0x20 put_object+0x41/0x80 __delete_object+0x50/0x90 delete_object_full+0x2b/0x40 kmemleak_free+0x46/0xa0 slab_free_freelist_hook.constprop.0+0xed/0x1a0 kmem_cache_free+0xfd/0x300 mempool_free_slab+0x1f/0x30 mempool_free+0x3a/0x100 bio_free+0x59/0x80 bio_put+0xcf/0x2c0 free_r10bio+0xbf/0xf0 raid_end_bio_io+0x78/0xb0 one_write_done+0x8a/0xa0 raid10_end_write_request+0x1b4/0x430 bio_endio+0x175/0x320 brd_submit_bio+0x3b9/0x9b7 [brd] __submit_bio+0x69/0xe0 submit_bio_noacct_nocheck+0x1e6/0x5a0 submit_bio_noacct+0x38c/0x7e0 flush_pending_writes+0xf0/0x240 raid10d+0xac/0x1ed0 Fix the problem by adding cond_resched() to raid10 like what raid1 did. Note that unlimited plugged bio still need to be optimized, for example, in the case of lots of dirty pages writeback, this will take lots of memory and io will spend a long time in plug, hence io latency is bad.
In the Linux kernel, the following vulnerability has been resolved: powerpc/imc-pmu: Fix use of mutex in IRQs disabled section Current imc-pmu code triggers a WARNING with CONFIG_DEBUG_ATOMIC_SLEEP and CONFIG_PROVE_LOCKING enabled, while running a thread_imc event. Command to trigger the warning: # perf stat -e thread_imc/CPM_CS_FROM_L4_MEM_X_DPTEG/ sleep 5 Performance counter stats for 'sleep 5': 0 thread_imc/CPM_CS_FROM_L4_MEM_X_DPTEG/ 5.002117947 seconds time elapsed 0.000131000 seconds user 0.001063000 seconds sys Below is snippet of the warning in dmesg: BUG: sleeping function called from invalid context at kernel/locking/mutex.c:580 in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 2869, name: perf-exec preempt_count: 2, expected: 0 4 locks held by perf-exec/2869: #0: c00000004325c540 (&sig->cred_guard_mutex){+.+.}-{3:3}, at: bprm_execve+0x64/0xa90 #1: c00000004325c5d8 (&sig->exec_update_lock){++++}-{3:3}, at: begin_new_exec+0x460/0xef0 #2: c0000003fa99d4e0 (&cpuctx_lock){-...}-{2:2}, at: perf_event_exec+0x290/0x510 #3: c000000017ab8418 (&ctx->lock){....}-{2:2}, at: perf_event_exec+0x29c/0x510 irq event stamp: 4806 hardirqs last enabled at (4805): [<c000000000f65b94>] _raw_spin_unlock_irqrestore+0x94/0xd0 hardirqs last disabled at (4806): [<c0000000003fae44>] perf_event_exec+0x394/0x510 softirqs last enabled at (0): [<c00000000013c404>] copy_process+0xc34/0x1ff0 softirqs last disabled at (0): [<0000000000000000>] 0x0 CPU: 36 PID: 2869 Comm: perf-exec Not tainted 6.2.0-rc2-00011-g1247637727f2 #61 Hardware name: 8375-42A POWER9 0x4e1202 opal:v7.0-16-g9b85f7d961 PowerNV Call Trace: dump_stack_lvl+0x98/0xe0 (unreliable) __might_resched+0x2f8/0x310 __mutex_lock+0x6c/0x13f0 thread_imc_event_add+0xf4/0x1b0 event_sched_in+0xe0/0x210 merge_sched_in+0x1f0/0x600 visit_groups_merge.isra.92.constprop.166+0x2bc/0x6c0 ctx_flexible_sched_in+0xcc/0x140 ctx_sched_in+0x20c/0x2a0 ctx_resched+0x104/0x1c0 perf_event_exec+0x340/0x510 begin_new_exec+0x730/0xef0 load_elf_binary+0x3f8/0x1e10 ... do not call blocking ops when !TASK_RUNNING; state=2001 set at [<00000000fd63e7cf>] do_nanosleep+0x60/0x1a0 WARNING: CPU: 36 PID: 2869 at kernel/sched/core.c:9912 __might_sleep+0x9c/0xb0 CPU: 36 PID: 2869 Comm: sleep Tainted: G W 6.2.0-rc2-00011-g1247637727f2 #61 Hardware name: 8375-42A POWER9 0x4e1202 opal:v7.0-16-g9b85f7d961 PowerNV NIP: c000000000194a1c LR: c000000000194a18 CTR: c000000000a78670 REGS: c00000004d2134e0 TRAP: 0700 Tainted: G W (6.2.0-rc2-00011-g1247637727f2) MSR: 9000000000021033 <SF,HV,ME,IR,DR,RI,LE> CR: 48002824 XER: 00000000 CFAR: c00000000013fb64 IRQMASK: 1 The above warning triggered because the current imc-pmu code uses mutex lock in interrupt disabled sections. The function mutex_lock() internally calls __might_resched(), which will check if IRQs are disabled and in case IRQs are disabled, it will trigger the warning. Fix the issue by changing the mutex lock to spinlock. [mpe: Fix comments, trim oops in change log, add reported-by tags]
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix deletion race condition System crash when using debug kernel due to link list corruption. The cause of the link list corruption is due to session deletion was allowed to queue up twice. Here's the internal trace that show the same port was allowed to double queue for deletion on different cpu. 20808683956 015 qla2xxx [0000:13:00.1]-e801:4: Scheduling sess ffff93ebf9306800 for deletion 50:06:0e:80:12:48:ff:50 fc4_type 1 20808683957 027 qla2xxx [0000:13:00.1]-e801:4: Scheduling sess ffff93ebf9306800 for deletion 50:06:0e:80:12:48:ff:50 fc4_type 1 Move the clearing/setting of deleted flag lock.
In the Linux kernel, the following vulnerability has been resolved: ext4: avoid deadlock in fs reclaim with page writeback Ext4 has a filesystem wide lock protecting ext4_writepages() calls to avoid races with switching of journalled data flag or inode format. This lock can however cause a deadlock like: CPU0 CPU1 ext4_writepages() percpu_down_read(sbi->s_writepages_rwsem); ext4_change_inode_journal_flag() percpu_down_write(sbi->s_writepages_rwsem); - blocks, all readers block from now on ext4_do_writepages() ext4_init_io_end() kmem_cache_zalloc(io_end_cachep, GFP_KERNEL) fs_reclaim frees dentry... dentry_unlink_inode() iput() - last ref => iput_final() - inode dirty => write_inode_now()... ext4_writepages() tries to acquire sbi->s_writepages_rwsem and blocks forever Make sure we cannot recurse into filesystem reclaim from writeback code to avoid the deadlock.
In the Linux kernel, the following vulnerability has been resolved: mm/swapfile: add cond_resched() in get_swap_pages() The softlockup still occurs in get_swap_pages() under memory pressure. 64 CPU cores, 64GB memory, and 28 zram devices, the disksize of each zram device is 50MB with same priority as si. Use the stress-ng tool to increase memory pressure, causing the system to oom frequently. The plist_for_each_entry_safe() loops in get_swap_pages() could reach tens of thousands of times to find available space (extreme case: cond_resched() is not called in scan_swap_map_slots()). Let's add cond_resched() into get_swap_pages() when failed to find available space to avoid softlockup.
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Check for NOT_READY flag state after locking Currently the check for NOT_READY flag is performed before obtaining the necessary lock. This opens a possibility for race condition when the flow is concurrently removed from unready_flows list by the workqueue task, which causes a double-removal from the list and a crash[0]. Fix the issue by moving the flag check inside the section protected by uplink_priv->unready_flows_lock mutex. [0]: [44376.389654] general protection fault, probably for non-canonical address 0xdead000000000108: 0000 [#1] SMP [44376.391665] CPU: 7 PID: 59123 Comm: tc Not tainted 6.4.0-rc4+ #1 [44376.392984] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [44376.395342] RIP: 0010:mlx5e_tc_del_fdb_flow+0xb3/0x340 [mlx5_core] [44376.396857] Code: 00 48 8b b8 68 ce 02 00 e8 8a 4d 02 00 4c 8d a8 a8 01 00 00 4c 89 ef e8 8b 79 88 e1 48 8b 83 98 06 00 00 48 8b 93 90 06 00 00 <48> 89 42 08 48 89 10 48 b8 00 01 00 00 00 00 ad de 48 89 83 90 06 [44376.399167] RSP: 0018:ffff88812cc97570 EFLAGS: 00010246 [44376.399680] RAX: dead000000000122 RBX: ffff8881088e3800 RCX: ffff8881881bac00 [44376.400337] RDX: dead000000000100 RSI: ffff88812cc97500 RDI: ffff8881242f71b0 [44376.401001] RBP: ffff88811cbb0940 R08: 0000000000000400 R09: 0000000000000001 [44376.401663] R10: 0000000000000001 R11: 0000000000000000 R12: ffff88812c944000 [44376.402342] R13: ffff8881242f71a8 R14: ffff8881222b4000 R15: 0000000000000000 [44376.402999] FS: 00007f0451104800(0000) GS:ffff88852cb80000(0000) knlGS:0000000000000000 [44376.403787] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [44376.404343] CR2: 0000000000489108 CR3: 0000000123a79003 CR4: 0000000000370ea0 [44376.405004] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [44376.405665] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [44376.406339] Call Trace: [44376.406651] <TASK> [44376.406939] ? die_addr+0x33/0x90 [44376.407311] ? exc_general_protection+0x192/0x390 [44376.407795] ? asm_exc_general_protection+0x22/0x30 [44376.408292] ? mlx5e_tc_del_fdb_flow+0xb3/0x340 [mlx5_core] [44376.408876] __mlx5e_tc_del_fdb_peer_flow+0xbc/0xe0 [mlx5_core] [44376.409482] mlx5e_tc_del_flow+0x42/0x210 [mlx5_core] [44376.410055] mlx5e_flow_put+0x25/0x50 [mlx5_core] [44376.410529] mlx5e_delete_flower+0x24b/0x350 [mlx5_core] [44376.411043] tc_setup_cb_reoffload+0x22/0x80 [44376.411462] fl_reoffload+0x261/0x2f0 [cls_flower] [44376.411907] ? mlx5e_rep_indr_setup_ft_cb+0x160/0x160 [mlx5_core] [44376.412481] ? mlx5e_rep_indr_setup_ft_cb+0x160/0x160 [mlx5_core] [44376.413044] tcf_block_playback_offloads+0x76/0x170 [44376.413497] tcf_block_unbind+0x7b/0xd0 [44376.413881] tcf_block_setup+0x17d/0x1c0 [44376.414269] tcf_block_offload_cmd.isra.0+0xf1/0x130 [44376.414725] tcf_block_offload_unbind+0x43/0x70 [44376.415153] __tcf_block_put+0x82/0x150 [44376.415532] ingress_destroy+0x22/0x30 [sch_ingress] [44376.415986] qdisc_destroy+0x3b/0xd0 [44376.416343] qdisc_graft+0x4d0/0x620 [44376.416706] tc_get_qdisc+0x1c9/0x3b0 [44376.417074] rtnetlink_rcv_msg+0x29c/0x390 [44376.419978] ? rep_movs_alternative+0x3a/0xa0 [44376.420399] ? rtnl_calcit.isra.0+0x120/0x120 [44376.420813] netlink_rcv_skb+0x54/0x100 [44376.421192] netlink_unicast+0x1f6/0x2c0 [44376.421573] netlink_sendmsg+0x232/0x4a0 [44376.421980] sock_sendmsg+0x38/0x60 [44376.422328] ____sys_sendmsg+0x1d0/0x1e0 [44376.422709] ? copy_msghdr_from_user+0x6d/0xa0 [44376.423127] ___sys_sendmsg+0x80/0xc0 [44376.423495] ? ___sys_recvmsg+0x8b/0xc0 [44376.423869] __sys_sendmsg+0x51/0x90 [44376.424226] do_syscall_64+0x3d/0x90 [44376.424587] entry_SYSCALL_64_after_hwframe+0x46/0xb0 [44376.425046] RIP: 0033:0x7f045134f887 [44376.425403] Code: 0a 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b9 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 2e 00 ---truncated---
A race problem was seen in the vt_k_ioctl in drivers/tty/vt/vt_ioctl.c in the Linux kernel, which may cause an out of bounds read in vt as the write access to vc_mode is not protected by lock-in vt_ioctl (KDSETMDE). The highest threat from this vulnerability is to data confidentiality.
In the Linux kernel, the following vulnerability has been resolved: skbuff: Fix a race between coalescing and releasing SKBs Commit 1effe8ca4e34 ("skbuff: fix coalescing for page_pool fragment recycling") allowed coalescing to proceed with non page pool page and page pool page when @from is cloned, i.e. to->pp_recycle --> false from->pp_recycle --> true skb_cloned(from) --> true However, it actually requires skb_cloned(@from) to hold true until coalescing finishes in this situation. If the other cloned SKB is released while the merging is in process, from_shinfo->nr_frags will be set to 0 toward the end of the function, causing the increment of frag page _refcount to be unexpectedly skipped resulting in inconsistent reference counts. Later when SKB(@to) is released, it frees the page directly even though the page pool page is still in use, leading to use-after-free or double-free errors. So it should be prohibited. The double-free error message below prompted us to investigate: BUG: Bad page state in process swapper/1 pfn:0e0d1 page:00000000c6548b28 refcount:-1 mapcount:0 mapping:0000000000000000 index:0x2 pfn:0xe0d1 flags: 0xfffffc0000000(node=0|zone=1|lastcpupid=0x1fffff) raw: 000fffffc0000000 0000000000000000 ffffffff00000101 0000000000000000 raw: 0000000000000002 0000000000000000 ffffffffffffffff 0000000000000000 page dumped because: nonzero _refcount CPU: 1 PID: 0 Comm: swapper/1 Tainted: G E 6.2.0+ Call Trace: <IRQ> dump_stack_lvl+0x32/0x50 bad_page+0x69/0xf0 free_pcp_prepare+0x260/0x2f0 free_unref_page+0x20/0x1c0 skb_release_data+0x10b/0x1a0 napi_consume_skb+0x56/0x150 net_rx_action+0xf0/0x350 ? __napi_schedule+0x79/0x90 __do_softirq+0xc8/0x2b1 __irq_exit_rcu+0xb9/0xf0 common_interrupt+0x82/0xa0 </IRQ> <TASK> asm_common_interrupt+0x22/0x40 RIP: 0010:default_idle+0xb/0x20
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix hci_suspend_sync crash If hci_unregister_dev() frees the hci_dev object but hci_suspend_notifier may still be accessing it, it can cause the program to crash. Here's the call trace: <4>[102152.653246] Call Trace: <4>[102152.653254] hci_suspend_sync+0x109/0x301 [bluetooth] <4>[102152.653259] hci_suspend_dev+0x78/0xcd [bluetooth] <4>[102152.653263] hci_suspend_notifier+0x42/0x7a [bluetooth] <4>[102152.653268] notifier_call_chain+0x43/0x6b <4>[102152.653271] __blocking_notifier_call_chain+0x48/0x69 <4>[102152.653273] __pm_notifier_call_chain+0x22/0x39 <4>[102152.653276] pm_suspend+0x287/0x57c <4>[102152.653278] state_store+0xae/0xe5 <4>[102152.653281] kernfs_fop_write+0x109/0x173 <4>[102152.653284] __vfs_write+0x16f/0x1a2 <4>[102152.653287] ? selinux_file_permission+0xca/0x16f <4>[102152.653289] ? security_file_permission+0x36/0x109 <4>[102152.653291] vfs_write+0x114/0x21d <4>[102152.653293] __x64_sys_write+0x7b/0xdb <4>[102152.653296] do_syscall_64+0x59/0x194 <4>[102152.653299] entry_SYSCALL_64_after_hwframe+0x5c/0xc1 This patch holds the reference count of the hci_dev object while processing it in hci_suspend_notifier to avoid potential crash caused by the race condition.
In the Linux kernel, the following vulnerability has been resolved: ptdma: pt_core_execute_cmd() should use spinlock The interrupt handler (pt_core_irq_handler()) of the ptdma driver can be called from interrupt context. The code flow in this function can lead down to pt_core_execute_cmd() which will attempt to grab a mutex, which is not appropriate in interrupt context and ultimately leads to a kernel panic. The fix here changes this mutex to a spinlock, which has been verified to resolve the issue.
In the Linux kernel, the following vulnerability has been resolved: power: supply: axp288_fuel_gauge: Fix external_power_changed race fuel_gauge_external_power_changed() dereferences info->bat, which gets sets in axp288_fuel_gauge_probe() like this: info->bat = devm_power_supply_register(dev, &fuel_gauge_desc, &psy_cfg); As soon as devm_power_supply_register() has called device_add() the external_power_changed callback can get called. So there is a window where fuel_gauge_external_power_changed() may get called while info->bat has not been set yet leading to a NULL pointer dereference. Fixing this is easy. The external_power_changed callback gets passed the power_supply which will eventually get stored in info->bat, so fuel_gauge_external_power_changed() can simply directly use the passed in psy argument which is always valid.
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: u_audio: don't let userspace block driver unbind In the unbind callback for f_uac1 and f_uac2, a call to snd_card_free() via g_audio_cleanup() will disconnect the card and then wait for all resources to be released, which happens when the refcount falls to zero. Since userspace can keep the refcount incremented by not closing the relevant file descriptor, the call to unbind may block indefinitely. This can cause a deadlock during reboot, as evidenced by the following blocked task observed on my machine: task:reboot state:D stack:0 pid:2827 ppid:569 flags:0x0000000c Call trace: __switch_to+0xc8/0x140 __schedule+0x2f0/0x7c0 schedule+0x60/0xd0 schedule_timeout+0x180/0x1d4 wait_for_completion+0x78/0x180 snd_card_free+0x90/0xa0 g_audio_cleanup+0x2c/0x64 afunc_unbind+0x28/0x60 ... kernel_restart+0x4c/0xac __do_sys_reboot+0xcc/0x1ec __arm64_sys_reboot+0x28/0x30 invoke_syscall+0x4c/0x110 ... The issue can also be observed by opening the card with arecord and then stopping the process through the shell before unbinding: # arecord -D hw:UAC2Gadget -f S32_LE -c 2 -r 48000 /dev/null Recording WAVE '/dev/null' : Signed 32 bit Little Endian, Rate 48000 Hz, Stereo ^Z[1]+ Stopped arecord -D hw:UAC2Gadget -f S32_LE -c 2 -r 48000 /dev/null # echo gadget.0 > /sys/bus/gadget/drivers/configfs-gadget/unbind (observe that the unbind command never finishes) Fix the problem by using snd_card_free_when_closed() instead, which will still disconnect the card as desired, but defer the task of freeing the resources to the core once userspace closes its file descriptor.
In the Linux kernel, the following vulnerability has been resolved: mm/MADV_COLLAPSE: catch !none !huge !bad pmd lookups In commit 34488399fa08 ("mm/madvise: add file and shmem support to MADV_COLLAPSE") we make the following change to find_pmd_or_thp_or_none(): - if (!pmd_present(pmde)) - return SCAN_PMD_NULL; + if (pmd_none(pmde)) + return SCAN_PMD_NONE; This was for-use by MADV_COLLAPSE file/shmem codepaths, where MADV_COLLAPSE might identify a pte-mapped hugepage, only to have khugepaged race-in, free the pte table, and clear the pmd. Such codepaths include: A) If we find a suitably-aligned compound page of order HPAGE_PMD_ORDER already in the pagecache. B) In retract_page_tables(), if we fail to grab mmap_lock for the target mm/address. In these cases, collapse_pte_mapped_thp() really does expect a none (not just !present) pmd, and we want to suitably identify that case separate from the case where no pmd is found, or it's a bad-pmd (of course, many things could happen once we drop mmap_lock, and the pmd could plausibly undergo multiple transitions due to intervening fault, split, etc). Regardless, the code is prepared install a huge-pmd only when the existing pmd entry is either a genuine pte-table-mapping-pmd, or the none-pmd. However, the commit introduces a logical hole; namely, that we've allowed !none- && !huge- && !bad-pmds to be classified as genuine pte-table-mapping-pmds. One such example that could leak through are swap entries. The pmd values aren't checked again before use in pte_offset_map_lock(), which is expecting nothing less than a genuine pte-table-mapping-pmd. We want to put back the !pmd_present() check (below the pmd_none() check), but need to be careful to deal with subtleties in pmd transitions and treatments by various arch. The issue is that __split_huge_pmd_locked() temporarily clears the present bit (or otherwise marks the entry as invalid), but pmd_present() and pmd_trans_huge() still need to return true while the pmd is in this transitory state. For example, x86's pmd_present() also checks the _PAGE_PSE , riscv's version also checks the _PAGE_LEAF bit, and arm64 also checks a PMD_PRESENT_INVALID bit. Covering all 4 cases for x86 (all checks done on the same pmd value): 1) pmd_present() && pmd_trans_huge() All we actually know here is that the PSE bit is set. Either: a) We aren't racing with __split_huge_page(), and PRESENT or PROTNONE is set. => huge-pmd b) We are currently racing with __split_huge_page(). The danger here is that we proceed as-if we have a huge-pmd, but really we are looking at a pte-mapping-pmd. So, what is the risk of this danger? The only relevant path is: madvise_collapse() -> collapse_pte_mapped_thp() Where we might just incorrectly report back "success", when really the memory isn't pmd-backed. This is fine, since split could happen immediately after (actually) successful madvise_collapse(). So, it should be safe to just assume huge-pmd here. 2) pmd_present() && !pmd_trans_huge() Either: a) PSE not set and either PRESENT or PROTNONE is. => pte-table-mapping pmd (or PROT_NONE) b) devmap. This routine can be called immediately after unlocking/locking mmap_lock -- or called with no locks held (see khugepaged_scan_mm_slot()), so previous VMA checks have since been invalidated. 3) !pmd_present() && pmd_trans_huge() Not possible. 4) !pmd_present() && !pmd_trans_huge() Neither PRESENT nor PROTNONE set => not present I've checked all archs that implement pmd_trans_huge() (arm64, riscv, powerpc, longarch, x86, mips, s390) and this logic roughly translates (though devmap treatment is unique to x86 and powerpc, and (3) doesn't necessarily hold in general -- but that doesn't matter since !pmd_present() always takes failure path). Also, add a comment above find_pmd_or_thp_or_none() ---truncated---
In the Linux kernel, the following vulnerability has been resolved: tracing/synthetic: Fix races on freeing last_cmd Currently, the "last_cmd" variable can be accessed by multiple processes asynchronously when multiple users manipulate synthetic_events node at the same time, it could lead to use-after-free or double-free. This patch add "lastcmd_mutex" to prevent "last_cmd" from being accessed asynchronously. ================================================================ It's easy to reproduce in the KASAN environment by running the two scripts below in different shells. script 1: while : do echo -n -e '\x88' > /sys/kernel/tracing/synthetic_events done script 2: while : do echo -n -e '\xb0' > /sys/kernel/tracing/synthetic_events done ================================================================ double-free scenario: process A process B ------------------- --------------- 1.kstrdup last_cmd 2.free last_cmd 3.free last_cmd(double-free) ================================================================ use-after-free scenario: process A process B ------------------- --------------- 1.kstrdup last_cmd 2.free last_cmd 3.tracing_log_err(use-after-free) ================================================================ Appendix 1. KASAN report double-free: BUG: KASAN: double-free in kfree+0xdc/0x1d4 Free of addr ***** by task sh/4879 Call trace: ... kfree+0xdc/0x1d4 create_or_delete_synth_event+0x60/0x1e8 trace_parse_run_command+0x2bc/0x4b8 synth_events_write+0x20/0x30 vfs_write+0x200/0x830 ... Allocated by task 4879: ... kstrdup+0x5c/0x98 create_or_delete_synth_event+0x6c/0x1e8 trace_parse_run_command+0x2bc/0x4b8 synth_events_write+0x20/0x30 vfs_write+0x200/0x830 ... Freed by task 5464: ... kfree+0xdc/0x1d4 create_or_delete_synth_event+0x60/0x1e8 trace_parse_run_command+0x2bc/0x4b8 synth_events_write+0x20/0x30 vfs_write+0x200/0x830 ... ================================================================ Appendix 2. KASAN report use-after-free: BUG: KASAN: use-after-free in strlen+0x5c/0x7c Read of size 1 at addr ***** by task sh/5483 sh: CPU: 7 PID: 5483 Comm: sh ... __asan_report_load1_noabort+0x34/0x44 strlen+0x5c/0x7c tracing_log_err+0x60/0x444 create_or_delete_synth_event+0xc4/0x204 trace_parse_run_command+0x2bc/0x4b8 synth_events_write+0x20/0x30 vfs_write+0x200/0x830 ... Allocated by task 5483: ... kstrdup+0x5c/0x98 create_or_delete_synth_event+0x80/0x204 trace_parse_run_command+0x2bc/0x4b8 synth_events_write+0x20/0x30 vfs_write+0x200/0x830 ... Freed by task 5480: ... kfree+0xdc/0x1d4 create_or_delete_synth_event+0x74/0x204 trace_parse_run_command+0x2bc/0x4b8 synth_events_write+0x20/0x30 vfs_write+0x200/0x830 ...
A flaw was found in the Linux kernel's ksmbd, a high-performance in-kernel SMB server. The specific flaw exists within the processing of SMB2_SESSION_SETUP and SMB2_LOGOFF commands. The issue results from the lack of proper locking when performing operations on an object. An attacker can leverage this vulnerability to execute code in the context of the kernel.
In the Linux kernel, the following vulnerability has been resolved: octeontx2-pf: Avoid use of GFP_KERNEL in atomic context Using GFP_KERNEL in preemption disable context, causing below warning when CONFIG_DEBUG_ATOMIC_SLEEP is enabled. [ 32.542271] BUG: sleeping function called from invalid context at include/linux/sched/mm.h:274 [ 32.550883] in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1, name: swapper/0 [ 32.558707] preempt_count: 1, expected: 0 [ 32.562710] RCU nest depth: 0, expected: 0 [ 32.566800] CPU: 3 PID: 1 Comm: swapper/0 Tainted: G W 6.2.0-rc2-00269-gae9dcb91c606 #7 [ 32.576188] Hardware name: Marvell CN106XX board (DT) [ 32.581232] Call trace: [ 32.583670] dump_backtrace.part.0+0xe0/0xf0 [ 32.587937] show_stack+0x18/0x30 [ 32.591245] dump_stack_lvl+0x68/0x84 [ 32.594900] dump_stack+0x18/0x34 [ 32.598206] __might_resched+0x12c/0x160 [ 32.602122] __might_sleep+0x48/0xa0 [ 32.605689] __kmem_cache_alloc_node+0x2b8/0x2e0 [ 32.610301] __kmalloc+0x58/0x190 [ 32.613610] otx2_sq_aura_pool_init+0x1a8/0x314 [ 32.618134] otx2_open+0x1d4/0x9d0 To avoid use of GFP_ATOMIC for memory allocation, disable preemption after all memory allocation is done.
A flaw was found in the Linux kernel's ksmbd, a high-performance in-kernel SMB server. The specific flaw exists within the processing of SMB2_LOGOFF and SMB2_CLOSE commands. The issue results from the lack of proper locking when performing operations on an object. An attacker can leverage this vulnerability to execute code in the context of the kernel.
In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix potential data race in rxrpc_wait_to_be_connected() Inside the loop in rxrpc_wait_to_be_connected() it checks call->error to see if it should exit the loop without first checking the call state. This is probably safe as if call->error is set, the call is dead anyway, but we should probably wait for the call state to have been set to completion first, lest it cause surprise on the way out. Fix this by only accessing call->error if the call is complete. We don't actually need to access the error inside the loop as we'll do that after. This caused the following report: BUG: KCSAN: data-race in rxrpc_send_data / rxrpc_set_call_completion write to 0xffff888159cf3c50 of 4 bytes by task 25673 on cpu 1: rxrpc_set_call_completion+0x71/0x1c0 net/rxrpc/call_state.c:22 rxrpc_send_data_packet+0xba9/0x1650 net/rxrpc/output.c:479 rxrpc_transmit_one+0x1e/0x130 net/rxrpc/output.c:714 rxrpc_decant_prepared_tx net/rxrpc/call_event.c:326 [inline] rxrpc_transmit_some_data+0x496/0x600 net/rxrpc/call_event.c:350 rxrpc_input_call_event+0x564/0x1220 net/rxrpc/call_event.c:464 rxrpc_io_thread+0x307/0x1d80 net/rxrpc/io_thread.c:461 kthread+0x1ac/0x1e0 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308 read to 0xffff888159cf3c50 of 4 bytes by task 25672 on cpu 0: rxrpc_send_data+0x29e/0x1950 net/rxrpc/sendmsg.c:296 rxrpc_do_sendmsg+0xb7a/0xc20 net/rxrpc/sendmsg.c:726 rxrpc_sendmsg+0x413/0x520 net/rxrpc/af_rxrpc.c:565 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg net/socket.c:747 [inline] ____sys_sendmsg+0x375/0x4c0 net/socket.c:2501 ___sys_sendmsg net/socket.c:2555 [inline] __sys_sendmmsg+0x263/0x500 net/socket.c:2641 __do_sys_sendmmsg net/socket.c:2670 [inline] __se_sys_sendmmsg net/socket.c:2667 [inline] __x64_sys_sendmmsg+0x57/0x60 net/socket.c:2667 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd value changed: 0x00000000 -> 0xffffffea
A flaw was found in the Linux kernel's ksmbd, a high-performance in-kernel SMB server. The specific flaw exists within the processing of SMB2_SESSION_SETUP commands. The issue results from the lack of proper locking when performing operations on an object. An attacker can leverage this vulnerability to execute code in the context of the kernel.
A flaw was found in the Linux kernel's ksmbd, a high-performance in-kernel SMB server. The specific flaw exists within the processing of SMB2_TREE_DISCONNECT commands. The issue results from the lack of proper locking when performing operations on an object. An attacker can leverage this vulnerability to execute code in the context of the kernel.
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix deadlock in tc route query code Cited commit causes ABBA deadlock[0] when peer flows are created while holding the devcom rw semaphore. Due to peer flows offload implementation the lock is taken much higher up the call chain and there is no obvious way to easily fix the deadlock. Instead, since tc route query code needs the peer eswitch structure only to perform a lookup in xarray and doesn't perform any sleeping operations with it, refactor the code for lockless execution in following ways: - RCUify the devcom 'data' pointer. When resetting the pointer synchronously wait for RCU grace period before returning. This is fine since devcom is currently only used for synchronization of pairing/unpairing of eswitches which is rare and already expensive as-is. - Wrap all usages of 'paired' boolean in {READ|WRITE}_ONCE(). The flag has already been used in some unlocked contexts without proper annotations (e.g. users of mlx5_devcom_is_paired() function), but it wasn't an issue since all relevant code paths checked it again after obtaining the devcom semaphore. Now it is also used by mlx5_devcom_get_peer_data_rcu() as "best effort" check to return NULL when devcom is being unpaired. Note that while RCU read lock doesn't prevent the unpaired flag from being changed concurrently it still guarantees that reader can continue to use 'data'. - Refactor mlx5e_tc_query_route_vport() function to use new mlx5_devcom_get_peer_data_rcu() API which fixes the deadlock. [0]: [ 164.599612] ====================================================== [ 164.600142] WARNING: possible circular locking dependency detected [ 164.600667] 6.3.0-rc3+ #1 Not tainted [ 164.601021] ------------------------------------------------------ [ 164.601557] handler1/3456 is trying to acquire lock: [ 164.601998] ffff88811f1714b0 (&esw->offloads.encap_tbl_lock){+.+.}-{3:3}, at: mlx5e_attach_encap+0xd8/0x8b0 [mlx5_core] [ 164.603078] but task is already holding lock: [ 164.603617] ffff88810137fc98 (&comp->sem){++++}-{3:3}, at: mlx5_devcom_get_peer_data+0x37/0x80 [mlx5_core] [ 164.604459] which lock already depends on the new lock. [ 164.605190] the existing dependency chain (in reverse order) is: [ 164.605848] -> #1 (&comp->sem){++++}-{3:3}: [ 164.606380] down_read+0x39/0x50 [ 164.606772] mlx5_devcom_get_peer_data+0x37/0x80 [mlx5_core] [ 164.607336] mlx5e_tc_query_route_vport+0x86/0xc0 [mlx5_core] [ 164.607914] mlx5e_tc_tun_route_lookup+0x1a4/0x1d0 [mlx5_core] [ 164.608495] mlx5e_attach_decap_route+0xc6/0x1e0 [mlx5_core] [ 164.609063] mlx5e_tc_add_fdb_flow+0x1ea/0x360 [mlx5_core] [ 164.609627] __mlx5e_add_fdb_flow+0x2d2/0x430 [mlx5_core] [ 164.610175] mlx5e_configure_flower+0x952/0x1a20 [mlx5_core] [ 164.610741] tc_setup_cb_add+0xd4/0x200 [ 164.611146] fl_hw_replace_filter+0x14c/0x1f0 [cls_flower] [ 164.611661] fl_change+0xc95/0x18a0 [cls_flower] [ 164.612116] tc_new_tfilter+0x3fc/0xd20 [ 164.612516] rtnetlink_rcv_msg+0x418/0x5b0 [ 164.612936] netlink_rcv_skb+0x54/0x100 [ 164.613339] netlink_unicast+0x190/0x250 [ 164.613746] netlink_sendmsg+0x245/0x4a0 [ 164.614150] sock_sendmsg+0x38/0x60 [ 164.614522] ____sys_sendmsg+0x1d0/0x1e0 [ 164.614934] ___sys_sendmsg+0x80/0xc0 [ 164.615320] __sys_sendmsg+0x51/0x90 [ 164.615701] do_syscall_64+0x3d/0x90 [ 164.616083] entry_SYSCALL_64_after_hwframe+0x46/0xb0 [ 164.616568] -> #0 (&esw->offloads.encap_tbl_lock){+.+.}-{3:3}: [ 164.617210] __lock_acquire+0x159e/0x26e0 [ 164.617638] lock_acquire+0xc2/0x2a0 [ 164.618018] __mutex_lock+0x92/0xcd0 [ 164.618401] mlx5e_attach_encap+0xd8/0x8b0 [mlx5_core] [ 164.618943] post_process_attr+0x153/0x2d0 [ ---truncated---
In the Linux kernel, the following vulnerability has been resolved: net: enetc: avoid deadlock in enetc_tx_onestep_tstamp() This lockdep splat says it better than I could: ================================ WARNING: inconsistent lock state 6.2.0-rc2-07010-ga9b9500ffaac-dirty #967 Not tainted -------------------------------- inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage. kworker/1:3/179 [HC0[0]:SC0[0]:HE1:SE1] takes: ffff3ec4036ce098 (_xmit_ETHER#2){+.?.}-{3:3}, at: netif_freeze_queues+0x5c/0xc0 {IN-SOFTIRQ-W} state was registered at: _raw_spin_lock+0x5c/0xc0 sch_direct_xmit+0x148/0x37c __dev_queue_xmit+0x528/0x111c ip6_finish_output2+0x5ec/0xb7c ip6_finish_output+0x240/0x3f0 ip6_output+0x78/0x360 ndisc_send_skb+0x33c/0x85c ndisc_send_rs+0x54/0x12c addrconf_rs_timer+0x154/0x260 call_timer_fn+0xb8/0x3a0 __run_timers.part.0+0x214/0x26c run_timer_softirq+0x3c/0x74 __do_softirq+0x14c/0x5d8 ____do_softirq+0x10/0x20 call_on_irq_stack+0x2c/0x5c do_softirq_own_stack+0x1c/0x30 __irq_exit_rcu+0x168/0x1a0 irq_exit_rcu+0x10/0x40 el1_interrupt+0x38/0x64 irq event stamp: 7825 hardirqs last enabled at (7825): [<ffffdf1f7200cae4>] exit_to_kernel_mode+0x34/0x130 hardirqs last disabled at (7823): [<ffffdf1f708105f0>] __do_softirq+0x550/0x5d8 softirqs last enabled at (7824): [<ffffdf1f7081050c>] __do_softirq+0x46c/0x5d8 softirqs last disabled at (7811): [<ffffdf1f708166e0>] ____do_softirq+0x10/0x20 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(_xmit_ETHER#2); <Interrupt> lock(_xmit_ETHER#2); *** DEADLOCK *** 3 locks held by kworker/1:3/179: #0: ffff3ec400004748 ((wq_completion)events){+.+.}-{0:0}, at: process_one_work+0x1f4/0x6c0 #1: ffff80000a0bbdc8 ((work_completion)(&priv->tx_onestep_tstamp)){+.+.}-{0:0}, at: process_one_work+0x1f4/0x6c0 #2: ffff3ec4036cd438 (&dev->tx_global_lock){+.+.}-{3:3}, at: netif_tx_lock+0x1c/0x34 Workqueue: events enetc_tx_onestep_tstamp Call trace: print_usage_bug.part.0+0x208/0x22c mark_lock+0x7f0/0x8b0 __lock_acquire+0x7c4/0x1ce0 lock_acquire.part.0+0xe0/0x220 lock_acquire+0x68/0x84 _raw_spin_lock+0x5c/0xc0 netif_freeze_queues+0x5c/0xc0 netif_tx_lock+0x24/0x34 enetc_tx_onestep_tstamp+0x20/0x100 process_one_work+0x28c/0x6c0 worker_thread+0x74/0x450 kthread+0x118/0x11c but I'll say it anyway: the enetc_tx_onestep_tstamp() work item runs in process context, therefore with softirqs enabled (i.o.w., it can be interrupted by a softirq). If we hold the netif_tx_lock() when there is an interrupt, and the NET_TX softirq then gets scheduled, this will take the netif_tx_lock() a second time and deadlock the kernel. To solve this, use netif_tx_lock_bh(), which blocks softirqs from running.
In the Linux kernel, the following vulnerability has been resolved: io_uring: lock overflowing for IOPOLL syzbot reports an issue with overflow filling for IOPOLL: WARNING: CPU: 0 PID: 28 at io_uring/io_uring.c:734 io_cqring_event_overflow+0x1c0/0x230 io_uring/io_uring.c:734 CPU: 0 PID: 28 Comm: kworker/u4:1 Not tainted 6.2.0-rc3-syzkaller-16369-g358a161a6a9e #0 Workqueue: events_unbound io_ring_exit_work Call trace: io_cqring_event_overflow+0x1c0/0x230 io_uring/io_uring.c:734 io_req_cqe_overflow+0x5c/0x70 io_uring/io_uring.c:773 io_fill_cqe_req io_uring/io_uring.h:168 [inline] io_do_iopoll+0x474/0x62c io_uring/rw.c:1065 io_iopoll_try_reap_events+0x6c/0x108 io_uring/io_uring.c:1513 io_uring_try_cancel_requests+0x13c/0x258 io_uring/io_uring.c:3056 io_ring_exit_work+0xec/0x390 io_uring/io_uring.c:2869 process_one_work+0x2d8/0x504 kernel/workqueue.c:2289 worker_thread+0x340/0x610 kernel/workqueue.c:2436 kthread+0x12c/0x158 kernel/kthread.c:376 ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:863 There is no real problem for normal IOPOLL as flush is also called with uring_lock taken, but it's getting more complicated for IOPOLL|SQPOLL, for which __io_cqring_overflow_flush() happens from the CQ waiting path.
In the Linux kernel, the following vulnerability has been resolved: media: v4l2-mem2mem: add lock to protect parameter num_rdy Getting below error when using KCSAN to check the driver. Adding lock to protect parameter num_rdy when getting the value with function: v4l2_m2m_num_src_bufs_ready/v4l2_m2m_num_dst_bufs_ready. kworker/u16:3: [name:report&]BUG: KCSAN: data-race in v4l2_m2m_buf_queue kworker/u16:3: [name:report&] kworker/u16:3: [name:report&]read-write to 0xffffff8105f35b94 of 1 bytes by task 20865 on cpu 7: kworker/u16:3: v4l2_m2m_buf_queue+0xd8/0x10c
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: fs, lock FTE when checking if active The referenced commits introduced a two-step process for deleting FTEs: - Lock the FTE, delete it from hardware, set the hardware deletion function to NULL and unlock the FTE. - Lock the parent flow group, delete the software copy of the FTE, and remove it from the xarray. However, this approach encounters a race condition if a rule with the same match value is added simultaneously. In this scenario, fs_core may set the hardware deletion function to NULL prematurely, causing a panic during subsequent rule deletions. To prevent this, ensure the active flag of the FTE is checked under a lock, which will prevent the fs_core layer from attaching a new steering rule to an FTE that is in the process of deletion. [ 438.967589] MOSHE: 2496 mlx5_del_flow_rules del_hw_func [ 438.968205] ------------[ cut here ]------------ [ 438.968654] refcount_t: decrement hit 0; leaking memory. [ 438.969249] WARNING: CPU: 0 PID: 8957 at lib/refcount.c:31 refcount_warn_saturate+0xfb/0x110 [ 438.970054] Modules linked in: act_mirred cls_flower act_gact sch_ingress openvswitch nsh mlx5_vdpa vringh vhost_iotlb vdpa mlx5_ib mlx5_core xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat br_netfilter rpcsec_gss_krb5 auth_rpcgss oid_registry overlay rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi ib_umad rdma_cm ib_ipoib iw_cm ib_cm ib_uverbs ib_core zram zsmalloc fuse [last unloaded: cls_flower] [ 438.973288] CPU: 0 UID: 0 PID: 8957 Comm: tc Not tainted 6.12.0-rc1+ #8 [ 438.973888] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 438.974874] RIP: 0010:refcount_warn_saturate+0xfb/0x110 [ 438.975363] Code: 40 66 3b 82 c6 05 16 e9 4d 01 01 e8 1f 7c a0 ff 0f 0b c3 cc cc cc cc 48 c7 c7 10 66 3b 82 c6 05 fd e8 4d 01 01 e8 05 7c a0 ff <0f> 0b c3 cc cc cc cc 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 90 [ 438.976947] RSP: 0018:ffff888124a53610 EFLAGS: 00010286 [ 438.977446] RAX: 0000000000000000 RBX: ffff888119d56de0 RCX: 0000000000000000 [ 438.978090] RDX: ffff88852c828700 RSI: ffff88852c81b3c0 RDI: ffff88852c81b3c0 [ 438.978721] RBP: ffff888120fa0e88 R08: 0000000000000000 R09: ffff888124a534b0 [ 438.979353] R10: 0000000000000001 R11: 0000000000000001 R12: ffff888119d56de0 [ 438.979979] R13: ffff888120fa0ec0 R14: ffff888120fa0ee8 R15: ffff888119d56de0 [ 438.980607] FS: 00007fe6dcc0f800(0000) GS:ffff88852c800000(0000) knlGS:0000000000000000 [ 438.983984] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 438.984544] CR2: 00000000004275e0 CR3: 0000000186982001 CR4: 0000000000372eb0 [ 438.985205] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 438.985842] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 438.986507] Call Trace: [ 438.986799] <TASK> [ 438.987070] ? __warn+0x7d/0x110 [ 438.987426] ? refcount_warn_saturate+0xfb/0x110 [ 438.987877] ? report_bug+0x17d/0x190 [ 438.988261] ? prb_read_valid+0x17/0x20 [ 438.988659] ? handle_bug+0x53/0x90 [ 438.989054] ? exc_invalid_op+0x14/0x70 [ 438.989458] ? asm_exc_invalid_op+0x16/0x20 [ 438.989883] ? refcount_warn_saturate+0xfb/0x110 [ 438.990348] mlx5_del_flow_rules+0x2f7/0x340 [mlx5_core] [ 438.990932] __mlx5_eswitch_del_rule+0x49/0x170 [mlx5_core] [ 438.991519] ? mlx5_lag_is_sriov+0x3c/0x50 [mlx5_core] [ 438.992054] ? xas_load+0x9/0xb0 [ 438.992407] mlx5e_tc_rule_unoffload+0x45/0xe0 [mlx5_core] [ 438.993037] mlx5e_tc_del_fdb_flow+0x2a6/0x2e0 [mlx5_core] [ 438.993623] mlx5e_flow_put+0x29/0x60 [mlx5_core] [ 438.994161] mlx5e_delete_flower+0x261/0x390 [mlx5_core] [ 438.994728] tc_setup_cb_destroy+0xb9/0x190 [ 438.995150] fl_hw_destroy_filter+0x94/0xc0 [cls_flower] [ 438.995650] fl_change+0x11a4/0x13c0 [cls_flower] [ 438.996105] tc_new_tfilter+0x347/0xbc0 [ 438.996503] ? __ ---truncated---
In the Linux kernel, the following vulnerability has been resolved: drm: Don't unref the same fb many times by mistake due to deadlock handling If we get a deadlock after the fb lookup in drm_mode_page_flip_ioctl() we proceed to unref the fb and then retry the whole thing from the top. But we forget to reset the fb pointer back to NULL, and so if we then get another error during the retry, before the fb lookup, we proceed the unref the same fb again without having gotten another reference. The end result is that the fb will (eventually) end up being freed while it's still in use. Reset fb to NULL once we've unreffed it to avoid doing it again until we've done another fb lookup. This turned out to be pretty easy to hit on a DG2 when doing async flips (and CONFIG_DEBUG_WW_MUTEX_SLOWPATH=y). The first symptom I saw that drm_closefb() simply got stuck in a busy loop while walking the framebuffer list. Fortunately I was able to convince it to oops instead, and from there it was easier to track down the culprit.
In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: Add mutex lock in control vblank irq Add a mutex lock to control vblank irq to synchronize vblank enable/disable operations happening from different threads to prevent race conditions while registering/unregistering the vblank irq callback. v4: -Removed vblank_ctl_lock from dpu_encoder_virt, so it is only a parameter of dpu_encoder_phys. -Switch from atomic refcnt to a simple int counter as mutex has now been added v3: Mistakenly did not change wording in last version. It is done now. v2: Slightly changed wording of commit message Patchwork: https://patchwork.freedesktop.org/patch/571854/
In the Linux kernel, the following vulnerability has been resolved: ext4: fix racy may inline data check in dio write syzbot reports that the following warning from ext4_iomap_begin() triggers as of the commit referenced below: if (WARN_ON_ONCE(ext4_has_inline_data(inode))) return -ERANGE; This occurs during a dio write, which is never expected to encounter an inode with inline data. To enforce this behavior, ext4_dio_write_iter() checks the current inline state of the inode and clears the MAY_INLINE_DATA state flag to either fall back to buffered writes, or enforce that any other writers in progress on the inode are not allowed to create inline data. The problem is that the check for existing inline data and the state flag can span a lock cycle. For example, if the ilock is originally locked shared and subsequently upgraded to exclusive, another writer may have reacquired the lock and created inline data before the dio write task acquires the lock and proceeds. The commit referenced below loosens the lock requirements to allow some forms of unaligned dio writes to occur under shared lock, but AFAICT the inline data check was technically already racy for any dio write that would have involved a lock cycle. Regardless, lift clearing of the state bit to the same lock critical section that checks for preexisting inline data on the inode to close the race.
In the Linux kernel, the following vulnerability has been resolved: wifi: rt2x00: restart beacon queue when hardware reset When a hardware reset is triggered, all registers are reset, so all queues are forced to stop in hardware interface. However, mac80211 will not automatically stop the queue. If we don't manually stop the beacon queue, the queue will be deadlocked and unable to start again. This patch fixes the issue where Apple devices cannot connect to the AP after calling ieee80211_restart_hw().
In the Linux kernel, the following vulnerability has been resolved: PM: sleep: Fix possible deadlocks in core system-wide PM code It is reported that in low-memory situations the system-wide resume core code deadlocks, because async_schedule_dev() executes its argument function synchronously if it cannot allocate memory (and not only in that case) and that function attempts to acquire a mutex that is already held. Executing the argument function synchronously from within dpm_async_fn() may also be problematic for ordering reasons (it may cause a consumer device's resume callback to be invoked before a requisite supplier device's one, for example). Address this by changing the code in question to use async_schedule_dev_nocall() for scheduling the asynchronous execution of device suspend and resume functions and to directly run them synchronously if async_schedule_dev_nocall() returns false.
An issue was discovered in drivers/bluetooth/hci_ldisc.c in the Linux kernel 6.2. In hci_uart_tty_ioctl, there is a race condition between HCIUARTSETPROTO and HCIUARTGETPROTO. HCI_UART_PROTO_SET is set before hu->proto is set. A NULL pointer dereference may occur.
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential deadlock when releasing mids All release_mid() callers seem to hold a reference of @mid so there is no need to call kref_put(&mid->refcount, __release_mid) under @server->mid_lock spinlock. If they don't, then an use-after-free bug would have occurred anyways. By getting rid of such spinlock also fixes a potential deadlock as shown below CPU 0 CPU 1 ------------------------------------------------------------------ cifs_demultiplex_thread() cifs_debug_data_proc_show() release_mid() spin_lock(&server->mid_lock); spin_lock(&cifs_tcp_ses_lock) spin_lock(&server->mid_lock) __release_mid() smb2_find_smb_tcon() spin_lock(&cifs_tcp_ses_lock) *deadlock*
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix lock dependency warning with srcu ====================================================== WARNING: possible circular locking dependency detected 6.5.0-kfd-yangp #2289 Not tainted ------------------------------------------------------ kworker/0:2/996 is trying to acquire lock: (srcu){.+.+}-{0:0}, at: __synchronize_srcu+0x5/0x1a0 but task is already holding lock: ((work_completion)(&svms->deferred_list_work)){+.+.}-{0:0}, at: process_one_work+0x211/0x560 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 ((work_completion)(&svms->deferred_list_work)){+.+.}-{0:0}: __flush_work+0x88/0x4f0 svm_range_list_lock_and_flush_work+0x3d/0x110 [amdgpu] svm_range_set_attr+0xd6/0x14c0 [amdgpu] kfd_ioctl+0x1d1/0x630 [amdgpu] __x64_sys_ioctl+0x88/0xc0 -> #2 (&info->lock#2){+.+.}-{3:3}: __mutex_lock+0x99/0xc70 amdgpu_amdkfd_gpuvm_restore_process_bos+0x54/0x740 [amdgpu] restore_process_helper+0x22/0x80 [amdgpu] restore_process_worker+0x2d/0xa0 [amdgpu] process_one_work+0x29b/0x560 worker_thread+0x3d/0x3d0 -> #1 ((work_completion)(&(&process->restore_work)->work)){+.+.}-{0:0}: __flush_work+0x88/0x4f0 __cancel_work_timer+0x12c/0x1c0 kfd_process_notifier_release_internal+0x37/0x1f0 [amdgpu] __mmu_notifier_release+0xad/0x240 exit_mmap+0x6a/0x3a0 mmput+0x6a/0x120 do_exit+0x322/0xb90 do_group_exit+0x37/0xa0 __x64_sys_exit_group+0x18/0x20 do_syscall_64+0x38/0x80 -> #0 (srcu){.+.+}-{0:0}: __lock_acquire+0x1521/0x2510 lock_sync+0x5f/0x90 __synchronize_srcu+0x4f/0x1a0 __mmu_notifier_release+0x128/0x240 exit_mmap+0x6a/0x3a0 mmput+0x6a/0x120 svm_range_deferred_list_work+0x19f/0x350 [amdgpu] process_one_work+0x29b/0x560 worker_thread+0x3d/0x3d0 other info that might help us debug this: Chain exists of: srcu --> &info->lock#2 --> (work_completion)(&svms->deferred_list_work) Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock((work_completion)(&svms->deferred_list_work)); lock(&info->lock#2); lock((work_completion)(&svms->deferred_list_work)); sync(srcu);
A flaw was found in the subsequent get_user_pages_fast in the Linux kernel’s interface for symmetric key cipher algorithms in the skcipher_recvmsg of crypto/algif_skcipher.c function. This flaw allows a local user to crash the system.
In the Linux kernel, the following vulnerability has been resolved: spi: sun6i: fix race between DMA RX transfer completion and RX FIFO drain Previously the transfer complete IRQ immediately drained to RX FIFO to read any data remaining in FIFO to the RX buffer. This behaviour is correct when dealing with SPI in interrupt mode. However in DMA mode the transfer complete interrupt still fires as soon as all bytes to be transferred have been stored in the FIFO. At that point data in the FIFO still needs to be picked up by the DMA engine. Thus the drain procedure and DMA engine end up racing to read from RX FIFO, corrupting any data read. Additionally the RX buffer pointer is never adjusted according to DMA progress in DMA mode, thus calling the RX FIFO drain procedure in DMA mode is a bug. Fix corruptions in DMA RX mode by draining RX FIFO only in interrupt mode. Also wait for completion of RX DMA when in DMA mode before returning to ensure all data has been copied to the supplied memory buffer.
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix a race condition of vram buffer unref in svm code prange->svm_bo unref can happen in both mmu callback and a callback after migrate to system ram. Both are async call in different tasks. Sync svm_bo unref operation to avoid random "use-after-free".
In the Linux kernel, the following vulnerability has been resolved: cxl/port: Fix delete_endpoint() vs parent unregistration race The CXL subsystem, at cxl_mem ->probe() time, establishes a lineage of ports (struct cxl_port objects) between an endpoint and the root of a CXL topology. Each port including the endpoint port is attached to the cxl_port driver. Given that setup, it follows that when either any port in that lineage goes through a cxl_port ->remove() event, or the memdev goes through a cxl_mem ->remove() event. The hierarchy below the removed port, or the entire hierarchy if the memdev is removed needs to come down. The delete_endpoint() callback is careful to check whether it is being called to tear down the hierarchy, or if it is only being called to teardown the memdev because an ancestor port is going through ->remove(). That care needs to take the device_lock() of the endpoint's parent. Which requires 2 bugs to be fixed: 1/ A reference on the parent is needed to prevent use-after-free scenarios like this signature: BUG: spinlock bad magic on CPU#0, kworker/u56:0/11 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20230524-3.fc38 05/24/2023 Workqueue: cxl_port detach_memdev [cxl_core] RIP: 0010:spin_bug+0x65/0xa0 Call Trace: do_raw_spin_lock+0x69/0xa0 __mutex_lock+0x695/0xb80 delete_endpoint+0xad/0x150 [cxl_core] devres_release_all+0xb8/0x110 device_unbind_cleanup+0xe/0x70 device_release_driver_internal+0x1d2/0x210 detach_memdev+0x15/0x20 [cxl_core] process_one_work+0x1e3/0x4c0 worker_thread+0x1dd/0x3d0 2/ In the case of RCH topologies, the parent device that needs to be locked is not always @port->dev as returned by cxl_mem_find_port(), use endpoint->dev.parent instead.
In the Linux kernel, the following vulnerability has been resolved: sysv: don't call sb_bread() with pointers_lock held syzbot is reporting sleep in atomic context in SysV filesystem [1], for sb_bread() is called with rw_spinlock held. A "write_lock(&pointers_lock) => read_lock(&pointers_lock) deadlock" bug and a "sb_bread() with write_lock(&pointers_lock)" bug were introduced by "Replace BKL for chain locking with sysvfs-private rwlock" in Linux 2.5.12. Then, "[PATCH] err1-40: sysvfs locking fix" in Linux 2.6.8 fixed the former bug by moving pointers_lock lock to the callers, but instead introduced a "sb_bread() with read_lock(&pointers_lock)" bug (which made this problem easier to hit). Al Viro suggested that why not to do like get_branch()/get_block()/ find_shared() in Minix filesystem does. And doing like that is almost a revert of "[PATCH] err1-40: sysvfs locking fix" except that get_branch() from with find_shared() is called without write_lock(&pointers_lock).
In the Linux kernel, the following vulnerability has been resolved: media: rkisp1: Fix IRQ disable race issue In rkisp1_isp_stop() and rkisp1_csi_disable() the driver masks the interrupts and then apparently assumes that the interrupt handler won't be running, and proceeds in the stop procedure. This is not the case, as the interrupt handler can already be running, which would lead to the ISP being disabled while the interrupt handler handling a captured frame. This brings up two issues: 1) the ISP could be powered off while the interrupt handler is still running and accessing registers, leading to board lockup, and 2) the interrupt handler code and the code that disables the streaming might do things that conflict. It is not clear to me if 2) causes a real issue, but 1) can be seen with a suitable delay (or printk in my case) in the interrupt handler, leading to board lockup.
In the Linux kernel, the following vulnerability has been resolved: net: nfc: llcp: Add lock when modifying device list The device list needs its associated lock held when modifying it, or the list could become corrupted, as syzbot discovered.
In the Linux kernel, the following vulnerability has been resolved: dma-debug: don't call __dma_entry_alloc_check_leak() under free_entries_lock __dma_entry_alloc_check_leak() calls into printk -> serial console output (qcom geni) and grabs port->lock under free_entries_lock spin lock, which is a reverse locking dependency chain as qcom_geni IRQ handler can call into dma-debug code and grab free_entries_lock under port->lock. Move __dma_entry_alloc_check_leak() call out of free_entries_lock scope so that we don't acquire serial console's port->lock under it. Trimmed-down lockdep splat: The existing dependency chain (in reverse order) is: -> #2 (free_entries_lock){-.-.}-{2:2}: _raw_spin_lock_irqsave+0x60/0x80 dma_entry_alloc+0x38/0x110 debug_dma_map_page+0x60/0xf8 dma_map_page_attrs+0x1e0/0x230 dma_map_single_attrs.constprop.0+0x6c/0xc8 geni_se_rx_dma_prep+0x40/0xcc qcom_geni_serial_isr+0x310/0x510 __handle_irq_event_percpu+0x110/0x244 handle_irq_event_percpu+0x20/0x54 handle_irq_event+0x50/0x88 handle_fasteoi_irq+0xa4/0xcc handle_irq_desc+0x28/0x40 generic_handle_domain_irq+0x24/0x30 gic_handle_irq+0xc4/0x148 do_interrupt_handler+0xa4/0xb0 el1_interrupt+0x34/0x64 el1h_64_irq_handler+0x18/0x24 el1h_64_irq+0x64/0x68 arch_local_irq_enable+0x4/0x8 ____do_softirq+0x18/0x24 ... -> #1 (&port_lock_key){-.-.}-{2:2}: _raw_spin_lock_irqsave+0x60/0x80 qcom_geni_serial_console_write+0x184/0x1dc console_flush_all+0x344/0x454 console_unlock+0x94/0xf0 vprintk_emit+0x238/0x24c vprintk_default+0x3c/0x48 vprintk+0xb4/0xbc _printk+0x68/0x90 register_console+0x230/0x38c uart_add_one_port+0x338/0x494 qcom_geni_serial_probe+0x390/0x424 platform_probe+0x70/0xc0 really_probe+0x148/0x280 __driver_probe_device+0xfc/0x114 driver_probe_device+0x44/0x100 __device_attach_driver+0x64/0xdc bus_for_each_drv+0xb0/0xd8 __device_attach+0xe4/0x140 device_initial_probe+0x1c/0x28 bus_probe_device+0x44/0xb0 device_add+0x538/0x668 of_device_add+0x44/0x50 of_platform_device_create_pdata+0x94/0xc8 of_platform_bus_create+0x270/0x304 of_platform_populate+0xac/0xc4 devm_of_platform_populate+0x60/0xac geni_se_probe+0x154/0x160 platform_probe+0x70/0xc0 ... -> #0 (console_owner){-...}-{0:0}: __lock_acquire+0xdf8/0x109c lock_acquire+0x234/0x284 console_flush_all+0x330/0x454 console_unlock+0x94/0xf0 vprintk_emit+0x238/0x24c vprintk_default+0x3c/0x48 vprintk+0xb4/0xbc _printk+0x68/0x90 dma_entry_alloc+0xb4/0x110 debug_dma_map_sg+0xdc/0x2f8 __dma_map_sg_attrs+0xac/0xe4 dma_map_sgtable+0x30/0x4c get_pages+0x1d4/0x1e4 [msm] msm_gem_pin_pages_locked+0x38/0xac [msm] msm_gem_pin_vma_locked+0x58/0x88 [msm] msm_ioctl_gem_submit+0xde4/0x13ac [msm] drm_ioctl_kernel+0xe0/0x15c drm_ioctl+0x2e8/0x3f4 vfs_ioctl+0x30/0x50 ... Chain exists of: console_owner --> &port_lock_key --> free_entries_lock Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(free_entries_lock); lock(&port_lock_key); lock(free_entries_lock); lock(console_owner); *** DEADLOCK *** Call trace: dump_backtrace+0xb4/0xf0 show_stack+0x20/0x30 dump_stack_lvl+0x60/0x84 dump_stack+0x18/0x24 print_circular_bug+0x1cc/0x234 check_noncircular+0x78/0xac __lock_acquire+0xdf8/0x109c lock_acquire+0x234/0x284 console_flush_all+0x330/0x454 consol ---truncated---
In the Linux kernel, the following vulnerability has been resolved: KVM: s390: vsie: fix race during shadow creation Right now it is possible to see gmap->private being zero in kvm_s390_vsie_gmap_notifier resulting in a crash. This is due to the fact that we add gmap->private == kvm after creation: static int acquire_gmap_shadow(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page) { [...] gmap = gmap_shadow(vcpu->arch.gmap, asce, edat); if (IS_ERR(gmap)) return PTR_ERR(gmap); gmap->private = vcpu->kvm; Let children inherit the private field of the parent.
In the Linux kernel, the following vulnerability has been resolved: net: bridge: use DEV_STATS_INC() syzbot/KCSAN reported data-races in br_handle_frame_finish() [1] This function can run from multiple cpus without mutual exclusion. Adopt SMP safe DEV_STATS_INC() to update dev->stats fields. Handles updates to dev->stats.tx_dropped while we are at it. [1] BUG: KCSAN: data-race in br_handle_frame_finish / br_handle_frame_finish read-write to 0xffff8881374b2178 of 8 bytes by interrupt on cpu 1: br_handle_frame_finish+0xd4f/0xef0 net/bridge/br_input.c:189 br_nf_hook_thresh+0x1ed/0x220 br_nf_pre_routing_finish_ipv6+0x50f/0x540 NF_HOOK include/linux/netfilter.h:304 [inline] br_nf_pre_routing_ipv6+0x1e3/0x2a0 net/bridge/br_netfilter_ipv6.c:178 br_nf_pre_routing+0x526/0xba0 net/bridge/br_netfilter_hooks.c:508 nf_hook_entry_hookfn include/linux/netfilter.h:144 [inline] nf_hook_bridge_pre net/bridge/br_input.c:272 [inline] br_handle_frame+0x4c9/0x940 net/bridge/br_input.c:417 __netif_receive_skb_core+0xa8a/0x21e0 net/core/dev.c:5417 __netif_receive_skb_one_core net/core/dev.c:5521 [inline] __netif_receive_skb+0x57/0x1b0 net/core/dev.c:5637 process_backlog+0x21f/0x380 net/core/dev.c:5965 __napi_poll+0x60/0x3b0 net/core/dev.c:6527 napi_poll net/core/dev.c:6594 [inline] net_rx_action+0x32b/0x750 net/core/dev.c:6727 __do_softirq+0xc1/0x265 kernel/softirq.c:553 run_ksoftirqd+0x17/0x20 kernel/softirq.c:921 smpboot_thread_fn+0x30a/0x4a0 kernel/smpboot.c:164 kthread+0x1d7/0x210 kernel/kthread.c:388 ret_from_fork+0x48/0x60 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:304 read-write to 0xffff8881374b2178 of 8 bytes by interrupt on cpu 0: br_handle_frame_finish+0xd4f/0xef0 net/bridge/br_input.c:189 br_nf_hook_thresh+0x1ed/0x220 br_nf_pre_routing_finish_ipv6+0x50f/0x540 NF_HOOK include/linux/netfilter.h:304 [inline] br_nf_pre_routing_ipv6+0x1e3/0x2a0 net/bridge/br_netfilter_ipv6.c:178 br_nf_pre_routing+0x526/0xba0 net/bridge/br_netfilter_hooks.c:508 nf_hook_entry_hookfn include/linux/netfilter.h:144 [inline] nf_hook_bridge_pre net/bridge/br_input.c:272 [inline] br_handle_frame+0x4c9/0x940 net/bridge/br_input.c:417 __netif_receive_skb_core+0xa8a/0x21e0 net/core/dev.c:5417 __netif_receive_skb_one_core net/core/dev.c:5521 [inline] __netif_receive_skb+0x57/0x1b0 net/core/dev.c:5637 process_backlog+0x21f/0x380 net/core/dev.c:5965 __napi_poll+0x60/0x3b0 net/core/dev.c:6527 napi_poll net/core/dev.c:6594 [inline] net_rx_action+0x32b/0x750 net/core/dev.c:6727 __do_softirq+0xc1/0x265 kernel/softirq.c:553 do_softirq+0x5e/0x90 kernel/softirq.c:454 __local_bh_enable_ip+0x64/0x70 kernel/softirq.c:381 __raw_spin_unlock_bh include/linux/spinlock_api_smp.h:167 [inline] _raw_spin_unlock_bh+0x36/0x40 kernel/locking/spinlock.c:210 spin_unlock_bh include/linux/spinlock.h:396 [inline] batadv_tt_local_purge+0x1a8/0x1f0 net/batman-adv/translation-table.c:1356 batadv_tt_purge+0x2b/0x630 net/batman-adv/translation-table.c:3560 process_one_work kernel/workqueue.c:2630 [inline] process_scheduled_works+0x5b8/0xa30 kernel/workqueue.c:2703 worker_thread+0x525/0x730 kernel/workqueue.c:2784 kthread+0x1d7/0x210 kernel/kthread.c:388 ret_from_fork+0x48/0x60 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:304 value changed: 0x00000000000d7190 -> 0x00000000000d7191 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 14848 Comm: kworker/u4:11 Not tainted 6.6.0-rc1-syzkaller-00236-gad8a69f361b9 #0
In the Linux kernel, the following vulnerability has been resolved: can: j1939: prevent deadlock by changing j1939_socks_lock to rwlock The following 3 locks would race against each other, causing the deadlock situation in the Syzbot bug report: - j1939_socks_lock - active_session_list_lock - sk_session_queue_lock A reasonable fix is to change j1939_socks_lock to an rwlock, since in the rare situations where a write lock is required for the linked list that j1939_socks_lock is protecting, the code does not attempt to acquire any more locks. This would break the circular lock dependency, where, for example, the current thread already locks j1939_socks_lock and attempts to acquire sk_session_queue_lock, and at the same time, another thread attempts to acquire j1939_socks_lock while holding sk_session_queue_lock. NOTE: This patch along does not fix the unregister_netdevice bug reported by Syzbot; instead, it solves a deadlock situation to prepare for one or more further patches to actually fix the Syzbot bug, which appears to be a reference counting problem within the j1939 codebase. [mkl: remove unrelated newline change]
In the Linux kernel, the following vulnerability has been resolved: mm/sparsemem: fix race in accessing memory_section->usage The below race is observed on a PFN which falls into the device memory region with the system memory configuration where PFN's are such that [ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL]. Since normal zone start and end pfn contains the device memory PFN's as well, the compaction triggered will try on the device memory PFN's too though they end up in NOP(because pfn_to_online_page() returns NULL for ZONE_DEVICE memory sections). When from other core, the section mappings are being removed for the ZONE_DEVICE region, that the PFN in question belongs to, on which compaction is currently being operated is resulting into the kernel crash with CONFIG_SPASEMEM_VMEMAP enabled. The crash logs can be seen at [1]. compact_zone() memunmap_pages ------------- --------------- __pageblock_pfn_to_page ...... (a)pfn_valid(): valid_section()//return true (b)__remove_pages()-> sparse_remove_section()-> section_deactivate(): [Free the array ms->usage and set ms->usage = NULL] pfn_section_valid() [Access ms->usage which is NULL] NOTE: From the above it can be said that the race is reduced to between the pfn_valid()/pfn_section_valid() and the section deactivate with SPASEMEM_VMEMAP enabled. The commit b943f045a9af("mm/sparse: fix kernel crash with pfn_section_valid check") tried to address the same problem by clearing the SECTION_HAS_MEM_MAP with the expectation of valid_section() returns false thus ms->usage is not accessed. Fix this issue by the below steps: a) Clear SECTION_HAS_MEM_MAP before freeing the ->usage. b) RCU protected read side critical section will either return NULL when SECTION_HAS_MEM_MAP is cleared or can successfully access ->usage. c) Free the ->usage with kfree_rcu() and set ms->usage = NULL. No attempt will be made to access ->usage after this as the SECTION_HAS_MEM_MAP is cleared thus valid_section() return false. Thanks to David/Pavan for their inputs on this patch. [1] https://lore.kernel.org/linux-mm/994410bb-89aa-d987-1f50-f514903c55aa@quicinc.com/ On Snapdragon SoC, with the mentioned memory configuration of PFN's as [ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL], we are able to see bunch of issues daily while testing on a device farm. For this particular issue below is the log. Though the below log is not directly pointing to the pfn_section_valid(){ ms->usage;}, when we loaded this dump on T32 lauterbach tool, it is pointing. [ 540.578056] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [ 540.578068] Mem abort info: [ 540.578070] ESR = 0x0000000096000005 [ 540.578073] EC = 0x25: DABT (current EL), IL = 32 bits [ 540.578077] SET = 0, FnV = 0 [ 540.578080] EA = 0, S1PTW = 0 [ 540.578082] FSC = 0x05: level 1 translation fault [ 540.578085] Data abort info: [ 540.578086] ISV = 0, ISS = 0x00000005 [ 540.578088] CM = 0, WnR = 0 [ 540.579431] pstate: 82400005 (Nzcv daif +PAN -UAO +TCO -DIT -SSBSBTYPE=--) [ 540.579436] pc : __pageblock_pfn_to_page+0x6c/0x14c [ 540.579454] lr : compact_zone+0x994/0x1058 [ 540.579460] sp : ffffffc03579b510 [ 540.579463] x29: ffffffc03579b510 x28: 0000000000235800 x27:000000000000000c [ 540.579470] x26: 0000000000235c00 x25: 0000000000000068 x24:ffffffc03579b640 [ 540.579477] x23: 0000000000000001 x22: ffffffc03579b660 x21:0000000000000000 [ 540.579483] x20: 0000000000235bff x19: ffffffdebf7e3940 x18:ffffffdebf66d140 [ 540.579489] x17: 00000000739ba063 x16: 00000000739ba063 x15:00000000009f4bff [ 540.579495] x14: 0000008000000000 x13: 0000000000000000 x12:0000000000000001 [ 540.579501] x11: 0000000000000000 x10: 0000000000000000 x9 :ffffff897d2cd440 [ 540.579507] x8 : 0000000000000000 x7 : 0000000000000000 x6 :ffffffc03579b5b4 [ 540.579512] x5 : 0000000000027f25 x4 : ffffffc03579b5b8 x3 :0000000000000 ---truncated---
There is a null-pointer-dereference flaw found in f2fs_write_end_io in fs/f2fs/data.c in the Linux kernel. This flaw allows a local privileged user to cause a denial of service problem.
In the Linux kernel, the following vulnerability has been resolved: ocfs2: Avoid touching renamed directory if parent does not change The VFS will not be locking moved directory if its parent does not change. Change ocfs2 rename code to avoid touching renamed directory if its parent does not change as without locking that can corrupt the filesystem.
In the Linux kernel, the following vulnerability has been resolved: ceph: fix deadlock or deadcode of misusing dget() The lock order is incorrect between denty and its parent, we should always make sure that the parent get the lock first. But since this deadcode is never used and the parent dir will always be set from the callers, let's just remove it.
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Fix racing issue between ufshcd_mcq_abort() and ISR If command timeout happens and cq complete IRQ is raised at the same time, ufshcd_mcq_abort clears lprb->cmd and a NULL pointer deref happens in the ISR. Error log: ufshcd_abort: Device abort task at tag 18 Unable to handle kernel NULL pointer dereference at virtual address 0000000000000108 pc : [0xffffffe27ef867ac] scsi_dma_unmap+0xc/0x44 lr : [0xffffffe27f1b898c] ufshcd_release_scsi_cmd+0x24/0x114